Observable und Zustände in klassischer Mechanik

Größe: px
Ab Seite anzeigen:

Download "Observable und Zustände in klassischer Mechanik"

Transkript

1 Observable und Zustände in klassischer Mechanik Einleitung: Algebraische Aspekte, Zustände, Observable Algebraische Aspekte der Hamiltonschen Mechanik Die Quantenmechanik (/-theorie) ist vor allem algebraisch aufgebaut. Deshalb ist es von Interesse die klassische Mechanik auf eine Art und Weise zu formulieren, die genauso algebraische Eigenschaften in den Vordergrund stellt. Im Zuge dessen können auch in der klassischen Mechanik die Begriffe "Zustand" und "Observable" mathematisch beschrieben werden und später Vergleiche zur Quantenmechanik gezogen werden. Zustände und Observable Meist wird ein Zustand eines Punktteilchens im dreidimensionalen Raum als ein Punkt im Phasenraum 1 beschrieben (d.h. durch das Paar von Impuls und Ort). Der Zustand von Punktteilchen ist dementsprechend ein Punkt im Phasenraum. Diese Definition wird im Rahmen der algebraischen Betrachtung verallgemeinert. Zustände, die wie zuvor beschrieben durch bestimmt werden können nennt man reine Zustände. Analog zur ersten "Definition" des Zustandes kann man eine Observable als mathematische Größe bezeichnen, die jedem Zustand eine Zahl zuordnet, die mit dem experimentellen Messresultat dieser Observablen identisch ist. Die reinen Zustände (eines Teilchens oder Systems) in der klassischen Mechanik sind eindeutig durch Orts- und Impulskoordinaten determiniert 2 und somit sind Observablen Funktionen der Orts- und Impulskoordinaten. Damit sind sie aber auch Funktionen auf dem Phasenraum. Die möglichen Messwerte einer Observablen entsprechen dann der Zielmenge (=Wertevorrat) der Funktion, die dieser Observable zugeordnet ist. Funktionenklassen Um Mathematik betreiben zu können, und damit auch axiomatische Definitionen aufzustellen, muss spezifiziert werden aus welcher Klasse von Funktionen die Funktionen, die die Observablen beschreiben, stammen. Welche Klasse dabei gewählt wird hängt von der jeweiligen Problemstellung ab und ist nicht vorgeschrieben 3. Üblicherweise wird eine der folgenden Funktionenklassen gewählt 4 : i) polynomiale Funktionen, ii) analytische Funktionen, iii) glatte Funktionen, eventuell mit kompaktem Träger, iv) stetige Funktionen, eventuell mit kompaktem Träger, v) integrierbare Funktionen (wie beispielsweise ), wobei jeweils die Anzahl der Freiheitsgrade angibt. Desweiteren lassen sich auch Bedingungen an das Wachstumsverhalten der Funktionen im Unendlichen stellen. 1 auch Zustandsraum; Die Menge aller möglichen Zustände, die ein dynamisches (=deterministisches) System einnehmen kann. Also der Raum, der durch die Variablen des Systems aufgespannt wird. In der klassischen Physik meist Ort und Impuls. 2 Im Gegensatz zu gemischten Zuständen, die bei statistischer Mechanik, bei der Systeme beschrieben werden von denen nur mangelhafte Kenntnis vorliegt, Verwendung finden. 3 Zum Beispiel ist es ausreichend die Funktionen auf die Klasse der stetigen Funktionen einzuschränken, wenn man "nur" bestimmte Werte und somit einzelne Zustände des Systems angeben möchte. Will man aber (physikalisch sinnvoller Weise) auch das Verhalten des Systems, also die Änderung der Observablen, betrachten, so empfiehlt es sich die Klasse weiter einzuschränken. Nämlich auf die glatten Funktionen. 4 "iii)" in der Aufzählung markiert, weil diese Klasse weiter verwendet wird 1

2 Bei Wahl der Klasse sollte darauf geachtet werden, dass sie nicht zu klein ist, damit wichtige Observablen (wie zum Beispiel die Hamilton-Funktion) in der Funktionenklasse enthalten sind 5. Wertebereiche Neben der Wahl der Funktionenklasse muss auch der Wertevorrat der Funktion spezifiziert werden: i) reellwertige Funktionen, ii) komplexwertige Funktionen, iii) vektorwertige Funktionen mit Werten in einem (reellen oder komplexen) Vektorraum Vektorwertige Funktionen können durch Betrachtung der Komponenten auf einen der ersten beiden Fälle zurückgeführt werden. Die Wahl der reellwertigen Funktionen ist naheliegend, da die experimentellen Messergebnisse meist reelle Zahlen sind. Es gibt allerdings keinen Grund komplexwertige Funktionen auszuschließen. Im Hinblick auf die Quantenmechanik bieten sie mit der komplexen Konjugation sogar noch eine entscheidende zusätzliche Struktur. Deshalb werden komplexwertige Funktionen als Observablen verwendet. Im experimentellen Sinn observabel sind aber nur die reellwertigen Funktionen,. Diese Überlegungen führen zur Definition der klassischen Observablenalgebra. Klassische Observablenalgebra Die Observablenalgebra eines klassischen mechanischen Systems mit Freiheitsgraden ist die *-Algebra der komplexwertigen glatten Funktionen auf dem Phasenraum 6. Observable sind die Elemente aus mit Einschub [1]: Definition: Algebra (über einem Körper) Einschub [2]: Definition: *-Algebra Das assoziative Produkt von ist einfach das punktweise Produkt von Funktionen und damit insbesondere auch kommutativ. Analog ist die Addition die punktweise Addition von Funktionen und die Konjugation " " ist die punktweise komplexe Konjugation der Funktionen. Somit ist auf kanonische Weise eine *-Algebra. Erwartungswerte und Varianz einer Observablen in einem reinen Zustand. Die Erwartungswerte einer Observablen sind dann einfach durch die Auswertung von in einem reinen Zustand bei gegeben. Definitionsgemäß ist die Varianz womit in einem reinen Zustand (insbesondere für alle ) gilt, dass die Varianz (und damit auch die Standardabweichung 7 ) verschwindet. 5 Aus diesem Grund wurden hier auch die glatten und nicht die stetigen Funktionen gewählt. Der allgemeinste Fall wäre die Klasse der stetigen Funktionen. Diese ist aber "zu groß" um physikalisch sinnvoll zu sein (siehe 3 ). 6 Man könnte die Definition auch analog mit einer anderen geeigneten Klasse von Funktionen aufstellen. 7 Standardabweichung ; Die Standardabweichung ist ein Maß für die Schwankung der experimentellen Messergebnisse um den Erwartungswert. 2

3 In der klassischen Mechanik erhält man in einem reinen Zustand somit immer "scharfe Messwerte" für alle Observablen, ganz im Gegensatz zur Quantenmechanik. Statistische Mechanik, gemischte Zustände, Dichtefunktionen/Wahrscheinlichkeitsmaße Bei der statistischen Mechanik geht man dazu über Systeme zu beschreiben, deren Kenntnis nur noch mangelhaft vorliegt. Um in dieser Weise Systeme beschreiben zu können muss man dazu übergehen das Befinden des Systems in einem bestimmten Zustand mit einer Wahrscheinlichkeit anzugeben. Der Zustand in dem sich das System befindet ist also nicht mehr eindeutig bestimmt, sondern es liegen sogenannte gemischte Zustände vor. Diese werden durch Wahrscheinlichkeitsmaße 8 bzw. Dichtefunktionen 9 auf beschrieben 10. Dies führt zu einer neuen, allgemeineren Definition des Zustandsbegriffes: Der klassische Zustand eines mechanischen Systems ist ein Wahrscheinlichkeitsmaß auf dem Phasenraum. Wie es sein muss enthält die neue Definition die alte als Spezialfall: Mit dem (als Wahrscheinlichkeitsmaß) zu reinen Zuständen gehörenden Dirac-Maß frühere Definition ergibt sich genau die Dies führt auch auf eine neue Definition von Erwartungswerten und Standardabweichung von Observablen: Erwartungswerte & Standardabweichung einer Observablen in einem (beliebigen) Zustand Unter der Annahme, dass sich ein System in einem zum Wahrscheinlichkeitsmaß gehörenden Zustand befindet ist der Erwartungswert einer Observablen definiert durch Die Standardabweichung einer Observablen im Zustand ist definiert durch also analog zur Varianz oben. Jetzt gilt aber für alle genau dann, wenn ein reiner Zustand ist (was wieder dem Beinhalten der alten Theorie entspricht). Im Allgemeinen gilt. 8 siehe Einschub [3] 9 auch Wahrscheinlichkeitsdichtefunktion; Integration der Dichtefunktion über ein Intervall ergibt die Wahrscheinlichkeit dafür, dass die Zufallsvariable zu der diese Dichtefunktion gehört einen Wert zwischen und annimmt. 10 siehe Beispiel [1] 11 Sei ein messbarer Raum, eine messbare Teilmenge von und beliebig. Dann ist die Abbildung das Dirac-Maß ; für das Lebesgue-Integral gilt in diesem Fall: 12 Sei eine beliebige Observable. Die Wahrscheinlichkeit, dass ist dann gegeben durch, wobei das Urbild des Intervalls darstellt. Mit ergibt sich die frühere Definition des (reinen) Zustandes: 3

4 Desweiteren stellt man fest, dass die Zuordnung linear ist. Außerdem gilt Zustandsbegriffes:. Diese Tatsachen führen wiederum auf eine Verallgemeinerung des Zustände als normierte, positiv lineare Funktionale Einschub [4]: Definition: normiertes, positiv lineares Funktional Ein Zustand ist ein normiertes, positiv lineares Funktional auf der Algebra klassischen Mechanik die *-Algebra ). Die Zahl (im Fall der heißt Erwartungswert von im Zustand. Die Standardabweichung einer Observablen im Zustand ist definiert (analog wie zuvor) als Die Varianz ist hier genauso definiert wie zuvor. Wiederrum gilt für alle genau dann, wenn ein reiner Zustand ist und im Allgemeinen. Dieser neue Zustandsbegriff legt alle Mess-Wahrscheinlichkeitsverteilungen fest; er legt also fest, wie sich das System in Experimenten verhält. Begründung dafür ist der Rieszsche Darstellungssatz: Rieszscher Darstellungssatz: Jedes positive und normierte lineare Funktional ist von der Form wobei ein Wahrscheinlichkeitsmaß auf dem Phasenraum ist. Somit determiniert ein Zustand das Wahrscheinlichkeitsmaß für die Observablen und und damit auch für alle Funktionen in Impuls und Ort über Conclusio Somit kann festgehalten werden, dass ein klassisches, mechanisches System durch eine *-Algebra 13 (nämlich die der glatten Funktionen ) charakterisiert wird. Zustände dieses Systems sind dann normierte, positiv lineare Funktionale auf dieser *-Algebra. 13 Eigentlich sogar, durch die "größere" C*-Algebra der stetigen Funktionen. Wie zuvor beschrieben ist die Einschränkung auf die *-Algebra der glatten Funktionen, aber sinnvoll, da sonst nicht gewährleistet ist, dass die Zeitevolution (=Zeitentwicklung) der Systeme (bzw. der zugehörigen Observablen) beschrieben werden kann. (Sind die Funktionen (=Observablen) stetig, aber nicht differenzierbar, so können auch keine zeitlichen Änderungen angegeben werden.) 4

5 Einschübe [1] Definition: Algebra (über einem Körper ; daher auch K-Algebra genannt) Eine Algebra ist ein Vektorraum (über ) mit einer (zusätzlichen) Abbildung, die man Multiplikation nennt und folgende Eigenschaften erfüllen muss: i) ii) iii) iv) ein Einselement für die Multiplikation, d.h. für alle und alle (Note: Die hier Definierte Multiplikation ist nicht ident mit jener Multiplikation im Körper, obwohl sie ebenso symbolisiert wird ) Ein Beispiel wäre der Vektorraum der komplexen -Matrizen,. Mit der Matrixmultiplikation wird dieser zu einer Algebra. [2] Definition: *-Algebra Eine *-Algebra ist eine Algebra zusammen mit einer Abbildung, die man Konjugation nennt und folgende Eigenschaften erfüllen muss: i) ii) iii) iv) für alle und alle. Das Element nennt man die Adjungierte zu. Beispiel: Die Algebra bildet mit der Definition der Konjugation eine *-Algebra. Ein Element einer *-Algebra heißt normal, falls ; hermitesch, falls ; unitär falls und positiv, falls für ein. Element ist die Inverse von, falls (Notation: ). [3] Definition: Wahrscheinlichkeitsmaß Ein Wahrscheinlichkeitsmaß ist eine Funktion, die jedem Ereignis eine Wahrscheinlichkeit (= eine Zahl zw. 0 und 1) zuordnet und folgende Eigenschaften hat: i) ii) Normierung:, wobei die Ergebnismenge (also die Menge aller möglichen Ergebnisse) ist iii) -Additivität: Die Wahrscheinlichkeit, dass ein Ereignis eintritt, das eines von mehreren einander ausschließenden Ereignissen ist, ist gleich der Summe der einzelnen Wahrscheinlichkeiten der einander ausschließenden Ereignisse. Für jede Folge von Ereignissen für die gilt gilt: iv) (folgt eigentlich aus "iii)") (Note: Von einem Maß spricht man wenn obige Eigenschaften, bis auf die Normierung erfüllt sind.) 5

6 [4] Definition: normiertes, positiv lineares Funktional Sei eine *-Algebra über. Ein lineares Funktional (also eine Funktion vom Vektorraum bzw. hier von der Algebra in den Körper) heißt positiv, falls für alle. Ein positives Funktional ist normiert, wenn gilt wobei das Einselement der Algebra ist. 6

7 q Lukas Ifsits - a Observable und Zustände in klassischer Mechanik Beispiele [1] Wahrscheinlichkeitsmaß Sei ein Punktteilchen gegeben, dessen tatsächlicher Zustand unbekannt ist. Wir haben aber gegeben, dass sich der Zustand des Teilchens irgendwo im Phasenraum-Volumen befindet. Diesen Wissenstand kann man über ein Wahrscheinlichkeitsmaß, das definiert ist als (wobei die charakteristische Funktion oder Indikatorfunktion 14 ist) beschreiben. In diesem Beispiel ergibt sich somit Die Wahrscheinlichkeit, dass sich der Zustand des Teilchens im Phasenraum-Volumen aufhält, ist dann durch gegeben. Also in diesem Beispiel: Bei einfachen Beispielen wie diesem kann man sich leicht graphisch veranschaulichen, dass das Ergebnis Sinn macht: p Nach unserer Kenntnis befindet sich der Zustand mit gleicher Wahrscheinlichkeit an einem beliebigen Punkt im gesamten Bereich, der hier orange dargestellt ist. Die Wahrscheinlichkeit, dass der Zustand im Bereich liegt (hier blau) ist dann offensichtlich. 14 Die Indikatorfunktion oder charakteristische Funktion nimmt immer die Werte oder an., wenn das Element kein Teil der Menge ist;, wenn das Element Teil der Menge ist: Sei eine Teilmenge von. Dann ist die Indikatorfunktion für zur Teilmenge gegeben durch 7

8 Quellen: [1] Skript von der ETH-Zürich (leider für mich nicht herausfindbar von wem, oder zu welcher LV): [2] Stefan Waldmann; Poisson-Geometrie und Deformationsquantisierung (verwendete Seiten im Internet als Vorschau verfügbar): de+mechanik&source=bl&ots=_2ytixkm_o&sig=wi5w2slizdi2vs_8cm6uoequz9u&hl=de&sa=x &ei=bwp6toqas6aorzu4jgb&ved=0ceuq6aewbw#v=onepage&q=observable%20zust%c3%a4nde%20mechanik &f=false [3] Raimar Wulkenhaar; Observablen und Zustände; Seminar "Mathematische Strukturen der Quantenmechanik": [4] Wikipedia: 8

Zeitentwicklung von Observablen und Zuständen in der klassischen Mechanik

Zeitentwicklung von Observablen und Zuständen in der klassischen Mechanik Zeitentwicklung von Observablen und Zuständen in der klassischen Mechanik Martin Vojta 05.01.2012 1 Hamiltonsche Mechanik Die Hamiltonsche Mechanik befasst sich mit der Bewegung im Phasenraum. Dabei kann

Mehr

Ferienkurs Quantenmechanik 2009

Ferienkurs Quantenmechanik 2009 Ferienkurs Quantenmechanik 2009 Grundlagen der Quantenmechanik Vorlesungsskript für den 3. August 2009 Christoph Schnarr Inhaltsverzeichnis 1 Axiome der Quantenmechanik 2 2 Mathematische Struktur 2 2.1

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

σ-algebren, Definition des Maßraums

σ-algebren, Definition des Maßraums σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven

Mehr

Definition: Ein endlicher Ergebnisraum ist eine nichtleere Menge, deren. wird als Ereignis, jede einelementige Teilmenge als Elementarereignis

Definition: Ein endlicher Ergebnisraum ist eine nichtleere Menge, deren. wird als Ereignis, jede einelementige Teilmenge als Elementarereignis Stochastische Prozesse: Grundlegende Begriffe bei zufälligen Prozessen In diesem Abschnitt beschäftigen wir uns mit den grundlegenden Begriffen und Definitionen von Zufallsexperimenten, also Prozessen,

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Kapitel A. Konstruktion und Eigenschaften von Integralen

Kapitel A. Konstruktion und Eigenschaften von Integralen Kapitel A Konstruktion und Eigenschaften von Integralen Inhalt dieses Kapitels A000 Wie misst man Flächen- und Rauminhalt? Absolut integrierbare Funktionen Integration: Theorie und Anwendung A001 Bildquelle:

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

Quantenmechanik-Grundlagen Klassisch: Quantenmechanisch:

Quantenmechanik-Grundlagen Klassisch: Quantenmechanisch: Quantenmechanik-Grundlagen HWS DPI 4/08 Klassisch: Größen haben i. Allg. kontinuierliche Messwerte; im Prinzip beliebig genau messbar, auch mehrere gemeinsam. Streuung nur durch im Detail unbekannte Störungen

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

IV.2 Kanonische Transformationen

IV.2 Kanonische Transformationen IV.2 Kanonische Transformationen 79 IV.2 Kanonische Transformationen IV.2.1 Phasenraum-Funktionen Die verallgemeinerten Koordinaten q a t) und die dazu konjugierten Impulse p a t) bestimmen den Bewegungszustand

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 3 Gruppen In der linearen Algebra wird im Allgemeinen ein Grundkörper K zugrunde gelegt, über den sich

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Poisson-Klammern. Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: "Poisson-Klammer von F und G":

Poisson-Klammern. Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: Poisson-Klammer von F und G: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p, q,

Mehr

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 2 Grundstrukturen Notation: Sind M und N zwei Mengen, so heißt die Menge M N := {(m, n) : m M, n N} das cartesische Produkt oder auch die

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 6. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 6. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 6. Vorlesung Pawel Romanczuk WS 2016/17 http://lab.romanczuk.de/teaching Zusammenfassung letzte VL Streuzustände Potentialschwelle Potentialbarriere/Tunneleffekt

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 20. April 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 18.

Mehr

9. Polynom- und Potenzreihenringe

9. Polynom- und Potenzreihenringe 64 Andreas Gathmann 9. Polynom- und Potenzreihenringe Bevor wir mit der allgemeinen Untersuchung von Ringen fortfahren, wollen wir in diesem Kapitel kurz zwei sehr wichtige weitere Beispiele von Ringen

Mehr

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele:

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele: L2. Vektorräume Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer Beispiele: 2) Vektoren: vollständig bestimmt durch Angabe einer und einer Beispiele: Übliche

Mehr

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen:

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p,

Mehr

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen:

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p,

Mehr

Diskrete Zufallsvariablen (Forts.) I

Diskrete Zufallsvariablen (Forts.) I 9 Eindimensionale Zufallsvariablen Diskrete Zufallsvariablen 9.4 Diskrete Zufallsvariablen (Forts.) I T (X ) ist endlich oder abzählbar unendlich, die Elemente von T (X ) werden daher im Folgenden häufig

Mehr

Diskrete Zufallsvariablen (Forts.) I

Diskrete Zufallsvariablen (Forts.) I 9 Eindimensionale Zufallsvariablen Diskrete Zufallsvariablen 9.4 Diskrete Zufallsvariablen (Forts.) I T (X ) ist endlich oder abzählbar unendlich, die Elemente von T (X ) werden daher im Folgenden häufig

Mehr

falls falls Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen.

falls falls Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen. Anwendung v. Faltungstheorem: Tiefpassfilter Wähle so, dass Dann: Somit: Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen. Zusammenfassung habe Periode, mit stückweise stetig und

Mehr

02. Vektorräume und Untervektorräume

02. Vektorräume und Untervektorräume 02. Vektorräume und Untervektorräume Wir kommen nun zur eigentlichen Definition eines K-Vektorraums. Dabei ist K ein Körper (bei uns meist R oder C). Informell ist ein K-Vektorraum eine Menge V, auf der

Mehr

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009 4. Vortrag - Garben Datum: 26. April 2009 1 Graduierte Ringe Definition 4.1.1. Eine k-algebra R heißt graduiert, wenn sie dargestellt werden kann als eine direkte Summe R = R n, wobei die R n als k-unterräume

Mehr

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U.

2.1 Vektorräume. 1. für alle x, y U ist x + y U und. 2. für alle x U und alle λ R ist λx U. O V (= O U) U, und dass ( 1) x U, also x U. Vektorräume Definition Eine nicht leere Menge V, für die eine Addition (dh eine Rechenvorschrift + derart, dass a + b V für alle a, b V ist und eine skalare Multiplikation (dh λa V für alle λ R (λ ist

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:

Mehr

1.4. Die Wahrscheinlichkeitsinterpretation

1.4. Die Wahrscheinlichkeitsinterpretation 1.4. Die Wahrscheinlichkeitsinterpretation 1.4.1. Die Heisenbergsche Unschärferelation Wie kann der Welle-Teilchen-Dualismus in der Quantenmechanik interpretiert werden? gibt die Wahrscheinlichkeit an,

Mehr

Lagrange-Formalismus

Lagrange-Formalismus KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt

Mehr

Fourier-Transformation

Fourier-Transformation ANHANG A Fourier-Transformation In diesem Anhang werden einige Definitionen Ergebnisse über die Fourier-Transformation dargestellt. A. Definition Theorem & Definition: Sei f eine integrable komplexwertige

Mehr

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele:

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele: L2. Vektorräume Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer Beispiele: Masse, Volumen, Energie, Arbeit, Druck, Temperatur 2) Vektoren: vollständig

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

In einem mathematischen Modell wird dies beschrieben durch einen funktionalen Zusammenhang: x = f (t).

In einem mathematischen Modell wird dies beschrieben durch einen funktionalen Zusammenhang: x = f (t). Aktueller Überblick 0 Einführende Worte ( ) 1 Geschichtlicher Überblick ( ) 2 Zufall 3 Perfekte Sicherheit und ihre Grenzen 4 Angriffsszenarien 5 Der komplexitätstheoretische Ansatz 6 Pseudozufallsgeneratoren

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsraume

Kapitel II Kontinuierliche Wahrscheinlichkeitsraume Kapitel II Kontinuierliche Wahrscheinlichkeitsraume 1. Einfuhrung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 195/460 Beispiel 78 Wir betrachten

Mehr

VERALLGEMEINERTE FUNKTIONEN. und ELEMENTE DER FUNKTIONALANALYSIS KURZSKRIPTUM. Prof. Dr. K. Pilzweger

VERALLGEMEINERTE FUNKTIONEN. und ELEMENTE DER FUNKTIONALANALYSIS KURZSKRIPTUM. Prof. Dr. K. Pilzweger VERALLGEMEINERTE FUNKTIONEN und ELEMENTE DER FUNKTIONALANALYSIS KURZSKRIPTUM Prof. Dr. K. Pilzweger UNIVERSITÄT DER BUNDESWEHR MÜNCHEN FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Herbsttrimester

Mehr

Statistik für Ingenieure Vorlesung 3

Statistik für Ingenieure Vorlesung 3 Statistik für Ingenieure Vorlesung 3 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 14. November 2017 3. Zufallsgrößen 3.1 Zufallsgrößen und ihre Verteilung Häufig sind

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.12.2013 Alexander Lytchak 1 / 15 Motivation Für das Verständis affiner Teilräume eines Vektorraums sind Translationen

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,...} = N {0} N. Rationale Zahlen Q := { m } n m Z, n N. Beachte:

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Projektive Räume und Unterräume

Projektive Räume und Unterräume Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Als Einstieg in die Vorlesung möchte ich zunächst zeigen, dass aus den Grundvorlesungen schon eine ganze Fülle von Beispielen algebraischer Strukturen bekannt sind. Von diesen Beispielen

Mehr

Definitionen und Aussagen zur Maßtheorie

Definitionen und Aussagen zur Maßtheorie Definitionen und Aussagen zur Maßtheorie Man möchte den Teilmengen eines Raumes ein Gewicht zuordnen. Wir werden sehen, daß dies in sinnvoller Weise häufig nicht für alle Teilmengen möglich ist, sondern

Mehr

HM II Tutorium 1. Lucas Kunz. 24. April 2018

HM II Tutorium 1. Lucas Kunz. 24. April 2018 HM II Tutorium 1 Lucas Kunz 24. April 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper...................................... 2 1.2 Gruppen..................................... 2 1.3 Vektorraum...................................

Mehr

Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper

Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper Kapitel 1 Lineare Algebra individuell M. Roczen und H. Wolter, W. Pohl, D.Popescu, R. Laza Erste algebraische Strukturen Hier werden die grundlegenden Begriffe eingeführt; sie abstrahieren vom historisch

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Körper, Ringe und Gruppen

TECHNISCHE UNIVERSITÄT MÜNCHEN. Körper, Ringe und Gruppen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 2006/07 en Blatt 6 27.11.2006 Körper, Ringe und Gruppen Z13 Gruppen Seien GL

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Mustererkennung: Wahrscheinlichkeitstheorie. D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10

Mustererkennung: Wahrscheinlichkeitstheorie. D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10 Mustererkennung: Wahrscheinlichkeitstheorie D. Schlesinger () ME: Wahrscheinlichkeitstheorie 1 / 10 Definitionen (axiomatisch) Wahrscheinlichkeitsraum (Ω, σ, P), mit Ω Die Grundmenge, die Menge der elementaren

Mehr

Theoretische Biophysik - Statistische Physik

Theoretische Biophysik - Statistische Physik Theoretische Biophysik - Statistische Physik 3. Vorlesung Pawel Romanczuk Wintersemester 2018 http://lab.romanczuk.de/teaching/ 1 Zusammenfassung letzte VL Einstieg in die Wahrscheinlichkeitstheorie Axiomatische

Mehr

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen Inhaltsübersicht Kapitel 13: Spezielle Funktionen Deltafunktion Gammafunktion Fehlerfunktion Notizen zur Vorlesung Mathematik für Materialwissenschaftler 2 1 Die Bezeichnung Delta-Funktion ist streng genommen

Mehr

Zusammenfassung der Lebesgue-Integrationstheorie

Zusammenfassung der Lebesgue-Integrationstheorie Zusammenfassung der Lebesgue-Integrationstheorie Das Lebesguesche Integral verallgemeinert das Riemannsche Integral. Seine Vorteile liegen für unsere Anwendungen vor allem bei den wichtigen Konvergenzsätzen,

Mehr

Teil II: Lineare Algebra

Teil II: Lineare Algebra 3 Vektorräume 49 Teil II: Lineare Algebra 3 Vektorräume Wir haben in den vorangegangenen Kapiteln ausführlich die Differential- und Integralrechnung in einer (reellen Variablen untersucht Da die Welt aber

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Zufälle gibt s, oder gibt s die nicht? Martin Köhler Science Café Hamburg, 25. Juni 2014

Zufälle gibt s, oder gibt s die nicht? Martin Köhler Science Café Hamburg, 25. Juni 2014 Zufälle gibt s, oder gibt s die nicht? Martin Köhler Science Café Hamburg, 25. Juni 2014 Grundfrage und Gliederung Gibt es einen echten Zufall, oder wissen wir einfach nicht genug für eine exakte Vorhersage?

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 21. Januar 2014 Kurzzusammenfassung Vorlesung 23 vom 21.1.2014 Satz von Liouville Der Fluß eines Hamilton schen Systems im Phasenraum

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

L5 Matrizen I. Matrix: (Plural: Matrizen)

L5 Matrizen I. Matrix: (Plural: Matrizen) L5 Matrizen I Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen - Beschreibung von Lorenz-Transformationen (spezielle

Mehr

KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? 1. Der Körper Centsprichtdem Vektorraum R 2

KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? 1. Der Körper Centsprichtdem Vektorraum R 2 KANN DER VEKTORRAUM R 3 EIN KÖRPER WERDEN? MARKUS FULMEK 1. Der Körper Centsprichtdem Vektorraum R 2 Die Menge R 2 = { (x, y) : x, y R } bildet mit der komponentenweisen Addition + R 2 R 2 R 2, (x, y)+(a,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 6 Lineare Gleichungssysteme 6. Gaußalgorithmus Aufgabe 6. : Untersuchen Sie die folgenden linearen Gleichungssysteme mit dem Gaußalgorithmus auf Lösbarkeit und bestimmen Sie jeweils die Lösungsmenge.

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Vektoren in der Ebene Zwei Punkten P, Q in der Ebene

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Algebraische Körpererweiterungen I

Algebraische Körpererweiterungen I Algebraische Körpererweiterungen I Thomas Schmalfeldt, Florian Schuler Seminar über Galoistheorie, 18. Februar 2009 Inhaltsverzeichnis 1 Charakteristik und Primkörper 2 2 Grad einer Körpererweiterung 3

Mehr

Inhaltsverzeichnis Grundbegriffe. 2. Einführung in die statistische Mechanik. 3. Normalmoden. 4. Molekulardynamik

Inhaltsverzeichnis Grundbegriffe. 2. Einführung in die statistische Mechanik. 3. Normalmoden. 4. Molekulardynamik Inhaltsverzeichnis. Grundbegriffe. ormalmoden 4. Molekulardynamik 5. Monte -Carlo Simulationen 6. Finite-Elemente Methode 844-906 J. W. Gibbs (89 90) 2 Einführung in die statistische Mechanik Gas in einem

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

Mit Funktionen rechnen ein wichtiges Thema der Sekundarstufe 2

Mit Funktionen rechnen ein wichtiges Thema der Sekundarstufe 2 Mit Funktionen rechnen ein wichtiges Thema der Sekundarstufe 2 FRANZ PAUER, FLORIAN STAMPFER (UNIVERSITÄT INNSBRUCK) 1. Einleitung Im Mathematikunterricht der Sekundarstufe 1 lernt man ganze und rationale

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Inhaltsverzeichnis (Ausschnitt)

Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Messbare Abbildungen Bildwahrscheinlichkeit Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen)

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) L5.6 Symmetrische, heresche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) In diesem Kapitel kommen Matrizen in Zusammenhang Skalarprodukt vor.

Mehr

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Schulstoffbeispiele 1. Lineare Gleichungssysteme. Lösen Sie die folgenden linearen Gleichungssysteme.

Mehr

Quantenmechanik I Sommersemester QM Web Page teaching/ss13/qm1.d.html

Quantenmechanik I Sommersemester QM Web Page  teaching/ss13/qm1.d.html Quantenmechanik I Sommersemester 2013 QM Web Page http://einrichtungen.physik.tu-muenchen.de/t30e/ teaching/ss13/qm1.d.html Hinweise Am Ende der heutigen Vorlesung (am 27.05.) : Vorstellung von Fachschaftsvertretern

Mehr

Bezeichnungen und Hilfsmittel aus der Analysis

Bezeichnungen und Hilfsmittel aus der Analysis Finite Elemente I 169 A Bezeichnungen und Hilfsmittel aus der Analysis A Bezeichnungen und Hilfsmittel aus der Analysis TU Bergakademie Freiberg, WS 2010/111 Finite Elemente I 170 A.1 Normierte Vektorräume

Mehr

Mit Funktionen rechnen - ein wichtiges Thema der Sekundarstufe 2

Mit Funktionen rechnen - ein wichtiges Thema der Sekundarstufe 2 Mit Funktionen rechnen - ein wichtiges Thema der Sekundarstufe 2 Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2014 25. April

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Erwartungswert als Integral

Erwartungswert als Integral Erwartungswert als Integral Anton Klimovsky Gemischte ZVen, allgemeine ZVen, Erwartungswert für allgemeine ZVen, Lebesgue-Integral bzgl. WMaß, Eigenschaften des Integrals, Lebesgue-Maß, Lebesgue-Integral

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge)

Funktionen. x : Variable von f oder Argument f x : Funktionswert, Wert der Funktion f an der Stelle x D f. : Definitionsmenge(Urbildmenge) Funktionen Eine Funktion oder Abbildung ist eine Beziehung zwischen zwei nicht leere Mengen D f und Z, die jedem Element x aus einer Menge D f genau ein Element y aus anderer Menge Z zuordnet. f : D f

Mehr