Proseminar Analysis - 2. Semester Fourieranalysis

Größe: px
Ab Seite anzeigen:

Download "Proseminar Analysis - 2. Semester Fourieranalysis"

Transkript

1 Proseminar Analysis - 2. Semester Fourieranalysis Ulrich Bunke Termine 1. Proseminar: Mi, 8-10 Uhr M Vorbesprechung: im Büro Prof. Bunke 1

2 Contents 1 Fourierentwicklung periodischer Funktionen 3 2 Der Plancherelsatz für Fourierreihen 3 3 Schwartzräume 3 4 Satz von Fejér 4 5 Schwingende Saiten 4 6 Resonanz, Pendel und LC-Schwingkreise 4 7 Die Fouriertransformation 4 8 Die Umkehrformel 5 9 Die 1-dimensionale Wellengleichung 5 10 RC und LC-Kreise 5 11 Harmonische Analysis auf endlichen abelschen Gruppen 5 12 Harmonische Analysis auf proendlichen abelschen Gruppen 6 13 Analysis auf den p-adischen ganzen Zahlen 6 14 Berechnung von Fourierintegralen mit Residuensatz 6 15 Der Satz von Paley-Wiener 7 2

3 Vortragsthemen 1 Fourierentwicklung periodischer Funktionen 1. komplexe periodische Funktionen 2. L 2 -Skalarprodukt [BF91, 12.3] 3. Orthogonalität des Funktionensystems (e 2πnx ) n Z.[BF91, 12.3] 4. Definition Fourierkoeffizienten einer stetigen periodischen Funktionen[BF91, 12.3] 5. ˆf(n) = 0 f = 0 für stetige Funktionen [SS03, Cor. 2.2] 6. wenn f stetig und ( ˆf(n)) n N l 1, dann konvergiert die Fourierreihe gegen f [SS03, Cor. 2.3] 7. diese Voraussetzung ist für f C 2 erfüllt [SS03, Cor. 2.4] 2 Der Plancherelsatz für Fourierreihen 1. Einführung in komplexe Hilberträume (Skalarprodukt, Norm, Vollständigkeit, Existenz von orthonormalbasen, Besselsche Ungleichung, Entwicklung nach orthogonale Basen) [RS80, II.1] 2. Isomorphie separabler Hilberträume 3. Beispiele: l 2 (Z), L 2 (S 1 ) (als Vervollständigung von C(S 1 )) 4. (δ n ) n Z, (u n ) n Z als vollständige orthogonale Basen charakterisieren 5. Konvergenz der Fourierreihe im L 2 -Sinne 6. Fouriertransformation als Isomorphie L 2 (S 1 ) = l 2 (Z)[RS80, II-1-II-3] [RS80, II-1-II-3] 3 Schwartzräume 1. Halbnormen, Konstruktion von top. Vektorräumen mit Halbnormen 2. Frecheträume 3. S(Z), C (S 1 ) als Frecheträume 4. Stetigkeit linearer Operatoren (z. B. Differentialoperatoren, Multplikationsoperatoren) 5. Die Fouriertransformation als Isomorphismus zwischen S(Z) und C (S 1 ) 3

4 4 Satz von Fejér 1. Faltung, Kerne Deltafolgen [SS03, Ch.2.4] 2. Fejér Kern, Formulierung und Beweis des Satzes von Fejér [SS03, Thm. 5.2] 3. Folgerunge [SS03, Cor. 5.3, Cor. 5.4] 5 Schwingende Saiten [Heu91, Kap XVII] 1. Modellierung einer Saite durch eine Wellengleichung 2. Anfangs und Randwerte 3. Reduktion auf System gewöhnlicher DGL durch Fouriertransformation 4. Lösung der Anfangsrandwertproblems 5. Beispiele (auch numerische Demonstration) 6 Resonanz, Pendel und LC-Schwingkreise [Smi86, 31-34] 1. Modellierung von Pendel und LC-Schwingkreisen mit Dämpfung 2. Diskussion des Verhaltens ohne Anregenung in Abhängigkeit der Parameter 3. Analysis des Langzeitverhaltens bei periodischer Anregung in Abhängigkeit der Parameter 7 Die Fouriertransformation 1. das Fourierintegral (für L 1 (R)-Funktionen) 2. der Schwartzraum S(R) [SS03, 5.1.3] 3. Eigenschaften von Fouriertransformierten [SS03, Ch. 5, Prop,1.2] 4. die Fouriertransformation als stetige Abbildung zwischen Schwartzräumen S(R) [SS03, Ch. 5, Thm,1.3] 5. Beipspiele für Fouriertransformierte, insb. e x2 [SS03, Ch. 5, Thm,1.4] 4

5 8 Die Umkehrformel 1. die Umkehrformel [SS03, Ch. 5, Thm,1.9] 2. der Plancherelsatz [SS03, Ch. 5, Thm,1.12] 9 Die 1-dimensionale Wellengleichung [SS03, Ch. 6] (Spezialisierung auf den Fall d = 1), [Smi86, ] 1. Modellierung von Wellenausbreitung (Schall, elektromagnetisch, sehr lange Saiten) 2. Das Anfangswertproblem 3. Lösungsformel durch Fouriertransformation herleiten 4. endliche Ausbreitungsgeschwindigkeit 5. Huygensprinzip 10 RC und LC-Kreise http : // ilter/ordnung1/f ilter1.html http : // alstad.com/df ilter/ 1. Modellierung von RC und LC-Kreisen 2. Idee der harmonischen Analyse 3. Durchlassfunktionen 4. RC und LC-Kreise als Filter 5. Konstruktion von Filtern (Hoch-, Tief- und Bandpässe) 6. Beipiele (Demonstration mit Java-Applets) 11 Harmonische Analysis auf endlichen abelschen Gruppen 1. Beispiele endlicher abelscher Gruppen, insb. Z/nZ [SS03, Ch Thm. 2.7, Thm 2.8] 2. Die Charaktergruppe 3. Orthogonalitätsrelationen [SS03, Ch 7. Thm. 2.3, Thm 2.5] 5

6 4. Die Fouriertransformation (Planchereltheorem) [SS03, Ch 7. Thm. 2.7, Thm 2.8] 5. Zerlegung unitärer Darstellungen 12 Harmonische Analysis auf proendlichen abelschen Gruppen 1. proendliche abelsche Gruppen, Beispiele 2. stetige Funktionen auf proendliche abelsche Gruppen 3. Integration stetiger Funktionen 4. die duale Gruppe als Kolimes endlicher Gruppen 5. Die Fouriertransformation (Planchereltheorem) 6. Zerlegung unitärer Darstellungen 13 Analysis auf den p-adischen ganzen Zahlen 1. Z p als proendliche abelsche Gruppe 2. (additive) Charaktere, explizite Fouriertransformation und Umkehrformel 3. Integral stetiger Funktionen mit kompaktem Träger 4. Die Modulfunktion 5. Das Volumen von pz p. 14 Berechnung von Fourierintegralen mit Residuensatz (setzt Grundkenntnisse der Funktionentheorie voraus) 1. holomorphe Funktionen (wesentliche Definitionen) 2. der Cauchy-Integralsatz (ohne Beweis) 3. Polstellen und Residuum 4. Berechnung von Fourierintegralen mit dem Residuensatz (als Methode mit Begründungen) 6

7 15 Der Satz von Paley-Wiener (setzt Grundkenntnisse der Funktionentheorie voraus) 1. Fouriertransformierte als holomorphe Funktionen 2. Formulierung des Satzes von Paley-Wiener 3. Beweisskizze References [BF91] Martin Barner and Friedrich Flohr. Analysis. I. de Gruyter Lehrbuch. [de Gruyter Textbook]. Walter de Gruyter & Co., Berlin, fourth edition, , 3, 4 [Heu91] Harro Heuser. Lehrbuch der Analysis. Teil 2. Mathematische Leitfäden. [Mathematical Textbooks]. B. G. Teubner, Stuttgart, sixth edition, [RS80] Michael Reed and Barry Simon. Methods of modern mathematical physics. I. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, second edition, Functional analysis. 1, 6, 2 [Smi86] W. I. Smirnow. Lehrgang der höheren Mathematik. Teil II. Hochschulbücher für Mathematik [University Books for Mathematics], 2. VEB Deutscher Verlag der Wissenschaften, Berlin, sixteenth edition, Translated from the Russian by Klaus Krienes. 6, 9 [SS03] Elias M. Stein and Rami Shakarchi. Fourier analysis, volume 1 of Princeton Lectures in Analysis. Princeton University Press, Princeton, NJ, An introduction. 5, 6, 7, 1, 2, 3, 2, 3, 4, 5, 1, 2, 9, 1, 3, 4 7

Robert Denk Proseminar Analysis WS 2016/17

Robert Denk Proseminar Analysis WS 2016/17 1. Inhalt des Proseminars 1 Robert Denk 21.07.2016 Proseminar Analysis WS 2016/17 1. Inhalt des Proseminars Die Grundidee einer Fourierreihe besteht darin, eine Funktion als Überlagerung von Schwingungen,

Mehr

Kompendium der ANALYSIS - Ein kompletter Bachelor-Kurs von Reellen Zahlen zu Partiellen Differentialgleichungen

Kompendium der ANALYSIS - Ein kompletter Bachelor-Kurs von Reellen Zahlen zu Partiellen Differentialgleichungen Kompendium der ANALYSIS - Ein kompletter Bachelor-Kurs von Reellen Zahlen zu Partiellen Differentialgleichungen Band 2: Maß- und Integrationstheorie, Funktionentheorie, Funktionalanalysis, Partielle Differentialgleichungen

Mehr

HOCHSCHULBÜCHER FÜR MATHEMATIK H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N

HOCHSCHULBÜCHER FÜR MATHEMATIK H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N fc HOCHSCHULBÜCHER FÜR MATHEMATIK H E R A U S G E G E B E N VON H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N 1955 VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN

Mehr

Mathematik für Physiker

Mathematik für Physiker Mathematik für Physiker Band 2 Gewöhnliche und partielle Differentialgleichungen, mathematische Grundlagen der Quantenmechanik Von Dr. rer. nat. Helmut Fischer und Prof. Dr. rer. nat. Helmut Kaul Universität

Mehr

Funktionalanalysis I

Funktionalanalysis I Funktionalanalysis I Christian Fleischhack Diese Übersicht listet die Überschriften der einzelnen Abschnitte der Vorlesung sowie stichpunktartig die jeweils darin behandelten Themen auf. Eine Gewähr für

Mehr

53 Die Parsevalsche Gleichung

53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 5 53. Skalarprodukte auf Räumen quadratintegrierbarer Funktionen. a) Die Orthogonalitätsrelationen (5.5) legen die Interpretation des Ausdrucks

Mehr

Fouriertransformation und Unschärfeprinzip

Fouriertransformation und Unschärfeprinzip Information, Codierung, Komplexität 2 SS 2007 24. April 2007 Das berühmte von Heisenberg in der Quantentheorie beruht, rein mathematisch betrachtet, auf einer grundlegenden Eigenschaft der der Dichtefunktionen

Mehr

45 Hilberträume. v = 2 <v, v>.

45 Hilberträume. v = 2 <v, v>. 45 Hilberträume Zusammenfassung Unter dem Begriff Hilbertraum werden solche euklidische oder unitäre Vektorräume zusammengefasst, die auch noch vollständig sind. Damit werden die in 41, 42 und in 43, 44

Mehr

Ferienkurs Analysis 3. Ari Wugalter März 2011

Ferienkurs Analysis 3. Ari Wugalter März 2011 Ari Wugalter 07. - 08. März 2011 1 1 Hilberträume Im ersten Kapitel wollen wir uns mit den grundlegenden Eigenschaften von Hilberträumen beschäfitgen. Hilberträume habe die herausragende Eigenschaft, dass

Mehr

Seminar zur Darstellungstheorie endlicher Gruppen

Seminar zur Darstellungstheorie endlicher Gruppen Seminar zur Darstellungstheorie endlicher Gruppen Prof. Dr. Gebhard Böckle und Yujia Qiu Sommersemester 15, dienstags 16:15 17:45, Raum 248/INF 368. Beginn: 21.04.2015 Motivation und Ziele des Seminars

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Riesz scher Darstellungssatz und Duale Räume

Riesz scher Darstellungssatz und Duale Räume Riesz scher Darstellungssatz und Duale Räume LV Numerik Partieller Differentialgleichungen Bärwolff SS 2010 14.06.2010 Julia Buwaya In der Vorlesung wurde der Riesz sche Dartsellungssatz als wichtiges

Mehr

Mathematik fur Physiker

Mathematik fur Physiker Helmut Fischer, Helmut Kaul Mathematik fur Physiker Band 2: Gewohnliche und partielle Differentialgleichungen, mathematische Grundlagen der Quantenmechanik 3., uberarbeitete Auflage Teubner Inhalt Kapitel

Mehr

Einführung in die Grundlagen der Numerik

Einführung in die Grundlagen der Numerik Einführung in die Grundlagen der Numerik Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Wintersemester 2014/2015 Normierter Vektorraum Sei X ein R-Vektorraum. Dann heißt

Mehr

Analysis Kompaktseminar 2003

Analysis Kompaktseminar 2003 Analysis Kompaktseminar 2003 Stand: 11. März 2003 Plan Vormittags und nachmittags findet jeweils eine Session von 3 Stunden statt. In den ersten anderthalb Stunden werden in Vierergruppen (d.h. 3 Gruppen

Mehr

MATHEMATISCHE METHODEN DER PHYSIK

MATHEMATISCHE METHODEN DER PHYSIK MATHEMATISCHE METHODEN DER PHYSIK ERSTER BAND VON WOLFGANG GRÖBNER und PETER LESKY o. Professor Dozent an der Universität Innsbruck BIBLIOGRAPHISCHES INSTITUT MANNHEIM HOCHSCHUL TASCHENBUCH ER-VERLAG INHALTSVERZEICHNIS

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen.

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Wiederholung Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Definition. Sei X eine Menge und d : X X R eine Abbildung mit den Eigenschaften 1.

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ ,

MNF-math-phys Semester, Dauer: 1 Semester Prof. Dr. Walter Bergweiler Telefon 0431/ , Modulnummer Semesterlage / Dauer Verantwortliche(r) Studiengang / -gänge Lehrveranstaltungen Arbeitsaufwand Leistungspunkte Voraussetzungen Lernziele Lehrinhalte Prüfungsleistungen Mathematik für Physiker

Mehr

Inhaltsverzeichnis. Kapitel 9. Gewöhnliche Differentialgleichungen... 1

Inhaltsverzeichnis. Kapitel 9. Gewöhnliche Differentialgleichungen... 1 Inhaltsverzeichnis Kapitel 9. Gewöhnliche Differentialgleichungen... 1 1. Einführung... 1 1.1 Grundbegriffe 1.2 Anfangswertprobleme 1.3 Geometrische Bedeutung der DGL 1. Ordnung 2. Spezielle Differentialgleichungen

Mehr

72 Orthonormalbasen und Konvergenz im quadratischen Mittel

72 Orthonormalbasen und Konvergenz im quadratischen Mittel 72 Orthonormalbasen und Konvergenz im quadratischen Mittel 30 72 Orthonormalbasen und Konvergenz im quadratischen Mittel Wir untersuchen nun die Konvergenz von Fourier-Reihen im quadratischen Mittel in

Mehr

Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 191

Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 191 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische Grundlagen........................... 2 1.2 Grundlagen der Mengenlehre...................... 8 1.3 Abbildungen................................ 15 1.4 Die

Mehr

Satz 2.3. Jeder lineare normierte Raum wird durch Einführung einer Metrik

Satz 2.3. Jeder lineare normierte Raum wird durch Einführung einer Metrik Kapitel Lineare normierte Räume.1 Allgemeiner Überblick Definition.1. Eine Menge X, in der über einem Zahlenkörper K (K = R oder K = C) die Addition und λ-multiplikation mit den üblichen Verbindungsaxiomen

Mehr

0 Grundbegriffe. Mengen, Teilmengen, Äquivalenzrelationen, Abbildungen, injektiv/bijektiv/surjektiv,

0 Grundbegriffe. Mengen, Teilmengen, Äquivalenzrelationen, Abbildungen, injektiv/bijektiv/surjektiv, Die folgende Übersicht ist eine Zusammenstellung der Inhalte der Vorlesung. In der Prüfung wird nicht verlangt, Beweise für die namentlich erwähnten Sätze zu geben. Die Prüfungskandidat(inn)en können individuell

Mehr

Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 189

Inhaltsverzeichnis Grundlagen Analysis von Funktionen einer Veränderlichen Reihen 189 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische Grundlagen........................... 2 1.2 Grundlagen der Mengenlehre...................... 8 1.3 Abbildungen................................ 15 1.4 Die

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME

EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME HOCHSCHULBÜCHER FÜR MATHEMATIK HERAUSGEGEBEN VON H. GRELL, K. MARUHN UND W. RINOW BAND 60 EINFÜHRUNG IN DIE THEORIE DER LINEAREN VEKTORRÄUME VON H.BOSECK MIT 14 ABBILDUNGEN Zweite^ berichtigte Auflage

Mehr

Lineare Funktionalanalysis

Lineare Funktionalanalysis Hans Wilhelm Alt Lineare Funktionalanalysis Eine anwendungsorientierte Einführung Zweite, verbesserte Auflage mit 19 Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong

Mehr

(c) Ein inneres Produkt (Skalarprodukt) auf H ist eine positiv definite hermitesche Form auf H.

(c) Ein inneres Produkt (Skalarprodukt) auf H ist eine positiv definite hermitesche Form auf H. 11 Hilberträume Sei H ein Vektorraum über K = R oder K = C. Definition 11.1. (a) Eine sesquilineare Form auf H ist eine Abbildung, : H H K so, dass für alle x, x, y, y H und α, β K gilt αx + βx, y = α

Mehr

8.1. DER RAUM R N ALS BANACHRAUM 17

8.1. DER RAUM R N ALS BANACHRAUM 17 8.1. DER RAUM R N ALS BANACHRAUM 17 Beweis. Natürlich ist d 0 und d(x, y) = 0 genau dann, wenn x = y. Wegen (N2) ist x = x und damit d(x, y) = d(y, x). Die letzte Eigenschaft einer Metrik schließt man

Mehr

exp(z) := k=0 sin(z) := k=0 cos(z) := k=0

exp(z) := k=0 sin(z) := k=0 cos(z) := k=0 Die komplexen Zahlen und komplexe Exponentialfunktion In diesem Vortrag sollen die komplexen Zahlen eingeführt werden, und wichtige Eigenschaften wiederholt und bewiesen werden. Wir definieren die komplexen

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

Stoffplan für die Vorlesung Mathematik für Studierende der Physik

Stoffplan für die Vorlesung Mathematik für Studierende der Physik Stoffplan für die Vorlesung Mathematik für Studierende der Physik 1. Semester *) I. Vektoren (8) I.1 Zahlen ( N, Q, R, C ) I.2 R n, Zahlen und skalare Multiplikation, Skalarprodukt. I.3 Vektorräume. II.

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Mathematik für das Bachelorstudium I

Mathematik für das Bachelorstudium I Matthias Plaue / Mike Scherfner Mathematik für das Bachelorstudium I Grundlagen, lineare Algebra und Analysis Spektrum k-/± AKADEMISCHER VERLAG Inhaltsverzeichnis I Grundlagen 1 1 Elementare Logik und

Mehr

Reelle Funktionen und Funktionalanalysis

Reelle Funktionen und Funktionalanalysis Reelle Funktionen und Funktionalanalysis von A. N. Kolmogorov und S. V. Foniin Mit 24 Abbildungen VEB Deutscher Verlag der Wissenschaften Berlin 1975 Inhalt 1. Elemente der Mengenlehre 1.1. Der Begriff

Mehr

Proseminar: Darstellungstheorie von endlichen Gruppen. Vorläuges Programm

Proseminar: Darstellungstheorie von endlichen Gruppen. Vorläuges Programm Prof. Dr. S. Orlik WiSe 2011/12 MSc. Mark Kuschkowitz Proseminar: Darstellungstheorie von endlichen Gruppen Vorläuges Programm 27.10.: Wiederholung: Gruppen und Gruppenoperationen. (Literatur: Bücher über

Mehr

Grundstudium Mathematik. Analysis III. Bearbeitet von Herbert Amann, Joachim Escher

Grundstudium Mathematik. Analysis III. Bearbeitet von Herbert Amann, Joachim Escher Grundstudium Mathematik Analysis III Bearbeitet von Herbert Amann, Joachim Escher Neuausgabe 2008. Taschenbuch. xii, 480 S. Paperback ISBN 978 3 7643 8883 6 Format (B x L): 17 x 24 cm Gewicht: 960 g Weitere

Mehr

LEHRBUCH DER HÖHEREN MATHEMATIK TEIL II

LEHRBUCH DER HÖHEREN MATHEMATIK TEIL II LEHRBUCH DER HÖHEREN MATHEMATIK TEIL II W. I. Smirnow, Lehrbuch der höheren Mathematik Teil I unveränderter Nachdruck der 16. Auflage 1990, 449 Seiten, 190 Abb., brosch., ISBN 978-3-8085-5574-3, Europa-Nr.

Mehr

Lehrgang der höheren Mathematik

Lehrgang der höheren Mathematik Lehrgang der höheren Mathematik Teil 1V/2 von W. I. Smirnow Mit 16 Abbildungen /-. \ D W VEB Deutscher Verlag der Wissenschaften Berlin 1989 Inhalt I. Allgemeine Theorie der partiellen Differentialgleichungen

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Fach: Mathematik 2 Autorin: Dr. Anja Pruchnewski

Fach: Mathematik 2 Autorin: Dr. Anja Pruchnewski Fach: Mathematik 2 Autorin: Dr. Anja Pruchnewski block detail Anwendung 29. Lineare Gleichungssysteme Einstieg, allgemeiner Lösungsalgorithmus 30. Matrizen Definition, Rechnen mit Matrizen, Matrizen und

Mehr

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191

Inhaltsverzeichnis Grundlagen 2 Analysis von Funktionen einer Veränderlichen 3 Reihen 191 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Logische G rundlagen... 2 1.2 Grundlagen der M engenlehre... 8 1.3 Abbildungen... 15 1.4 Die natürlichen Zahlen und die vollständige Induktion... 16 1.5 Ganze, rationale

Mehr

Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge

Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge 1 1 Check-Liste Analysis 1.1 Mengen und Abbildungen Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? kompakt? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge von R? Was

Mehr

Theorie der linearen Operatoren im Hilbert-Raum

Theorie der linearen Operatoren im Hilbert-Raum Theorie der linearen Operatoren im Hilbert-Raum Von N. I. Achieser und I. M. Glasmann 8., erweiterte Auflage Herausgegeben von H. Baumgärtel \ - ' Akademie-Verlag Berlin 1981 Inhaltsverzeichnis Kapitel

Mehr

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK

EINFÜHRUNG IN DIE HÖHERE MATHEMATIK * v. MANGOLDT/KNOPP EINFÜHRUNG IN DIE HÖHERE MATHEMATIK FÜR STUDIERENDE UND ZUM SELBSTSTUDIUM VIERTER BAND MENGENLEHRE LEBESGUESCHES MASS UND INTEGRAL TOPOLOGISCHE RÄUME VEKTORRÄUME FUNKTIONALANALYSIS

Mehr

10 Der Satz von Radon-Nikodym

10 Der Satz von Radon-Nikodym uch im Sinne einer Vorabinformation vor der Stochastik-Vorlesung wollen wir abschließend kurz absolut stetige Maße und den Satz von Radon-Nikodym streifen. Definition 10.1. Seien (, M) ein messbarer Raum

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 2: Differential- und Integralrechnung für Funktionen mehrerer Variablen, gewöhnliche und partielle Differentialgleichungen, Fourier-Analysis Mit

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017

LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017 LINEARE ALGEBRA II (LEHRAMT GYMNASIUM) SOMMERSEMESTER 2017 CAROLINE LASSER Inhaltsverzeichnis 1. Euklidische Vektorräume 2 1.1. Skalarprodukte und Normen (26.4.) 2 1.2. Orthonormalisierung (3.5.) 2 1.3.

Mehr

Seminarprogramm Sommersemester 2015

Seminarprogramm Sommersemester 2015 Seminarprogramm Sommersemester 2015 Modulformen Voraussetzungen Funktionentheorie 2 Vorbesprechung Die Vorbesprechung findet am Montag, dem 4. 2. 2015, um 13-14 Uhr in Hörsaal 3 im Mathematischen Institut

Mehr

Normierte Algebren. von M. A. Neumark. Mit 3 Abbildungen

Normierte Algebren. von M. A. Neumark. Mit 3 Abbildungen Normierte Algebren von M. A. Neumark Mit 3 Abbildungen VEB Deutscher Verlag der Wissenschaften Berlin 1990 Inhalt I. Elemente der Topologie und der Funktionalanalysis 1. Lineare Räume 19 1. Definition

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Vektoranalysis, Funktionentheorie, Transformationen

Vektoranalysis, Funktionentheorie, Transformationen Rainer Schark Theo Overhagen Vektoranalysis, Funktionentheorie, Transformationen Verlag Harri Deutsch Inhaltsverzeichnis I Vektoranalysis 9 1 Vektorfunktionen und Raumkurven 11 1.1 Vektorfunktionen 11

Mehr

B-P 11: Mathematik für Physiker

B-P 11: Mathematik für Physiker B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis

Mehr

Analysis. Lineare Algebra

Analysis. Lineare Algebra Analysis Ableitung Ableitungsregeln totale und partielle Ableitung Extremwertbestimmung Integrale partielle Integration Substitution der Variablen Koordinatentransformationen Differentialgleichungen Lineare

Mehr

Partielle Differentialgleichungen Kapitel 7

Partielle Differentialgleichungen Kapitel 7 Partielle Differentialgleichungen Kapitel 7 Intermezzo zu Distributionen Die Physik hat der Mathematik die Dirac-δ-Funktion gebracht. Diese δ-funktion soll folgende Eigenschaften haben: n δ (x ϕ (x dx

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume Extremalpunkte und der Satz von Krein-Milman Seminar zu ausgewählten Kapiteln der Banachraumtheorie Vortrag von Michael Hoffmann 1 Lokalkonvexe topologische Vektorräume Im folgenden betrachten wir stets

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

Probleme? Höhere Mathematik!

Probleme? Höhere Mathematik! Hans LTrinkaus Probleme? Höhere Mathematik! Eine Aufgabensammlung zur Analysis, Vektor- und Matrizenrechnung Zweite, unveränderte Auflage Mit 307 Abbildungen Springer-Verlag Berlin Heidelberg New York

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung WS 17/18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung WS 17/18: Woche vom Übungsaufgaben 3. Übung WS 17/18: Woche vom 3. 10. - 7. 10. 017 Fourierreihen: 16. b,c,e,o), 16.3 a, b), 16.4 a) auch reelle Fourierreihe) Klausureinsicht zu Mathematik II 11.8. 017): 30.10.17, 7.00-8.30

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

31: Normierte Vektorräume

31: Normierte Vektorräume 31: Normierte Vektorräume Für eine systematische Behandlung von Grenzwert-Prozessen für Funktionenfolgen benötigen wir die allgemeine Definition der normierten Vektorräume und einen passenden Abstandsbegriff.

Mehr

Inhaltsverzeichnis Unendliche Reihen Komplexe Zahlen

Inhaltsverzeichnis Unendliche Reihen Komplexe Zahlen Inhaltsverzeichnis 1 Unendliche Reihen... 1 1.1 Folgen und Reihen... 1 1.1.1 Achill und die Schildkröte... 1 1.1.2 Rechnen mit Grenzwerten... 7 1.1.3 Anwendungen von unendlichen Reihen... 13 1.2 Konvergenz

Mehr

1. Was bedeutet kanonisch? 1.1. Definition nach [1] 1.2. Definition nach [3] 1.3. Definition nach [4]

1. Was bedeutet kanonisch? 1.1. Definition nach [1] 1.2. Definition nach [3] 1.3. Definition nach [4] 1. Was bedeutet kanonisch? 1.1. Definition nach [1] Def. I: Ein Begriff unter einer Anzahl gleichartiger Begriffe heißt kanonisch, wenn er eine besonders große Bedeutung eine besonders durchsichtige Gestalt

Mehr

Mathematische Methode. in der Physi k. 2. Auflage

Mathematische Methode. in der Physi k. 2. Auflage Christian B. Lang Norbert Pucke r Mathematische Methode n in der Physi k 2. Auflage Einleitung xix 1 Unendliche Reihen 1 1.1 Folgen und Reihen 1 1.1.1 Achill und die Schildkröte 1 1.1.2 Rechnen mit Grenzwerten

Mehr

Ina Kersten Analytische Geometrie und Lineare Algebra 1. L A TEX-Bearbeitung von Stefan Wiedmann

Ina Kersten Analytische Geometrie und Lineare Algebra 1. L A TEX-Bearbeitung von Stefan Wiedmann Ina Kersten Analytische Geometrie und Lineare Algebra 1 L A TEX-Bearbeitung von Stefan Wiedmann Universitätsverlag Göttingen 2005 Voraussetzungen 11 1 Einige Grundbegriffe 12 1.1 Die komplexen Zahlen 12

Mehr

LINEARE ALGEBRA I JÜRGEN HAUSEN

LINEARE ALGEBRA I JÜRGEN HAUSEN LINEARE ALGEBRA I JÜRGEN HAUSEN Anstelle eines Vorwortes... Der vorliegende Text entstand aus einer einführenden Vorlesung Lineare Algebra im Rahmen des Mathematikstudiums. Ich habe mich um knappe Darstellung

Mehr

Erweiterungscurriculum Analysis für die Technik

Erweiterungscurriculum Analysis für die Technik BEILAGE 4 zum Mitteilungsblatt 21. Stück, Nr. 135.3-2016/2017, 29.06.2017 Erweiterungscurriculum Analysis für die Technik Datum des Inkrafttretens 1. Oktober 2017 Inhaltsverzeichnis 1 Allgemeines...- 2-2

Mehr

Mathematische Methoden der Physik

Mathematische Methoden der Physik Andreas Schadschneider Mathematische Methoden der Physik Version: 8. Februar 2008 Wintersemester 2007/08 1 Vorbemerkungen Das vorliegende Skript zu Vorlesung Mathematische Methoden ersetzt nicht den regelmässigen

Mehr

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik Christian B. Lang / Norbert Pucker Mathematische Methoden in der Physik Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung xv 1 Unendliche Reihen 1 1.1 Folgen und Reihen 1 1.1.1

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Thomas Steinle Seminar Zufällige Felder Universität Ulm 18. November, 2008 Einleitung Inhalt Einleitung Wiederholung und Themenvorstellung Wichtiges

Mehr

I Zur Einstimmung. I11 Anwendungen

I Zur Einstimmung. I11 Anwendungen Einleitung....... I Zur Einstimmung 1 Die schwingende Saite und Fourierreihen........ 2 Die Tschebyscheffsche Approximationsaufgabe. Gleichmäßige Konvergenz.... 3 Rand- und Eigenwertprobleme............

Mehr

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen:

Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Musterlösung 1 Hilberträume Aufgabe 1.1 (Hilberträume). Sei H ein Hilbertraum und V H ein beliebiger Unterraum. Kreuzen Sie an, welche der folgenden Aussagen zutreffen: Die durch das Skalarprodukt induzierte

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr

Theoretische Elektrotechnik

Theoretische Elektrotechnik Theoretische Elektrotechnik Band 1: Variationstechnik und Maxwellsche Gleichungen von Dr. Roland Süße und Prof. Dr. Bernd Marx Technische Universität Ilmenau Wissenschaftsverlag Mannheim Leipzig Wien Zürich

Mehr

Lehrbuch der Analysis TeiM

Lehrbuch der Analysis TeiM Harro Heuser Lehrbuch der Analysis TeiM 17., aktualisierte Auflage Mit 127 Abbildungen, 811 Aufgaben, zum Teil mit Lösungen j^" i ;'*^'^^"'\ 1 STUDIUM VIEWEG+ TEUBNER Inhalt Einleitung 12 I Mengen und

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 6. Vorlesung. Pawel Romanczuk WS 2016/17

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 6. Vorlesung. Pawel Romanczuk WS 2016/17 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 6. Vorlesung Pawel Romanczuk WS 2016/17 http://lab.romanczuk.de/teaching Zusammenfassung letzte VL Streuzustände Potentialschwelle Potentialbarriere/Tunneleffekt

Mehr

Lehr- und Übungsbuch MATHEMATIK. Lineare Algebra und Anwendungen. Mit 104 Bildern, 174 Beispielen und 222 Aufgaben mit Lösungen

Lehr- und Übungsbuch MATHEMATIK. Lineare Algebra und Anwendungen. Mit 104 Bildern, 174 Beispielen und 222 Aufgaben mit Lösungen Lehr- und Übungsbuch MATHEMATIK für Informatiker Lineare Algebra und Anwendungen Mit 104 Bildern, 174 Beispielen und 222 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis

Mehr

Allgemeine Form der Fourierreihe einer zwei- -periodischen, stetigen Funktion:

Allgemeine Form der Fourierreihe einer zwei- -periodischen, stetigen Funktion: Einführung Eine Funktion mittels trigonometrischer Funktionen darzustellen ist das Ziel bei Fourierreihenentwicklung. Als Fourierreihe einer periodischen Funktion f, die abschnittsweise stetig ist, bezeichnet

Mehr

Differentialgleichungen der Geometrie und der Physik

Differentialgleichungen der Geometrie und der Physik Friedrich Sauvigny Partie I le Differentialgleichungen der Geometrie und der Physik Grundlagen und Integraldarstellungen Unter Berücksichtigung der Vorlesungen von E. Heinz Springer Inhaltsverzeichnis

Mehr

hhhhh 8 ( x)/2, <x 0, ( x)/2, 0 <x, , ] hinaus. Diese Funktion ist ungerade, ihre Fourierreihe also eine reine Sinusreihe. Man findet 1 cos nx dx.

hhhhh 8 ( x)/2, <x 0, ( x)/2, 0 <x, , ] hinaus. Diese Funktion ist ungerade, ihre Fourierreihe also eine reine Sinusreihe. Man findet 1 cos nx dx. 86 5 Fouriertheorie Für gerades f ist f (x) sin nx ungerade, somit b n = f (x) sin nx dx =. Für ungerades f ist dagegen f cos nx ungerade, also a n = f (x) cos nx dx =..Ò Beispiel Die Sägezahnfunktion

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Grundkurs Theoretische Physik 3

Grundkurs Theoretische Physik 3 Springer-Lehrbuch Grundkurs Theoretische Physik 3 Elektrodynamik von Wolfgang Nolting 1. Auflage Grundkurs Theoretische Physik 3 Nolting schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG

Mehr

Inhaltsverzeichnis. I Vektoranalysis g

Inhaltsverzeichnis. I Vektoranalysis g I Vektoranalysis g 1 Vektorfunktionen und Raumkurven JJ 1.1 Vektorfunktionen n 1.2 Ableitung einer Vektorfunktion 12 1.3 Bogenlänge und Tangenteneinheitsvektor 16 1.4 Hauptnormale und Krümmung 19 1.5 Binormale

Mehr

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie

Wolfgang L Wendland, Olaf Steinbach. Analysis. Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Wolfgang L Wendland, Olaf Steinbach Analysis Integral- und Differentialrechnung, gewöhnliche Differentialgleichungen, komplexe Funktionentheorie Teubner Inhaltsverzeichnis Einleitung 17 Reelle Zahlen 22

Mehr

Fourierreihen. Die erste dieser Aussagen folgt direkt aus der Definition. Für die zweite bemerken

Fourierreihen. Die erste dieser Aussagen folgt direkt aus der Definition. Für die zweite bemerken Fachbereich Mathematik SS 0 J. Latschev Analysis II Fourierreihen In diesem Kapitel der Vorlesung widmen wir uns der Frage, inwieweit man jede periodische Funktion als Reihe in gewissen Standardfunktionen

Mehr