2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004

Größe: px
Ab Seite anzeigen:

Download "2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004"

Transkript

1 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2003/04 ILKD Prof. Dr. D. Wgner 14. April Klusur zur Vorlesung Informtik III Wintersemester 2003/2004 Lösung! Bechten Sie: Bringen Sie den Aufkleer mit Ihrem Nmen und Mtrikelnummer uf diesem Deckltt n und eschriften Sie jedes weitere Bltt mit Ihrem Nmen und Ihrer Mtrikelnummer. Schreien Sie die Lösungen uf die Aufgenlätter und Rückseiten. Zusätzliches Ppier erhlten Sie ei Bedrf von der Aufsicht. Zum Bestehen der Klusur sind 20 der möglichen 61 Punkte hinreichend. Es sind keine Hilfsmittel zugelssen. Aufge Mögliche Punkte Erreichte Punkte c d Σ c d Σ x1 13 Σ 61

2 Nme: Mtrikelnr.: Seite 2 Aufge 1: ( =12 Punkte) () Gegeen seien die eiden folgenden Sprchen üer dem Alphet Σ = {, }: L 1 = {lle Wörter, die oder enthlten} L 2 = {lle Wörter, in denen höchstens einml und nie vorkommt} Geen Sie reguläre Ausdrücke für L 1 und L 2 n. L 1 = ( ) ( )( ) L 2 = (ε )() ( ε)() (ε ) () Geen Sie den Üergngsgrphen eines endlichen Automten n, der L 1 us Teilufge () erkennt., , (c) Gegeen sei folgender nichtdeterministischer endlicher Automt (NEA):, 0 1 ε 2, Konstruieren Sie mittels Potenzmengen-Konstruktion den äuivlenten deterministischen endlichen Automten (DEA). Sei A := (Q, Σ, δ, s, F ) der gegeene NEA. Potenzmengen-Konstruktion des zugehörigen DEAs à := ( Q, Σ, δ, s, F ): s = E(s) = { 0 }

3 Nme: Mtrikelnr.: Seite 3 für δ ergit sich: { 0 } { 0, 1 } { 0 } { 0, 1 } { 0, 1, 2 } { 0 } { 0, 1, 2 } { 0, 1, 2 } { 0, 2 } { 0, 2 } { 0, 1, 2 } { 0, 2 } lle nderen Zustände us 2 Q sind nicht erreichr und werden gestrichen, somit Q = {{ 0 }, { 0, 1 }, { 0, 2 }, { 0, 1, 2 }} F = { Q F } = {{ 0, 2 }, { 0, 1, 2 }}. { 0 } { 0, 1 } { 0, 2 } { 0, 1, 2} (d) Sei Σ = {, } und L := {w Σ w enthält }. Bestimmen Sie die Äuivlenzklssen der Nerode- Reltion ezüglich L uf Σ. Sei R L die Nerode-Reltion zgl. L und seien x, y Σ. Es gilt: Folgende Fälle können uftreten: x enthält. Dnn gilt für lle z Σ : xz L xr L y ( z Σ : xz L yz L) x enthält nicht und x endet uf. Dnn gilt: xz L (z eginnt mit oder z enthält ) x enthält nicht und x endet nicht uf. Dnn gilt: xz L z enthält Somit erhält mn folgende Äuivlenzklssen: [] = {x Σ x enthält } [] = {x Σ x enthält nicht und endet uf } [ε] = [] = {x Σ x enthält nicht und endet nicht uf }

4 Nme: Mtrikelnr.: Seite 4 Aufge 2: ( =12 Punkte) () Betrchten Sie folgende Instnz des Post schen Korrespondenzprolems üer dem Alphet {0, 1}: K = ((100, 001), (100, 1), (10, 001), (10, 010)) (i) Geen Sie eine Indexfolge n, die K löst. (ii) Modifizieren Sie K durch Entfernen eines Pres, so dss die Instnz nicht mehr lösr ist. Begründen Sie, dss es für Ihre Modifiktion keine Lösung git. (i) (2, 3, 4) erzeugt jeweils ds Wort (ii) Entferne ds Pr (100, 1). Jedes verleiende Pr eginnt mit einem unterschiedlichen Symol, lso eginnen uch die zwei Wörter, die von einer elieigen Indexfolge erzeugt werden, mit einem unterschiedlichen Symol, und somit ist die modifizierte Instnz nicht mehr lösr. Alterntiv knn uch ds Pr (10, 010) entfernt werden. Dnn endet jedes verleiende Pr uf ein unterschiedliches Symol. Dmit erzeugt jede Indexfolge zwei verschiedene Wörter, denn sind die Wörter gleich lng, so ist ds letzte Symol unterschiedlich, und es git keine Lösung für die modifizierte Instnz. () Sei Σ ein endliches Alphet, L 1 Σ nicht entscheidr und L 2 Σ entscheidr. Sei ferner L = {w 1 w 2 : w 1 L 1, w 2 L 2 } mit Σ. Ist L entscheidr? Begründen Sie Ihre Antwort! L ist nicht entscheidr. Angenommen, L sei entscheidr. Dnn existiert eine Turingmschine M, die uf lle Eingen hält und genu die Sprche L kzeptiert. Wir konstruieren nun eine Turingmschine M 1, die uf llen Eingen w Σ hält und genu die Sprche L 1 kzeptiert. Sei dzu w 2 ein Wort us L 2. Die Turingmschine M 1 geht n ds Ende der Einge (lso solnge nch rechts, is ein gelesen wird), schreit ein und dnch ds Wort w 2. Dnch geht M 1 wieder n den Anfng der Einge (lso solnge nch links, is ein gelesen wird), und verhält sich dnn genu wie die Turingmschine M. Sei w eine Einge für M 1. Ist w L 1, so wird ds Wort kzeptiert, denn w w 2 L. Flls er w L 1, so ist uch w w 2 L, lso wird w nicht kzeptiert, er M 1 hält, weil M uf llen Eingen hält. Dies ist ein Widerspruch zur Annhme, denn L 1 ist nch Vorussetzung nicht entscheidr. (c) Gegeen sei eine Turingmschine M mit folgender Eigenschft: Wenn M ein Wort kzeptiert, dnn geschieht ds in weniger ls 1000 Schritten. Kreuzen Sie für folgende Aussgen n, o diese whr oder flsch sind. Hinweis: Für jede richtige Antwort git es einen Punkt, für jede flsche Antwort wird ein Punkt gezogen. Es wird keine negtive Gesmtpunktzhl für diese Teilufge geen. L(M) ist entscheidr. L(M) ist notwendigerweise endlich.

5 Nme: Mtrikelnr.: Seite 5 (d) Geen Sie grphisch eine deterministische Turingmschine nch Definition us der Vorlesung n, die uf llen Eingen üer dem Alphet {, } hält und diesele Sprche kzeptiert wie der folgende deterministische endliche Automt: 1 2 3, _ _,N f, N, N _ _,N 1,R,R 2, R,R _ _, N 3,N,N _ _,N

6 Nme: Mtrikelnr.: Seite 6 Aufge 3: ( = 12 Punkte) [Hinweis: Für in dieser Aufge vorkommende Proleme sind jeweils m Ende des Aufgentextes Definitionen ngegeen.] () Zeigen Sie: LONGEST CYCLE ist N P-vollständig. Prolem LONGEST CYCLE (LC) Gegeen: Ungerichteter Grph G = (V, E), Konstnte K Frge: Git es einen einfchen Kreis in G, der mindestens die Länge K ht? Prolem HAMILTONKREIS (HK) Gegeen: Ungerichteter Grph G = (V, E) Frge: Git es einen einfchen Kreis in G, der jeden Knoten genu einml enthält? [Ein einfcher Kreis der Länge l ist eine Folge von l verschiedenen Knoten, so dss jeweils eine Knte zwischen dem (i + 1)-ten und dem i-ten, sowie zwischen dem ersten und letzten Knoten esteht. In der Vorlesung wurde gezeigt, dss HAMILTONKREIS N P-vollständig ist.] 1. LONGEST CYCLE N P: Ds Orkel der nichtdeterministischen TM git eine Folge von Knoten ls Lösungsvorschlg vor. Dieser knn in polynomiler Zeit verifiziert werden, indem nchgeschut wird, o er us mindestens K verschiedenen Knoten esteht und o zwischen je zwei ufeinnderfolgenden Knoten sowie zwischen dem letzten und ersten Knoten eine Knte existiert. 2. HAMILTONKREIS LONGEST CYCLE: Eine Instnz von Hmiltonkreis mit Grph G = (V, E) wird uf die Instnz I = (G, V ) von LONGEST CYCLE geildet. Eine einfcher Kreis der Länge K = V ist nämlich genu ein Hmiltonkreis (d er dmit lle Knoten enthält). Die Trnsformtion funktioniert in linerer Zeit, d nur die Konstnte V zur Einge hinzugefügt werden muss. () Formulieren Sie ds Erfüllrkeitsprolem SAT ls 0/1-ILP. Geen Sie lso n, wie für eine elieige Instnz von SAT mit den Kluseln K 1,..., K k üer den Vrilen V 1,..., V l eine äuivlente Instnz von 0/1-ILP konstruiert werden knn. Prolem 0/1-INTEGER-PROGRAMMING (0/1-ILP) Gegeen: Eine (m n)-mtrix A gnzer Zhlen und ein Spltenvektor von m gnzen Zhlen. Frge: Git es einen Lösungsvektor x mit n Einträgen nur 0 oder 1 so, dss Ax? Die gesuchte Mtrix A ht k +2l Zeilen und 2l Splten. Für jede Vrile git es eine Splte (V i ) für die negierte und eine (V + i ) für die nicht negierte Form. Es git zunächst für jede Vrile eine Zeile der Form V i + + Vi 1 und eine Zeile der Form V i + Vi 1, um zu gewährleisten, dss jede Vrile entweder whr oder flsch ist. Außerdem git es für jede Klusel u i1 u it eine Zeile der Form u i1 + + u it 1, woei die u ij verneinte oder nicht verneinte Vrilen sind.

7 Nme: Mtrikelnr.: Seite 7 (c) Zeigen Sie: Die Klsse DT APE(n 2 ) ist unter Durchschnittsildung geschlossen, d.h. mit L 1, L 2 DT APE(n 2 ) ist uch L 1 L 2 DT APE(n 2 ). Seien L 1, L 2 DT APE(n 2 ). Dnn git es TMn M 1 zw. M 2, die L 1 zw. L 2 mit Pltzedrf n 2 ei Eingelänge n kzeptieren. Wir konstruieren eine TM M, die zunächst M 1 uf der Einge simuliert und, flls M 1 kzeptiert, die Einge wieder herstellt und nschließend M 2 simuliert. Wenn uch M 2 kzeptiert, dnn kzeptiert uch M. Somit kzeptiert M genu dnn, wenn M 1 und M 2 kzeptieren. M kzeptiert lso den Durchschnitt der eiden Sprchen. Der Speicherpltzedrf von M ist nicht größer ls der von M 1 und M 2. (M muss sich nur zusätzlich die ursprüngliche Einge merken. Dies knn etw durch Erweiterung des Alphets geschehen.) (d) Sei Π ein Minimierungsprolem. Für jede gerde Zhl l gee es einen Algorithmus A l für Π mit folgenden Eigenschften: 1. Die Einge für A l ist eine Instnz I von Π. 2. Die Ausge ist eine Zhl A l (I) mit 1 A l(i) OPT(I) 1 + 1/2 1 + l/2, woei OPT(I) der Wert einer optimlen Lösung von I sei. 3. Die Lufzeit von A l sei in O(2 l + n). Geen Sie n, welche der folgenden Aussgen us der Existenz der A l und unter der Annhme P N P folgen. Begründen Sie ihre Antwort (jeweils zwei Sätze genügen). (i) Es git einen Approximtionslgorithmus mit reltiver Gütegrntie 2 für Π. (ii) Es git ein PAS für Π. (iii) Es git ein FPAS für Π. (i) J. Für l = 2 ist A ein 1/4-pproximtiver Algorithmus. Die Lufzeit ist liner in der Eingegröße, d l eine Konstnte ist. (ii) J. Für jedes ε ist A l mit l := 1/ε ein ε-pproximtiver Algorithmus. Die Lufzeit ist polynomil in der Eingegröße. (iii) Nein. Die Lufzeit der in Punkt (i) eschrieenen Algorithmenfmilie ist exponentiell in l und lso uch in 1/ε.

8 Nme: Mtrikelnr.: Seite 8 Aufge 4: ( =12 Punkte) Sei eine Grmmtik G üer dem Alphet {0, 1}, der Vrilenmenge {S, A, B}, dem Strtsymol S und den folgenden Regeln gegeen: S A1B, A 0A ε, B 0B 1B ε. () Geen Sie den Syntxum für eine Aleitung des Wortes gemäß G n. S A 1 B PSfrg replcements 0 A 0 B 0 A 0 B ε ε () Bringen Sie G durch eine systemtische Konstruktion in Chomsky-Normlform (die einzelnen Schritte müssen dei klr erkennr sein!). Schritt 1 und 2 (Einführen von Vrilen für Terminle und Splitten zu lnger Regeln): S AS, S Y 1 B, A Y 0 A ε, B Y 0 B Y 1 B ε, Y 0 0, Y 1 1 Schritt 3 (Entfernen von ε-regeln): Vrilen, von denen ε geleitet werden knn: V = {A, B} S AS S, S Y 1 B Y 1, A Y 0 A Y 0, B Y 0 B Y 1 B Y 0 Y 1, Y 0 0, Y 1 1 Schritt 4 (Entfernen von Kettenregeln): Ahängigkeitsgrph: PSfrg replcements S S Y 1 B Y 0 A S AS Y 1 B 1, S Y 1 B 1, A Y 0 A 0, B Y 0 B Y 1 B 0 1, Y 0 0, Y 1 1

9 Nme: Mtrikelnr.: Seite 9 (c) Zeigen Sie mit Hilfe des Lemms von Ogden, dss die Sprche L := { i j k j = mx{i, k}} nicht kontextfrei ist. (Hinweis: Sie können dzu ds Wort z = n n c n mit der Mrkierung n wählen.) [Ds Lemm von Ogden esgt: Wenn eine Sprche L kontextfrei ist, dnn git es eine ntürliche Zhl n so, dss für lle Wörter z us L der Länge mindestens n gilt: Wenn wir in z mindestens n Buchsten mrkieren, so git es eine Zerlegung z = uvwxy so, dss ds Teilwort vx mindestens einen und ds Teilwort vwx höchstens n mrkierte Buchsten enthält und für lle ntürlichen Zhlen i (einschließlich der Null) ds gepumpte Wort uv i wx i y in L enthlten ist.] Um nun die Nicht-Kontextfreiheit der Sprche L zu zeigen, wähle zu gegeenem n ds Wort z = n n n und mrkiere ds Teilwort n. Jede Zerlegung z = uvwxy mit den Eigenschften mrkiert(vx) 1 und mrkiert(vwx) n ht eine der folgenden Gestlten: (i) v oder x enthält sowohl den Buchsten ls uch. (ii) Entweder ist vwx gnz in n enthlten oder v (zw. x) ist us n und x (zw. v) us n. Gi für jeden der Fälle ein gepumptes Wort uv i wx i y n, ds nicht in der Sprche liegt: (i) Wähle i := 2. Dnn enthält ds gepumpte Wort (mindestens) zwei -Seuenzen. (ii) Wähle i := 0. Dnn git es im gepumpten Wort (mindestens) einen -Block mit echt größerer Krdinlität ls die Anzhl der s. Also ist L nicht kontextfrei. (d) Widerlegen Sie durch ein Gegeneispiel: Unendliche Vereinigungen kontextfreier Sprchen sind kontextfrei. (Mit nderen Worten: Flls für lle i IN 0 die Sprchen L i kontextfrei sind, dnn ist uch L := L i kontextfrei.) Die Sprchen L 0 :=, L 1 := { 1 1 c 1 }, L 2 := { 2 2 c 2 },... sind regulär und somit lso kontextfrei, die zählre Vereinigung dieser Sprchen i=0 L i = { n n c n n IN} hingegen ist nicht kontextfrei (vgl. Vorlesung). i=0

10 Nme: Mtrikelnr.: Seite 10 Aufge 5: (13x1=13 Punkte) Kreuzen Sie für folgende Aussgen n, o diese whr oder flsch sind. Hinweis: Für jede richtige Antwort git es einen Punkt, für jede flsche Antwort wird ein Punkt gezogen. Es wird keine negtive Gesmtpunktzhl für diese Aufge geen. Seien L 1, L 2 reguläre Sprchen. Dnn ist uch L 1 \ L 2 = {w L 1 w L 2 } regulär. Die regulären Ausdrücke ( c ) und ( c) sind äuivlent. Ds Komplement der universellen Sprche ist nicht semientscheidr. Seien L 1 und L 2 zwei semientscheidre Sprchen. Dnn ist uch L 1 \ L 2 = {w L 1 w L 2 } semientscheidr. Sei L {0, 1} nicht entscheidr. Dnn gilt: Der Index der Nerodereltion zu L ist unendlich. Aus 3SAT P folgt 2SAT N PC. Flls es einen Approximtionslgorithmus für CLIQUE mit soluter Gütegrntie git, so gilt P = NP Es git ein Entscheidungsprolem Π N P, für ds es keine polynomile Trnsformtion Π SAT git.

11 Nme: Mtrikelnr.: Seite 11 Sei k eine Konstnte. Die Sprche VC k := {G G = (V, E) ist ein Grph und ht eine Knotenüerdeckung V V mit V k} ist in P. Zu jeder entscheidren Sprche L existiert eine Chomsky-Typ-0-Grmmtik, die L erzeugt. Jede Sprche der Form {x n 1 xn 2... xn k : n IN} ist kontextfrei. (Dei sei k 1 und die x i jeweils Buchsten us einem endlichen Alphet mit x i x j für i j.) Zu jedem nichtdeterministischen Kellerutomt git es einen deterministischen Kellerutomten, der diesele Sprche kzeptiert. Die Grmmtik, die nur us der Regel S ε esteht, erzeugt diesele Sprche wie eine Grmmtik ohne Regeln.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 14. April 2004 2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden.

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden. Aufgensmmlung GTI Hinweise. Dies ist eine Aufgensmmlung zum Lernen für die Klusur, keine Proeklusur. Die Zeitduer, die für die Lösung vorgesehen ist, ist lso nicht uf drei Stunden normiert. Für die Klusur

Mehr

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus Klusur Formle Sprchen und Automten Grundlgen des Compilerus 25. Novemer 2014 Nme: Unterschrift: Mtrikelnummer: Kurs: Note: Aufge erreichre erreichte Nr. Punkte Punkte 1 10 2 10 3 12 4 11 5 9 6 6 7 11 8

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Vorlesung Theoretische Informatik Sommersemester 2018 Dr. B. Baumgarten

Vorlesung Theoretische Informatik Sommersemester 2018 Dr. B. Baumgarten Vorlesung Theoretische Informtik Sommersemester 28 Dr. B. Bumgrten Üungen zur Wiederholung quer durch den Stoff Mit Lösungseispielen Vollständigkeit wird nicht grntiert, und einige sind klusuruntypisch

Mehr

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013) Berlin, 17.07.2013 Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) 1 2 3 4 5 6 7 8 Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2004/05 ILKD Prof. Dr. D. Wgner 24. Ferur 2005 1. Klusur zur Vorlesung Informtik III Wintersemester 2004/2005 Lösung! Bechten Sie: Bringen

Mehr

Wintersemester 2016/2017 Scheinklausur Formale Sprachen und Automatentheorie

Wintersemester 2016/2017 Scheinklausur Formale Sprachen und Automatentheorie Wintersemester 2016/2017 Scheinklusur Formle Sprchen und Automtentheorie 21.12.2016 Üungsgruppe, Tutor: Anzhl Zustzlätter: Zugelssene Hilfsmittel: Keine. Bereitungszeit: 60 Minuten Hinweise: Lesen Sie

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Prof. Dr. Javier Esparza Garching b. München, den Klausur Einführung in die theoretische Informatik Sommer-Semester 2017

Prof. Dr. Javier Esparza Garching b. München, den Klausur Einführung in die theoretische Informatik Sommer-Semester 2017 Prof. Dr. Jvier Esprz Grching. München, den 10.08.17 Klusur Einführung in die theoretische Informtik Sommer-Semester 2017 Bechten Sie: Soweit nicht nders ngegeen, ist stets eine Begründung zw. der Rechenweg

Mehr

Übungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht garantiert, und einige sind umfangreicher als klausurtypisch.

Übungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht garantiert, und einige sind umfangreicher als klausurtypisch. Vorlesung Theoretische Informtik Sommersemester 2017 Dr. B. Bumgrten Üungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht grntiert, und einige sind umfngreicher ls klusurtypisch. 1.

Mehr

Scheinklausur: Theoretische Informatik I

Scheinklausur: Theoretische Informatik I +//+ Scheinklusur: Theoretische Informtik I WS / Hinweise: Hlten Sie die Klusur geschlossen, is der Beginn durch die Aufsichtspersonen ngezeigt wird Betrugsversuche oder Stören hen sofortigen Ausschluss

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017 2. Klusur zur Vorlesung Theoretische Grundlgen der Informtik Wintersemester 2016/2017 Lösung! echten Sie: ringen Sie den Aufkleber mit Ihrem Nmen und Mtrikelnummer uf diesem Deckbltt n und beschriften

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Lösungen zum Ergänzungsblatt 4

Lösungen zum Ergänzungsblatt 4 en zum Ergänzungsltt 4 Letzte Änderung: 23. Novemer 2018 Theoretische Informtik I WS 2018 Crlos Cmino Vorereitungsufgen Vorereitungsufge 1 Sei M = ({p, q, r}, {, }, δ, p, {q, r}) ein DEA mit folgender

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Klusur 09082011 Prof Dr Dr hc W Thoms Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informtik Lehrstuhl Prof. Dr. D. Wgner Huptklusur zur Vorlesung Theoretische Grundlgen der Informtik Wintersemester 2011/2012 Hier Aufkleber mit Nme und Mtrikelnr. nbringen Vornme:

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm Reguläre δ: Σ (Q Q Ω) Beispiel δ 0 δ 0 1 2 1 2 0 1 2 δ Formle Automt Reguläre Definition Ein nicht-deterministischer, endlicher Automt esteht us einer

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

Ergänzungsblatt 6. Letzte Änderung: 24. November 2018

Ergänzungsblatt 6. Letzte Änderung: 24. November 2018 Ergänzungsltt 6 Letzte Änderung: 24. Novemer 2018 Theoretische Informtik I WS 2018 Crlos Cmino Erinnerung: Die Besprechungstermine für die Ergänzungen 7 is 10 fllen is uf Weiteres us. Aufgen, Lösungen

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Nme Vornme Mtrikelnummer Lösungsvorschlg Universität Krlsruhe Institut für Theoretische Informtik o. Prof. Dr. P. Snders 8. März 2006 Klusur: Informtik III Aufgbe 1. Multiple Choice 10 Punkte Aufgbe 2.

Mehr

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur Grundlgen der Theoretischen Infomtik SS 213 Institut für Informtik Prof. Dr. Ulrich Furch Dr. Mnfred Jckel Dr. Björn Pelzer Christin Schwrz Nchklusur Modul Grundlgen der Theoretischen Informtik 4IN118/INLP1

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Minimalität des Myhill-Nerode Automaten

Minimalität des Myhill-Nerode Automaten inimlität des yhill-nerode Automten Wir wollen zeigen, dss der im Beweis zum yhill-nerode Stz konstruierte DEA für die reguläre Sprche L immer der DEA mit den wenigsten Zuständen für L ist. Sei 0 der konstruierte

Mehr

Formale Sprachen und Automaten. Schriftlicher Test

Formale Sprachen und Automaten. Schriftlicher Test Formle Sprchen und Automten Prof. Dr. Uwe Nestmnn - 23. Ferur 2017 Schriftlicher Test Studentenidentifiktion: NACHNAME VORNAME MATRIKELNUMMER S TUDIENGANG Informtik Bchelor, Aufgenüersicht: AUFGABE S EITE

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Übungsblatt 1. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 1. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informtik Lehrstuhl Prof. Dr. D. Wgner Üungsltt Vorlesung Theoretische Grundlgen der Informtik im WS 78 Ausge 9. Oktoer 27 Age 7. Novemer 27, : Uhr (im Ksten im UG von Geäude

Mehr

Minimierung von DFAs. Minimierung 21 / 98

Minimierung von DFAs. Minimierung 21 / 98 Minimierung von DFAs Minimierung 21 / 98 Ein Beispiel: Die reguläre Sprche L({, } ) Wie stellt mn fest, o ein Wort ds Suffix esitzt? Ein erster Anstz: Speichere im ktuellen Zustnd die eiden zuletzt gelesenen

Mehr

4. Übungsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16

4. Übungsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16 Krlsruher Institut für Technologie Institut für Theoretische Informtik Prof. Dr. Peter Snders L. Hüschle-Schneider, T. Mier 4. Üungsltt zu Theoretische Grundlgen der Informtik im WS 2015/16 http://lgo2.iti.kit.edu/tgi2015.php

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung Technische Universität München Sommer 2016 Prof. J. Esprz / Dr. M. Luttenerger, S. Sickert Lösung Einführung in die theoretische Informtik Klusur Bechten Sie: Soweit nicht nders ngegeen, ist stets eine

Mehr

Vorkurs Theoretische Informatik

Vorkurs Theoretische Informatik Vorkurs Theoretische Informtik Einführung in reguläre Sprchen Areitskreis Theoretische Informtik Freitg, 05.10.2018 Fchgruppe Informtik Üersicht 1. Chomsky-Hierchie 2. Automten NEA DEA 3. Grmmtik und Automten

Mehr

Aufge 4 Die Grmmtik G 2 CFG(f; g) in Chomsky-Normlform sei gegeen wie folgt: S! AB j A! AS j B! SB j ) Stellen Sie mit Hilfe des Cocke-Younger-Ksmi-Al

Aufge 4 Die Grmmtik G 2 CFG(f; g) in Chomsky-Normlform sei gegeen wie folgt: S! AB j A! AS j B! SB j ) Stellen Sie mit Hilfe des Cocke-Younger-Ksmi-Al RHEINISCH- WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN LEHRSTUHL FÜR INFORMATIK II RWTH Achen D-52056 Achen GERMANY http://www-i2.informtik.rwth-chen.de 2i Klusur für den Leistungsnchweis zur Vorlesung Automtentheorie

Mehr

Bitte die Blätter nicht trennen! Studiengang:

Bitte die Blätter nicht trennen! Studiengang: Bitte die Blätter nicht trennen! Mtrikelnummer: Fkultät Studiengng: Jhrgng / Kurs : Technik Angewndte Informtik 2017 ITA ÜBUNGSKLAUSUR Studienhljhr: 3. Semester Dtum: 14.11.2018 Bereitungszeit: 90 Minuten

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Theoretische Informatik WS 2014/2015

Theoretische Informatik WS 2014/2015 Prof. Dr. Andres Podelski Mtthis Heizmnn Alexnder Nutz Christin Schilling Probeklusur zur Vorlesung Theoretische Informtik WS 2014/2015 Die Klusur besteht us diesem Deckbltt und sieben Blättern mit je

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Nico Döttling Dirk Achench Tois Nilges Vorlesung Theoretische Grundlgen der Informtik Üungsltt Nr. svorschlg Aufge (K) (4 Punkte): Semi-Thue-Systeme

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2017W) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2017W) Lösung Theoretische Informtik und Logik Üungsltt 2 (207W) en Aufge 2. Geen ie jeweils eine kontextfreie Grmmtik n, welche die folgenden prchen erzeugt, sowie eine Linksleitung und einen Aleitungsum für ein von

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien DFA Reguläre Grmmtik (Folie 89) Stz. Jede von einem endlichen Automten kzeptierte Sprche ist regulär. Beweis. Nch Definition, ist eine

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 2011/12 Minimierung von DFAs Frge Wie können wir feststellen, o ein DFA M = (Z, Σ, δ, q 0,

Mehr

1) Gegeben sei ein endlicher, erkennender Automat, definiert durch: f z, definiert durch das Zustandsdiagramm: a,b. z 3

1) Gegeben sei ein endlicher, erkennender Automat, definiert durch: f z, definiert durch das Zustandsdiagramm: a,b. z 3 (Prüfungs-)Aufgen ur Automtentheorie (enthält uch Aufgen u formlen Sprchen) ) Gegeen sei ein endlicher, erkennender Automt, definiert durch: Eingelphet X = {, } Zustndsmenge Z = {,, 2, 3 } Anfngsustnd

Mehr

Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch.

Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch. Einführung in die Theoretishe Informtik I/ Grundlgen der Theoretishen Informtik SS 2007 Jun.-Prof. Dr. Bernhrd Bekert Ulrih Koh Nhklusur 25. 09. 2007 Persönlihe Dten itte gut leserlih usfüllen! Vornme:...

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Gliederung. Kapitel 1: Endliche Automaten

Gliederung. Kapitel 1: Endliche Automaten Gliederung 0. Motivtion und Einordnung 1. Endliche Automten 2. Formle Sprchen 3. Berechnungstheorie 4. Komplexitätstheorie 1.1. 1.2. Minimierungslgorithmus 1.3. Grenzen endlicher Automten 1/1, S. 1 2017

Mehr

2.6 Reduktion endlicher Automaten

2.6 Reduktion endlicher Automaten Endliche Automten Jörg Roth 153 2.6 Reduktion endlicher Automten Motivtion: Wir sind n Automten interessiert, die mit möglichst wenigen Zuständen uskommen. Automten, die eine Sprche mit einem Minimum n

Mehr

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten Fkultät IV Deprtment Mthemtik Lehrstuhl für Mthemtische Logik und Theoretische Informtik Prof. Dr. Dieter Spreen Dipl.Inform. Christin Uhrhn Grundlgen der Theoretischen Informtik, WS11/12 Minimle Automten

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlgen der Theoretischen Informtik 3. Endliche Automten 6.05.2015 Vioric Sofronie-Stokkermns e-mil: sofronie@uni-kolenz.de 1 Üersicht 1. Motivtion 2. Terminologie 3. Endliche Automten und reguläre Sprchen

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

a) Eine Menge, die aus jeder Äquivalenzklasse genau ein Element enthält, ist

a) Eine Menge, die aus jeder Äquivalenzklasse genau ein Element enthält, ist Lösungen zu den Fschingsufgen Aufge 15 ) Eine Menge, die us jeder Äquivlenzklsse genu ein Element enthält, ist { n n N 0 } { n n N 0 } {}. ) n N 0 : w = n {w {, } ww L} = { k n+k k N 0 }. c) Nein. n N

Mehr

DEA1 Deterministische Version

DEA1 Deterministische Version Endliche Automten 4 Deterministische endliche Automten Zu dem nichtdeterministischen Automten EA git es eine deterministische Version. EA Akzeptor für Wörter üer X = { } mit mindestens einem führenden.

Mehr

Grundbegriffe der Informatik Lösungsvorschläge Aufgabenblatt 11

Grundbegriffe der Informatik Lösungsvorschläge Aufgabenblatt 11 Grundegriffe der Informtik Lösungsvorschläge Aufgenltt 11 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 15. Jnur 2014 Age: 24. Jnur 2014, 12:30 Uhr im GBI-Briefksten im Untergeschoss von

Mehr

Institut für Kryptographie und Sicherheit Dr. Jörn Müller-Quade. Musterlösung zur Hauptklausur Informatik III Wintersemester 2008/2009

Institut für Kryptographie und Sicherheit Dr. Jörn Müller-Quade. Musterlösung zur Hauptklausur Informatik III Wintersemester 2008/2009 Institut für Kryptogrphie und Sicherheit Dr. Jörn Müller-Qude Musterlösung zur Huptklusur Informtik III Wintersemester 2008/2009 Nme: Mtrikelnummer: Seite 1 Aufge 1 (5 + 5 = 10 Punkte) () Gegeen sei der

Mehr

Weihnachtsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16

Weihnachtsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16 Krlsruher Institut für Technologie Institut für Theoretische Informtik Prof. Dr. Peter Snders L. Hüschle-Schneider, T. Mier Weihnchtsltt zu Theoretische Grundlgen der Informtik im WS 2015/16 http://lgo2.iti.kit.edu/tgi2015.php

Mehr

Universität Heidelberg 13. Oktober 2016 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Nadine Losert

Universität Heidelberg 13. Oktober 2016 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Nadine Losert Universität Heidelerg 13. Oktoer 2016 Institut für Informtik Prof. Dr. Klus Amos-Spies Ndine Losert Zweite Klusur zur Vorlesung Einführung in die Theoretische Informtik Es können mximl 60 Punkte erworen

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ. x Σ.x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ). F3

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Vielen Dnk n Jn Wgener für die erweiterten Aufgenlösungen Einführung in die theoretische Informtik Sommersemester 2017 Üungsltt

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mthemtisches Institut Prof. Dr. F. Vllentin Dr. A. Gundert Einführung in die Mthemtik des Opertions Reserch Aufge (5+5= Punkte) Sommersemester 4 Lösungen zur Klusur (5. Septemer 4).

Mehr

Nichtdeterministische endliche Automaten. Nichtdetermistische Automaten J. Blömer 1/12

Nichtdeterministische endliche Automaten. Nichtdetermistische Automaten J. Blömer 1/12 Nichtdeterministische endliche Automten Nichtdetermistische Automten J. Blömer 1/12 Nichtdeterministische endliche Automten In mnchen Modellierungen ist die Forderung, dss δ eine Funktion von Q Σ Q ist,

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlgen der Theoretischen Informtik 3. Endliche Automten (II) 28.04.2016 Vioric Sofronie-Stokkermns e-mil: sofronie@uni-koblenz.de 1 Übersicht 1. Motivtion 2. Terminologie 3. Endliche Automten und reguläre

Mehr

Relationen: Äquivalenzrelationen, Ordnungsrelationen

Relationen: Äquivalenzrelationen, Ordnungsrelationen TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden

Mehr

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht Formle Systeme, Automten, Prozesse Übersicht 2 2.1 Reguläre Ausdrücke 2.2 Endliche Automten 2.3 Nichtdeterministische endliche Automten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.7 Berechnung

Mehr

Klausur zur Vorlesung Theoretische Grundelagen Wintersemester 2009/2010 Lösungsvorschlag

Klausur zur Vorlesung Theoretische Grundelagen Wintersemester 2009/2010 Lösungsvorschlag Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Klusur zur Vorlesung Theoretische Grundelgen Wintersemester 2009/2010 Lösungsvorschlg Nme: Mtrikelnummer: Seite 2 Aufge 1 (4 + 1 + 4

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlgen der Informtik Vorlesungsprüfung vom 02.03.2007 Gruppe B Lösung Nme: Mtrikelnummer: Zuerst itte Nme und Mtrikelnummer uf ds Titelltt schreien. Es sind keine Unterlgen und keine Temreit erlut.

Mehr

Einführung in den Compilerbau

Einführung in den Compilerbau Einführung in den Compileru Lexiklische Anlyse II Dr. Armin Wolf 3. Vorlesung SoSe 2010, Universität Potsdm Einführung in den Compileru 1 Lexiklische Anlyse Beispiel Geg.: T mit T = {0,1,2,4,7} (vom Strtzustnd

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

Sei G = (V,E) ein gerichteter Graph. Ein geschlossener Pfad, der jede Kante in G genau einmal benutzt, heißt Euler-Tour.

Sei G = (V,E) ein gerichteter Graph. Ein geschlossener Pfad, der jede Kante in G genau einmal benutzt, heißt Euler-Tour. 1 2 Grundlgen der Theoretischen Informtik Till Mosskowski Fkultät für Informtik Otto-von-Guericke Universität Mgdeurg Komplexitätstheorie Wintersemester 201/15 Zeitkomplexität 3 Die Komplexitätsklsse P

Mehr

L = L(a(a b) b b(a b) a)

L = L(a(a b) b b(a b) a) Lösungen zur Proeklusur mit Kommentren Aufge 1. Ein Wort w {,} liegt genu dnn in L, wenn es entweder mit nfängt und mit endet oder umgekehrt. Also erhält mn L = L(( ) ( ) ). Ein DEA, der die Sprche L kzeptiert,

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informtik Sommersemester 27 Üungsltt 3 Üungsltt Wir unterscheiden zwischen Üungs- und Agelättern.

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.2

Algorithmen und Datenstrukturen 1 Kapitel 4.2 Endliche Automten Algorithmen und Dtenstrukturen 1 Kpitel 4.2 Roert Giegerich Technische Fkultät roert@techfk.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Roert Giegerich Endliche Automten

Mehr

Berechenbarkeitstheorie 4. Vorlesung

Berechenbarkeitstheorie 4. Vorlesung 1 Berechenbrkeitstheorie Dr. Institut für Mthemtische Logik und Grundlgenforschung WWU Münster WS 15/16 Alle Folien unter Cretive Commons Attribution-NonCommercil 3.0 Unported Lizenz. Reguläre Ausdrücke

Mehr

Übung Grundbegriffe der Informatik

Übung Grundbegriffe der Informatik Üung Grundegriffe der Informtik 11. Üung Krlsruher Institut für Technologie Mtthis Jnke, Geäude 50.34, Rum 249 emil: mtthis.jnke ät kit.edu Mtthis Schulz, Geäude 50.34, Rum 247 emil: schulz ät ir.uk.de

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlgen der Theoretischen Informtik / Einführung in die Theoretische Informtik I Bernhrd Beckert Institut für Informtik Sommersemester 2007 B. Beckert Grundlgen d. Theoretischen Informtik:

Mehr

Übungsblatt Nr. 2. Lösungsvorschlag

Übungsblatt Nr. 2. Lösungsvorschlag Institut für Kryptogrphie und Siherheit Prof. Dr. Jörn Müller-Qude Dirk Ahenh Tois Nilges Vorlesung Theoretishe Grundlgen der Informtik Üungsltt Nr. 2 svorshlg Aufge 1: Doktor Met in Gefhr (K) (4 Punkte)

Mehr

Teil III. Reguläre Sprachen und endliche Automaten Teil 3: Die Nerode-Relation

Teil III. Reguläre Sprachen und endliche Automaten Teil 3: Die Nerode-Relation Teil III Reguläre Sprchen und endliche Automten Teil 3: Die Nerode-Reltion Aleitungen und die Nerode-Reltion L Aleitung einer Sprche Sei Σ ein Alphet, L Σ, x Σ. Aleitung von L nch x: D x L := {z Σ xz L}

Mehr

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet Der endliche Automt Modell: Eingend rechtsseitig unegrenzt F F F F F F F F F F F F F F Lesekopf S 1 Definition: Ein endlicher Automt ist ein 5-Tupel A = ( Σ;S;F;s 0 ; ϕ ) Dei ist Σ= {e 1;e 2...e n} Ds

Mehr

Berechenbarkeitstheorie 2. Vorlesung

Berechenbarkeitstheorie 2. Vorlesung Berechenrkeitstheorie Dr. Frnzisk Jhnke Institut für Mthemtische Logik und Grundlgenforschung WWU Münster WS 15/16 Alle Folien unter Cretive Commons Attriution-NonCommercil 3.0 Unported Lizenz. Deterministischer

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundegriffe der Informtik Üung Simon Wcker Krlsruher Institut für Technologie Wintersemester 2015/2016 GBI Grundegriffe der Informtik Krlsruher Institut für Technologie 1 / 9 Regex-Bäume Anzhl A = {,

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten)

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 2.7.24 Klusur üer den Stoff der Vorlesung Grundlgen der Informtik II (9 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (SS 24) Ich estätige,

Mehr