(H-LDE) dann haben wir folgendes Resultat.

Größe: px
Ab Seite anzeigen:

Download "(H-LDE) dann haben wir folgendes Resultat."

Transkript

1 Lineare Systeme allgemein Wronski-Determinante Als explizite lineare Differentialgleichung erster Ordnung bezeichneten wir also nach dem Gesagten eine explizite Differentialgleichung erster Ordnung der Form ẋ(t) F(t)x(t) + h(t), wobei x C ([,τ],r n ), x C 1 (],τ[,r n ) und F C ([,τ],r n n ), sowie h C ([,τ],r n ), n N >. Wir verwenden hier der Transparenz 1 halber einen endlichen Zeithorizont [,τ]. Wir hatten insbesondere auf die triviale Übertragbarkeit der Lösungstheorie auf matrix-wertige Lösungen, sowie die besondere Bedeutung des Falles quadratischer atrizen hingewiesen. Sei X C ([,τ],r n n ), X C 1 (],τ[,r n n ), eine Lösung der entsprechenden sogenannten homogenen Gleichung Ẋ(t) F(t)X(t), (H-LDE) dann haben wir folgendes Resultat. Satz Eine Lösung X C ([,τ],r n n ) C 1 (],τ[,r n n ) von (H-LDE) ist entweder stets regulär oder stets singulär, also _ det(x(t)) ^ det(x(t)). t [,τ] t [,τ] Dieses Resultat wird unterstrichen durch die für die sogenannte Wronski-Determinante 2 t det(x(t)) geltende Differentialgleichung für t [,τ], aus der folgt ( Z t det X(t) det X() exp Hier ist (det X) (t) spurf(t) det X(t) (1) spurf(t) : F kk (t) ) spurf(s) ds. (2) 1 So sparen wir uns bei der Lösungstheorie die Beschränktheitsbedingung. 2 Bei 1-dimensionalen expliziten linearen Differentialgleichungen wird als Wronski-Determinante die Wronski- Determinante des entsprechenden Systems 1-ter Ordnung verstanden. Bei einer expliziten 1-dimensionalen linearen Differentialgleichungen L-ter Ordnung ergibt sich für die L linear unabhängigen Lösungen (u,...,u L 1 ) die Wronski-Determinante als u u L 1 u det u L u (L 1) u (L 1) L 1 25

2 die sogenannte Spur von F(t), t [,τ]. Wir wollen zeigen, dass (2) gilt, hierzu beweisen wir die Gültigkeit von (1). Beweis. Zunächst gilt mit Z X det Z det X. Die Spalten Z i (Z ji ) j,..., der atrix Z entspechen den Zeilen Z i (X i j ) j,..., von X (X i j ) i, j,...,, i,...,n 1. Die Spalten X i der atrix X erfüllen die Differentialgleichung X i (t) (X ji(t)) j,..., (F jk (t)) j,,..., (X ki (t)),..., i,...,n 1. Da Z i j X ji für i, j,...,n 1, folgt or Z i j(t) Z j(t) it der Differentiationsregel für Determinanten (det Z) (t) und mit (3) folgt weiter F jk (t)z ik (t) F jk (t)z k (t). (3) det(z 1 (t),...,z k 1 (t),z k(t), Z k+1 (t),...,z (t)). (4) (det Z) (t) det(z 1(t),...,Z k 1 (t), j F k j(t)z j (t), Z k+1 (t),...,z (t)), det(z 1(t),...,Z k 1 (t), F kk (t)z k (t), Z k+1 (t),...,z (t))+ + det(z 1(t),...,Z k 1 (t), k 1 j F k j(t)z j (t), Z k+1 (t),...,z (t))+ + det(z 1(t),...,Z k 1 (t), jk+1 F k j(t)z j (t), Z k+1 (t),...,z (t)), F kk(t) det(z 1 (t),...,z k 1 (t), Z k (t), Z k+1 (t),...,z (t)), F kk(t) det Z(t). ethode der Variation der Konstanten Aus der Kenntnis der Grundlösung G zur homogenen Gleichung Ġ(t) F(t)G(t) 26

3 für t [,τ], (G() 1 (n n) ), kann man eine Lösung der inhomogenen Gleichung finden (partikuläre Lösung). Die ethode der Variation der Konstanten liefert einen systematischen Weg eine solche Lösung zu finden. it dem Ansatz U(t) G(t)C(t) folgt also Also ist U(t) Ġ(t)C(t) + G(t)Ċ(t) F(t)G(t)C(t) + h(t) C(t) Damit erhält man, wie man leicht nachprüft, G(t)Ċ(t) h(t). Z t G(s) 1 h(s)ds. Z t V (t) : G(t) G(s) 1 h(s)ds für t [, τ] als Lösung. Zur Anpassung der Anfangsbedingungen ergänzen wir eine passende homogene Lösung, also ist Lösung der Anfangswertaufgabe U(t) G(t)U + G(t) Z t ẋ(t) F(t)x(t) + h(t), x() U. G(s) 1 h(s)ds Hierbei ist das Anfangsdatum U R n s und h C ([,τ],r n s ), s N > beliebig Lineare Differentialgleichungen mit konstanten Koeffizienten Eine formale ethode Wir wollen nun eine ethode behandeln, die die Berechnung einer Grundlösung erlaubt. Sie beruht auf der Betrachtung der Ableitung als formaler Operation, die wir in Entsprechung zur Symbolik der partiellen Ableitungen mit (als Zeit -Ableitung auf R > oder R) bezeichnen wollen. Eine Differentialgleichung des genannten Typs ist dann von der Form P( )U F (ODE) wobei P( ) N A k k 27

4 also t P(t) ein Polynom mit (n n) atrizen A k, k,...,n, als Koeffizienten, n N >. Hierbei sei der Einfachheit halber A N 1 (n n) die (n n) Einheitsmatrix. Betrachten wir nun als Unbestimmte so können wir nun algebraische Ideen der atrixtheorie in s Spiel bringen. Insbesondere können wir die Determinante sowie das charakteristische (1 1) Polynom berechnen. det(p( )) λ det(p( ) λ1 n n ) Satz 5.2. (Satz von Cayley-Hamilton) Sei A C n n dann gilt mit dem charakteristischen Polynom p gegeben durch t det(a t), dass für A die atrixgleichung erfüllt ist. p(a) (n n) Beweis. Laut Cramer scher Regel gilt 3 mit adj(b) : (cof(b)) (der sogenannten Adjunkten- 3 Die Cramer sche Regel ist vermutlich eher in der Form bekannt, dass die Lösung x (x,...,x ) der linearen Gleichung mit det(b) komponentenweise durch Bx b x k det(b,...,b k 1,b,B k+1,...,b n ) det(b) für k,...,n 1, gegeben ist. Hierbei ist B (B,...B ) die Spalten-Blockdarstellung der atrix B. Entwicklung der Determinante im Zähler nach der k-ten Spalte ergibt (nach dem Determinanten-Entwicklungssatz oder (in Spaltendarstellung) det(b) x k s b s (cof(b)) s,k für k,...,n 1, det(b) x adj(b) b. Beachtet man nun noch, dass die n n-einheitsmatrix 1 n n durch die kanonischen Einheitsvektoren als Spaltenmatrizen ausgedrückt werden kann in der Form 1 n n (e e ) und dass gilt, so ergibt sich B e k B k für k,...,n 1 det(b) 1 n n det(b) (e e ), adj(b) (B,...,B n ), adj(b) B. 28

5 matrix) und der Kofaktorenmatrix cof(b) : ( ( (B ( 1) r+s ) )) i det j (i, j) (n\{r}) (n\{s}), (r,s) n n mit B (B,...,B n ) und den Spaltenmatrizen B k ( B i ) k, k,...,n 1, dass,i n adj(b) B B adj(b) det(b) 1 n n. it B (A λ1 n n ) folgt also adj(a λ1 n n ) (A λ1 n n ) (A λ1 n n ) adj(a λ1 n n ), det(a λ1 n n ) 1 n n, p(λ) 1 n n. Hierbei wissen wir ferner, dass adj(a λ1 n n ) ein matrixwertiges Polynom ist, so dass hier eine Gleichung zwischen solchen Polynomen vorliegt. Zur Fortführung des Beweises benötigen wir ein Hilfsresultat. Also ist B 1 1 det(b) adj(b) und so auch adj(b) B B adj(b). Die Cramer sche Regel selbst folgt aus der äquivalenten atrixgleichung B(e e k 1 x e k e ) (Be Be k 1 Bx Be k+1 Be ) (B B k 1 b B k+1 B ) mit dem Determinantenmultiplikationssatz det((b B k 1 b B k+1 B )) det(b(e e k 1 x e k e )) det(b)det((e e k 1 x e k e )) det(b) x k für k,...,n 1. 29

6 Lemma. Seien P, Q n n-matrixwertige Polynome und es gelte P(λ) Q(λ)(A λ1 n n ) dann folgt P(A). Beweis. Sei Q(λ) A k λ k, dann ist P(λ) Q(λ)(A λ1 n n ), ( A k λ k ) +1 A k Aλ k A k Aλ k (A λ1 n n ), +1 k1 A k λ k+1, A k 1 λ k, (A k A A k 1 ) λ k, wobei wir A 1 A +1 n n gesetzt haben. Demnach ist P(A) (A k A A k 1 ) A k, A k A k+1 +1 A k 1 A k, A k A k+1 +1 A k A k+1 k1 A k 1 A k, A k A k+1, it diesem Hilfssatz folgt nun das Gewünschte mit Q(λ) adj(a λ1 n n ) und P(λ) p(λ) 1 n n. Damit ist der Satz von Cayley-Hamilton bewiesen. Bemerkung Der Satz bleibt richtig, wenn p durch das inimal-polynom von A ersetzt wird, welches dieselben Wurzeln wie p aber in möglicherweise geringerer Vielfachheit besitzt. 3

Wir wollen Systeme von linearen Differentialgleichungen 1. Ordnung über einem offenen Intervall I R untersuchen:

Wir wollen Systeme von linearen Differentialgleichungen 1. Ordnung über einem offenen Intervall I R untersuchen: 23 23 Lineare Systeme Wir wollen Systeme von linearen Differentialgleichungen Ordnung über einem offenen Intervall I R untersuchen: y = y A(t + b(t, mit stetigen Abbildungen A : I M n,n (R und b : I R

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

Lineare Differentialgleichungen

Lineare Differentialgleichungen Technische Universität München Thomas Reifenberger Vorlesung, Kapitel 4 Repetitorium Analysis I für Physiker Analysis I Lineare Differentialgleichungen 1 Das Matrixexponential Definition 1.1 Sei A C n

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analsis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 07.05.07 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Die inhomogene Differentialgleichung höherer Ordnung.

Die inhomogene Differentialgleichung höherer Ordnung. Die inhomogene Differentialgleichung höherer Ordnung. Ist das Funktionensystem (y 1,..., y n ) ein Fundamentalsystem, so ist die Matrix Y(t) = y (0) 1... y n (0). y (n 1) 1... y n (n 1) eine Fundamentalmatrix

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

9 Lineare Differentialgleichungen

9 Lineare Differentialgleichungen $Id: lineartex,v 3 //8 ::37 hk Exp hk $ 9 Lineare Differentialgleichungen 9 Homogene lineare Differentialgleichungen Wir beschäftigen uns gerade mit den homogenen linearen Differentialgleichungen, also

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Methode der unbestimmten Koeffizienten für lineare Differentialgleichungen zweiter Ordnung

Methode der unbestimmten Koeffizienten für lineare Differentialgleichungen zweiter Ordnung Differentialgleichungen zweiter Ordnung Für bestimmte rechte Seiten f kann eine partikuläre Lösung u der Differentialgleichung u (t) + pu (t) + qu(t) = f (t) durch einen Ansatz mit unbestimmten Koeffizienten

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem

Mehr

Institut für Analysis SS 2015 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis SS 2015 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analysis SS 25 PD Dr. Peer Christian Kunstmann 7.9.25 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zur Bachelor-Modulprüfung Aufgabe :

Mehr

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets

Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets Institut für Analsis WS 0/5 PD Dr. Peer Christian Kunstmann 05..0 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Phsik Lösungsvorschläge zum. Übungsblatt Aufgabe 6: a Es handelt

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

4 Letzte Themen der linearen Algebra

4 Letzte Themen der linearen Algebra 4 Letzte Themen der linearen Algebra 4.1 Ergänzungen zum Matrizenkalkül Sind A, B Matrizen über Ã, für die das Produkt AB erklärt ist, so gilt (AB) T = B T A T. Mit C = AB gilt c ij = k a ik b kj c T ij

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen

Mehr

Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik SS

Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik SS Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

3.7 Eigenwerte und Eigenvektoren

3.7 Eigenwerte und Eigenvektoren 3.7. EIGENWERTE UND EIGENVEKTOREN 123 3.7 Eigenwerte und Eigenvektoren Wir wollen jetzt lineare Endomorphismen durch Matrizen besonders übersichtlicher Gestalt (u.a. mit möglichst vielen Nullen) beschreiben,

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

B. Lösungsskizzen zu den Übungsaufgaben

B. Lösungsskizzen zu den Übungsaufgaben B. Lösungsskizzen zu den Übungsaufgaben B.. Lösungen zum Kapitel B... Tutoraufgaben Lösungsskizze Wir gehen zuerst nach dem Lösungsverfahren vor. Schritt : Bestimmung der Lösung des homogenen DGL-Systems

Mehr

Die Determinante einer Matrix

Die Determinante einer Matrix Chr.Nelius, Lineare Algebra II (SS 2005) 6 Die Determinante einer Matrix Wir betrachten im folgenden Determinantenformen auf dem Vektorraum V = K n. Eine solche Form ist eine Abbildung von n Spaltenvektoren

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2. - 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel

Mehr

9 Lineare Algebra 2 (SS 2009)

9 Lineare Algebra 2 (SS 2009) 9 Lineare Algebra 2 (SS 2009) Vorbemerkung: Das Einsetzen von quadratischen Matrizen in Polynome. Im folgenden sei R ein kommutativer Ring und R[T] der Polynomring mit Koeffizienten in R (dies ist wieder

Mehr

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23

m 1 Die Bewegung der drei Kugeln wird beschrieben durch das folgende Differentialgleichungssystem x 1 (t) x 2 (t) x 3 (t) k 12 k 12 k 12 k k 23 Kapitel 5 Eigenwerte 5. Definition und Beispiele Wir sehen uns ein System dreier schwingender Kugeln der Massen m, m und m 3 an, die durch Federn aneinander gekoppelt sein sollen. m k m k 3 m 3 x ( t x

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

y = A(x) y + b(x). (1) y = A(x) y (2)

y = A(x) y + b(x). (1) y = A(x) y (2) 73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja Lineare Systeme mit konstanten Koeffizienten 44 63 Zusammenhang mit Fundamentalsystemen Für die Matrix-Exponenzialfunkton e Ax gilt (e Ax ) = Ae Ax Für jede Spalte '(x) der Matrix e Ax Matrixmultpiplikation

Mehr

Zusatzmaterial zu Kapitel 4

Zusatzmaterial zu Kapitel 4 1 ERMITTLUNG DER TRANSITIONSMATRIX MIT DER SYLVESTER-FORMEL 1 Zusatzmaterial zu Kapitel 4 1 Ermittlung der Transitionsmatrix mit der Sylvester- Formel Wir nehmen an, dass das Zustandsmodell eines linearen

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Definition Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1. Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt

Definition Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1. Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt Kapitel 5 Determinanten 51 Definition und Existenz Definition 511 Sei R ein kommutativer Ring mit multiplikativ neutralem Element 1 Eine Abbildung D : R (n,n) R heißt n-linear, wenn gilt [D1] D ist linear

Mehr

1 Bestimmung der inversen Matrix

1 Bestimmung der inversen Matrix Inhaltsverzeichnis 1 Bestimmung der inversen Matrix Die inverse Matrix A 1 zu einer Matrix A kann nur bestimmt werden, wenn die Determinante der Matrix A von Null verschieden ist. Im folgenden wird die

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten - 1 - Gewöhnliche Differentialgleichungen Teil II: Lineare DGLs mit konstanten Koeffizienten Wir wenden uns jetzt einer speziellen, einfachen Klasse von DGLs zu, die allerdings in der Physik durchaus beträchtliche

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5 Aufgabe I (4 Punkte) Es sei G : {e, g, g, g } eine 4-elementige Gruppe mit neutralem Element e Die Verknüpfung auf G werde mit bezeichnet Außerdem seien in G folgende Gleichungen erfüllt: g g g und g g

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten

Mehr

Übungen zu Lineare Algebra und Geometrie 1

Übungen zu Lineare Algebra und Geometrie 1 Übungen zu Lineare Algebra und Geometrie 1 Andreas Čap Sommersemester 2015 Wiederholung grundlegender Begriffe (1 Bestimme Kern und Bild der linearen Abbildung f : R 3 R 3, die gegeben ist durch f(x, y,

Mehr

ist (oder besser Abspalten von Linearfaktoren beschäftigen. Zu einem beliebigen Körper K betrachten wir die Menge (j,k) N N j+k=n

ist (oder besser Abspalten von Linearfaktoren beschäftigen. Zu einem beliebigen Körper K betrachten wir die Menge (j,k) N N j+k=n 8. Polynomringe Das Umgehen mit Polynomen, d.h. mit Ausdrücken der Form a 0 + a 1 x + a 2 x 2 +... + a n x n ist aus der Schule vertraut, falls die Koeffizienten a 0,..., a n ganze oder rationale oder

Mehr

Regelungs- und Systemtechnik 2 Winter 2017/2018

Regelungs- und Systemtechnik 2 Winter 2017/2018 Regelungs- und Systemtechnik Winter 7/8 Wiederholung mathematischer Grundlagen Die folgende Zusammenstellung orientiert sich an den in der Vorlesung Regelungs- & Systemtechnik Anwendung findenden ingenieurmathematischen

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

1.5 Lineare Differentialgleichungen zweiter Ordnung

1.5 Lineare Differentialgleichungen zweiter Ordnung 16 Kapitel 1. Differentialgleichungen 1.5 Lineare Differentialgleichungen zweiter Ordnung Eine lineare Differentialgleichung zweiter Ordnung hat die Form y +a 1 (x)y +a 0 (x)y = b(x), wobei a 1,a 0,b:I

Mehr

Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie-

Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie- 1 Vorbemerkungen Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie- benen Vektoren. Wird die Matrix A = ( a 1,..., a n ) mit dem Vektor c = c 1. c n multipliziert,

Mehr

2.11 Eigenwerte und Diagonalisierbarkeit

2.11 Eigenwerte und Diagonalisierbarkeit 2.11. EIGENWERTE UND DIAGONALISIERBARKEIT 127 Die Determinante eines Endomorphismus Wir geben uns jetzt einen endlichen erzeugten K-Vektorraum V und einen Endomorphismus ϕ : V V vor. Wir wollen die Determinante

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten 6.1 Symmetrische Gruppe Definition: Eine bijektive Abbildung von einer Menge X auf sich selbst heisst eine Permutation von X. Satz-Definition:

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 24 Das Lernen und der Orgasmus finden letztlich im Kopf statt Der Satz von Cayley-Hamilton Arthur Cayley

Mehr

Vorlesung Mathematik 2 für Ingenieure (A)

Vorlesung Mathematik 2 für Ingenieure (A) 1 Vorlesung Mathematik 2 für Ingenieure (A) Sommersemester 2017 Kapitel 8: Gewöhnliche Differenzialgleichungen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke

Mehr

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.

Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten 6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten Dieser Abschnitt ist ein Einschub. Gewöhnliche DGL werden im nächsten Semester behandelt. Unter einer linearen gewöhnlichen DGL

Mehr

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz:

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz: d-infk Lösung von Serie 4 FS 07 4.. Inhomogene Lineare Differentialgleichungen Das charakteristische Polynom der homogenen DGl y (4) + y + y = 0 ist λ 4 + λ + = (λ + ). Seine Wurzeln sind ±i und jede hat

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

Algebraische Kurven. Vorlesung 25

Algebraische Kurven. Vorlesung 25 Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 25 Lösung in Potenzreihen für algebraische Kurven Sei F 0 ein Polynom, das die ebene algebraische Kurve C beschreibe, und sei P = (0,0)

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Jonathan Mosser 3. Juni 27 / 38 Vorbemerkungen Singularität Singuläre Probleme können auf zwei Arten formuliert

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Prof Dr Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Determinanten: Vorüberlegung Permutationen und Inversionen

Mehr

Randwertprobleme. Kapitel 7. Randwertprobleme für lineare Differentialgleichungen 2. Ordnung

Randwertprobleme. Kapitel 7. Randwertprobleme für lineare Differentialgleichungen 2. Ordnung Kapitel 7 Randwertprobleme Anwendungsbeispiel: Temperaturverteilung in einem dünnen Stab mit isolierter Oberfläche. u(x) : Temperatur im Stab an der Stelle x, x ; L. Im Gleichgewichtszustand genügt u der

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

5.4 Basis, Lineare Abhängigkeit

5.4 Basis, Lineare Abhängigkeit die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)

Mehr

1. Hausübung ( )

1. Hausübung ( ) Übungen zur Vorlesung»Lineare Algebra B«(SS ). Hausübung (8.4.) Aufgabe Es seien σ (3, 6, 5,, 4, 8,, 7) und τ (3,,, 4, 6, 5, 8, 7). Berechnen Sie σ τ, τ σ, σ, τ, die Anzahl der Inversionen von σ und τ

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

23. Die Jordan sche Normalform

23. Die Jordan sche Normalform Chr.Nelius, Lineare Algebra II (SS 2005) 1 23. Die Jordan sche Normalform Wir suchen für einen trigonalisierbaren Endomorphismus unter seinen dreiecksförmigen Darstellungsmatrizen eine Darstellungsmatrix,

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004 B Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004 April Klausur (Rechenteil Lösungen Lineare Algebra für Ingenieure Name:.......................................

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Wir verallgemeinern jetzt den Begriff bilinear zu multilinear. Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante.

Wir verallgemeinern jetzt den Begriff bilinear zu multilinear. Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante. 118 36 Determinanten Wir verallgemeinern jetzt den Begriff bilinear zu multilinear Unser Ziel ist dabei insbesondere die Einführung der sogenannten Determinante 361 Definition (alternierend, symmetrisch,

Mehr

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen 12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

MATHEMATIK III-PARTIELLE DIFFERENTIALGLEICHUNGEN, D-CHEM Herbstsemester 2012 Lektion 20 September 2012

MATHEMATIK III-PARTIELLE DIFFERENTIALGLEICHUNGEN, D-CHEM Herbstsemester 2012 Lektion 20 September 2012 MATHEMATIK III-PARTIELLE DIFFERENTIALGLEICHUNGEN, D-CHEM Herbstsemester 2012 Lektion 20 September 2012 Dieser Kurs ist eine Einführung von linearen partiellen Differentialgleichungen. Das Hauptziel ist

Mehr

Methoden zum Lösen von ODEs

Methoden zum Lösen von ODEs Methoden zum Lösen von ODEs 7. Januar 203 Inhaltsverzeichnis ODEs erster Ordnung 2. Einfache Probleme........................................ 2.2 Variation der Konstanten....................................

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y.

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y. Determinanten Motivation: Man betrachte das lineare Gleichungssystem [ [ [ a b x u = (1) c d y v Sei obda a und c Dann ist (1) äquivalent zu [ [ ca cb x = ac ad y und ferner zu [ [ ca cb x ad cb y Falls

Mehr