Wann wird der relative Fehler groß?

Größe: px
Ab Seite anzeigen:

Download "Wann wird der relative Fehler groß?"

Transkript

1 Wnn wird der reltive Fehler groß? Wenn >> c, oder c 0 Andere Reihenfolge der Berechnung liefert Fktoren (c)/(c) oder (c)/(c) ; Es wird jeweils der Fehler, der ei der ersten Addition uftritt, verstärkt. 40

2 Folien-Beispiel: Mschinenzhlen (.) *, - (.0) * und c(.0) * 3 ei dreistelliger Mntisse. Addition: ~ y ( (.) * ( (.0) * )) (.00) (.0) * * 3 M M (.0) * 3 M (.0) * 3 Dei tritt kein Fehler uf! Andere Reihenfolge? 4

3 yˆ (.) (.) (.0) * * * mit reltivem Fehler M M 3 (( (.0) * ) (.0) * ) ( (.00) * ) M (.0) * (.0) * (.0) * 0% Merke: Reihenfolge der Opertionen ist wichtig! Bisher wren, und c Mschinenzhlen Jetzt etrchten wir Eingngszhlen, die schon selst mit Rundungsfehler ehftet sind: ( ) mit <, usw. 4

4 . e ( )) ( ( )) ( M. f e M ( )). ( c c Reltiver Fehler in erster Näherung: f y y c c c c c. c Erste Terme: Auswirkung der Eingefehler Vierter Term: Auswirkung des Fehlers ei der ersten Addition Fünfter Term: Fehler ei der zweiten Addition 43

5 Auslöschung Kritischer Fll: Endergenis nhe ei Null! Folien-Beispiel: Differenz zwischen 3/5 und y4/7 ei fünf-stelliger Mntisse. Ekte Rechnung: - y /35 (0.0 ) -5 Rundung von und y liefert für ( ) und ( ) die Näherungen (.00) und (.000) Dmit ergit sich die Rechnung (.00) (.000) (0.000) (.0000) 5 44

6 Dei sind unterstrichene Stellen noch ekt, während nicht unterstrichene Stellen durch Rundung verfälscht sind. Die kursiven Nullen im Ergenis sind wertlos! Ds erechnete Ergenis lutet lso /3, Reltiver Fehler: (/35 - /3) / (/35) entspricht c. 9.4% Aweichung. Vgl. Mschinengenuigkeit für t 5 von 0.03 c. 3.% Die unterstrichenen, guten Stellen gehen durch die Differenz verloren und es leien die unsicheren Stellen ürig. 45

7 Bei t3 zeigt sich dieser Effekt noch stärker: Rechnung: (.0) (.0) 0 Fehler: 00%, ei Mschinengenuigkeit 0.5/8 oder.5% Reltiver Fehler ei Differenz y - nch.3: y ( ( ) ( )) ( ) Eingefehler werden etrem verstärkt, wenn - nhe ei Null ist, lso flls sich und fst uslöschen! 46

8 Aer: Sind und ekt ohne Fehler, dnn ist 0 und 0. Dher ergit sich dnn nur ein reltiver Fehler in der Größenordnung der Mschinengenuigkeit! Also Differenz mit ekten Zhlen ist OK! Nur ei Differenz von fehlerehfteten Zhlen droht Gefhr. 47

9 Berechnung der Eponentil-Funktion ep( ) k / k! n einer Stelle X mittels Progrmm: Y:.0 ; T.0; K; WHILE ( Y Y T*X / K ) T T * X / K ; Y Y T ; K K ; END X Y EXP( X ) * * * * *0 9 48

10 Für X -5 ergit sich: *0 7 Auslöschung durch wiederholte Differenz im Schritt T T Y! Der Term T wächst zunächst, um m Ende einen sehr kleinen Wert nzunehmen! Große Zwischenwerte kleine Endwerte Auslöschung Prolemtisch! 49

11 Kondition und Stilität.4 Definition: Ein Berechnungsverfhren ist eine Folge von mthemtischen Berechnungen zur Lösung eines Prolems mit Eingngsdten n R und dem Ergenis y f () R Zur Berechnung von y wird es verschiedene Algorithmen geen, die sich z.b. in der Reihenfolge der Opertionen unterscheiden (vgl. Addition c). Zum Vergleich verschiedener Algorithmen etrchtet mn die entstehenden Rundungsfehler. Dzu knn mn u.. Tylor-Entwicklung oder Epsilontik verwenden. 50

12 Zur Bestimmung der Kondition etrchten wir - Eingedten i, versehen mit soluten Rundungsfehlern δ i, i,...,n. (Zur Vereinfchung: n, lso nur ein ) - f() ls lck o; wir sind nur n der Ein- und Ausge interessiert! Rundungsfehler innerhl der Ausführung von f() sollen zunächst nicht uftreten! Für den soluten Fehler im Resultt gilt dnn unter Vernchlässigung der während der Berechnung sonst uftretenden Rundungsfehler: y δ y f ( δ ) f ( ) f ( ) δ Ο( δ ). In erster Näherung gilt dher 5

13 δ f ( ) δ y Dher ist der reltive Fehler des Resultts y y f rel δ y ( y) y f ( ) y δ f ( ) y f rel ( ) f f ( ) ( ).5. Definition: Unter der Konditionszhl des Prolems y f() ezüglich Eingewert versteht mn den Betrg des Verstärkungsfktors f ( ) cond : f ( ) 5

14 Die Konditionszhl misst die Sensiilität des Resultts y in Ahängigkeit von den Fehlern in der Einge. cond groß, z.b. wenn: - große Einge gegenüer kleinem Endwert - nhezu senkrechte Tngente ( f () groß) Ein Prolem heißt gut konditioniert wenn kleine reltive Fehler in ei ekter Arithmetik (lso ohne Rundungsfehler während der weiteren Rechnung) zu kleinen reltiven Fehlern im Resultt y führen: y ungef. in der Größenordnung von 53

15 Andernflls liegt schlechte Kondition zgl. vor. Die Konditionszhl misst den sog. unvermeidren Fehler, der durch ds Prolem selst n einer Stelle gegeen ist. Beispiel: cond(ep()) cond(ln()) / ln() Bild einer Funktion, Punkte schlechter Kondition:?? Frge: Schlecht konditionierte Proleme im Alltg? Beispiele PPT. 54

16 Beispiel: Konditionszhlen zu yc 55,,, c c cond c cond c cond c Unvermeidrer Fehler!. c c c c c y f y c Konditionszhl zgl. der zweiten Addition f(,c)()c Ds sind gerde die Verstärkungsfktoren der rel. Fehler der Eingedten in der Formel für den reltiven Fehler:

17 Betrchten wir die Gesmtrechnung, so lssen sich Konditionszhlen zu jedem einzelnen Rechenschritt ngeen. Dmit ist es möglich, für den gesmten Algorithmus ds Fehlerverhlten zu estimmen. Dies ist meist zu ufwändig oder gr nicht möglich! Dies ermöglicht eine mehr mthemtische Formulierung der Epsilontik. z.b. ist der vierte lue Term gleich der Konditionszhl der Teilfunktion, die die Addition von () mit c eschreit. 56

18 .6. Definition: Sei ds Prolem yf() gut konditioniert. Eistiert dnn zusätzlich uch ein gutrtiges Berechnungsverfhren, ei dem die reltiven Fehler nicht zusätzlich strk vergrößert werden, so spricht mn von einem numerisch stilen Algorithmus. Ein Berechnungsverfhren, ds trotz kleiner Konditionszhl zu vergrößerten reltiven Fehlern im Resultt führen knn, heißt numerisch instil. 57

19 Erste Frge: Konditionszhl OK? Wenn j, formuliere numerisch stiles Berechnungsverfhren: Prüfe ds Berechnungsverfhren mit Epsilontik: Ersetze dzu jede Eingngsvrile durch ( ) und jede uszuführende Opertion ( op M y) ( op y)*( op ) mit < und op <. Vernchlässige dei Terme höherer Ordnung in (lso, 3, 4,...). Dmit erhält mn ds gestörte Endergenis. Berechne und diskutiere dnn den reltiven Fehler in erster Ordnung durch Aschätzen der Beträge der Einzelterme f rel Term eps Term eps... 58

20 Ist ds Prolem schlecht konditioniert, dnn ist nur Schdensegrenzung möglich: Verwende ev. höhere Genuigkeit: Eingefehler 0^(-) mit Konditionszhl 0^(8) ergit Ausgefehler 0^(-4) Ist dieser Ausgefehler noch tolerierr? Wenn nein, dnn knn zu einer Veresserung nur der Eingefehler verkleinert werden. 59

21 Beispiel: Berechnung von Kondition ist OK, d (L Hospitl) 60 0, ) ( f 0 ) ( für cond Allerdings ist die Auswertung in dieser Form numerisch instil d Auslöschung im letzten Schritt!

22 Entsprechend lässt sich die Berechnung der Eponentilfunktion für große negtive retten, indem wir ep(-000) ersetzen durch /ep(000). 6 ) ( ) )( ( Bessere Formulierung:

23 Beispiel: f() - cos() in der Nähe von 0 f() ist wieder gut konditioniert ei 0, d cond f sin( ), f cos( ) ( / ) 0 Aer ei 0 ist cos() nhe ei wieder Auslöschung! In MATLAB: - cos(0^(-8)) ergit 0; in cos(0^(-3)) verliert mn ei der Differenz 6 signifiknte Stellen 6

24 Anderer Berechnungsweg: - cos() sin (/) oder Reihenentwicklung des Cosinus cos( ) ( 4 4! 6 6! 4 6 ) 4! 6! 63

25 Beispiel: y ei Anwendung der Epsilontik; seien, Mschinenzhlen: Berechne erst eide Produkte, dnn die Differenz y Fehler: Eingefehler Produktfehler Differenzfehler Reltiver Fehler: Nun seien uch und fehlerhft: ( ), ( )

26 Andere Art der Berechnung: y ( )( ) 65 ( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( * f ( ) ) ( ) ( ) ( * * d dy cond d dy cond Konditionszhlen:, Prolem ist schlecht konditioniert für Reltiver Fehler in erster Näherung:

27 Vergleich mit erstem Algorithmus: Ds neue Verfhren ist esser, d i.w. nur der unvermeidre Fehler (durch Eingefehler) uftritt! Grund: Auslöschung in - geringer ls in, d Fehler in und kleiner ls in und. 66

28 Zusmmenfssung Endlichkeit des Computers führt zu endlicher Menge von Mschinenzhlen. In jedem Schritt treten Rundungsfehler uf. Gefährlich sind Opertionen, ei denen mn signifiknte Stellen verliert, wie z.b.: - Auslöschung (Differenz fst gleicher Zhlen) - Summe zwischen großer Zhl und sehr kleiner Zhl, ei der die signifiknten Stellen in der kleinen Zhl stecken (vgl. wiederholtes Wurzelziehen) - Allgemein Opertionsfolgen mit großen Zwischenwerten und kleinen Endwerten (vgl. ep, Teilfunktion schlecht konditioniert). 67

29 Vorsicht! Gesundes Misstruen! Algorithmus ist OK, wenn die Größenordnung der reltiven Fehler im Resultt ungefähr gleich der Größenordnung der Eingefehler leit. Umformen eines numerisch instilen Verfhrens durch - ndere Reihenfolge der Berechnung - Anfng der Tylorentwicklung - Trigonometrische Formeln - lgerische Umformung (inomische F.) Ev. doule precision rechnen, dmit trotz schlechter Kondition oder Rundungsfehler noch ruchres Resultt ürigleit. 68

30 Systemtische Fehler und große Zhl der Opertionen können zu schlechten Ergenissen führen! (Siehe Beispiel Börseninde) Ev. Modellfehler gegen Rundungsfehler wägen: Feineres Modell Mehr Rechnung Mehr Rundungsfehler! Mn muss die optimle Blnce finden! Beispiel Üungsufge Differenzenquotient. Gesmtfehler: Gro diskretisiert Optimum fein diskretisiert Modellfehler Rundungsfehler 69

31 Beispiel: Veresserte Fehlernlyse für den numerisch instilen Fll großer Zwischenwerte Zerlege Prolem f() in zwei Schritte y f() f (f ()) f (z) woei z f () großer Zwischenwert und y f (z) kleiner Endwert. Dher ist Teilprolem f (z) für diese Werte schlecht konditioniert, d z / f (z) groß ist! Dher ist Gesmtverfhren nicht numerisch stil für. 70

32 Verfhren ist numerisch stil, wenn für jede Zerlegung in Teilproleme f (f ()) f (z), z f (), f (z) stets gut konditioniert ist! Konditionszhl Gesmtprolem Numerisch stil Berechnungsform 7

33 Genuere Anlyse der numerischen Stilität durch Bestimmung der Konditionszhlen und Aleitungen ller Teilschritte: Zerlege Algorithmus in Teilproleme f() f (f ()) und erechne lle uftretenden Konditionszhlen cond(f )! Meist zu ufwändig oder unmöglich. Epsilontik genügt für uns: (Ersetze (), op y ( op y)() Streiche Terme höherer Ordnung in, 3, 4, Bestimme dmit den rel. Fehler des Resultts (f y)/f in erster Näherung und schätze Beträge nch oen Diskutiere die einzelnen Terme. 7

34 Ziel: Erkenne us Formel (Progrmm), zw. erechneten (Zwischen)werten, - o ds Prolem gut konditioniert ist, und - o ds verwendete Verfhren numerisch stil ist, - zw. wie ds Verfhren ev. veressert werden knn. Klusurufge: f()ep()-, g()- - 3, h()( )(-cos ()) 73

35 Schlecht konditionierte Proleme: - Wettervorhersge - Aktienentwicklung - Sprunghft, chotisch, prmeterhängig Vorsicht mit Vorhersgen: Die einzigen Vorhersgen, die wirklich zutreffen sind die, die mn nchträglich mcht. Geldverdienen mit Schneellsystem. Nchträgliches Bewerten von Vorhersgen. Psychologische Effekte. 74

Folien-Beispiel: Differenz zwischen x=3/5 und y=4/7 bei fünf-stelliger Mantisse. Exakte Rechnung: x - y = 1/35 = ( ) 2 2-5

Folien-Beispiel: Differenz zwischen x=3/5 und y=4/7 bei fünf-stelliger Mantisse. Exakte Rechnung: x - y = 1/35 = ( ) 2 2-5 - 44 - Auslöschung Kritischer Fll: Endergenis nhe ei Null! Folien-Beispiel: Differenz zwischen 3/5 und 4/7 ei fünf-stelliger Mntisse. Ekte Rechnung: - /35 (0.0-5 Rundung von und liefert für (.0000... und

Mehr

Computer Vision Group Prof. Daniel Cremers. Fließkomma-Arithmetik und Fehlerfortpflanzung

Computer Vision Group Prof. Daniel Cremers. Fließkomma-Arithmetik und Fehlerfortpflanzung Computer Vision Group Prof. Dniel Cremers Fließkomm-Arithmetik und Fehlerfortpflnzung Fließkomm-Arithmetik Definition einer Mschinenopertion: 1. Berechne für Mschinenzhlen ds Ergenis der Opertion mit höherer

Mehr

Folien-Beispiel: Maschinenzahlen a=(1.11) 2. * 2 1, b= - (1.10) 2. *2 1 und c=(1.10) 2. * 2 3 bei dreistelliger Mantisse.

Folien-Beispiel: Maschinenzahlen a=(1.11) 2. * 2 1, b= - (1.10) 2. *2 1 und c=(1.10) 2. * 2 3 bei dreistelliger Mantisse. Folien-Beispiel: Mshinenzhlen =(. *, = - (.0 * und =(.0 * 3 ei dreistelliger Mntisse. Addition: ~ y (.0 (. (.00 * * * 3 M M ( (.0 (.0 * 3 * M (.0 * 3 Dei tritt kein Fehler uf! Andere Reihenfolge? 4 yˆ

Mehr

Beispiel: (MATLAB) AUFGABE: Finde bessere Art der Berechnung! Einführendes Folien-Beispiel zur Epsilontik:

Beispiel: (MATLAB) AUFGABE: Finde bessere Art der Berechnung! Einführendes Folien-Beispiel zur Epsilontik: - 37 - Beispiel: Mit Tshenrehner strte mit Zhl und wiederhole k-ml die Wurzelopertion. Dnh strte mit diesem Endresultt und wiederhole k-ml ds Qudrieren. Endresultt sollte stets wieder sein. Für k genügend

Mehr

Fehlerfortpflanzung und Rundungsfehleranalyse

Fehlerfortpflanzung und Rundungsfehleranalyse Fehlerfortpflnzung und Rundungsfehlernlyse Prolem: Rundungsfehler in der Einge und ei jeder durhgeführten Gleitpunktopertion können sih so uswirken, dss m Ende einer Berehnung ein vollkommen flshes Resultt

Mehr

Gleitpunktarithmetik

Gleitpunktarithmetik - 3 - Beispiel t, ¼ (0.0 ; (.0 (.0 Mntissenlänge (Bits Genuigkeit Gleitpunktrithmetik.. Def. (Relisierung einer Mshinenopertion: - Berehne für Mshinenzhlen ds Ergenis der Opertion mit höherer Genuigkeit

Mehr

MATLAB und Heisenberg Effekt

MATLAB und Heisenberg Effekt MATLAB und Heisenerg Effekt funtion myrelmin ; temp ; while eps * temp / > 0 temp eps * temp / % ; if temp > 0 temp; end end heisen.m ; while *eps>0 lst ; /.0; end lst Different results depending on disply

Mehr

Gleitpunktarithmetik Def. (Realisierung einer Maschinenoperation):

Gleitpunktarithmetik Def. (Realisierung einer Maschinenoperation): Gleitpunktrithmetik.. De. Relisierung einer Mshinenopertion: - Berehne ür Mshinenzhlen ds Ergenis der Opertion mit höherer Genuigkeit qusi ekt - Runde dieses Resultt wieder u Mshinenzhl. Ddurh ist der

Mehr

Andere Möglichkeit, die Maschinengenaugkeit zu definieren: Größte positive Zahl y=2 -k, so dass. Beispiel t=2, = ¼ = (0.01) 2 ; (1.0 1) 2 (1.

Andere Möglichkeit, die Maschinengenaugkeit zu definieren: Größte positive Zahl y=2 -k, so dass. Beispiel t=2, = ¼ = (0.01) 2 ; (1.0 1) 2 (1. De.: Die oere Shrnke ür den reltiven Fehler, der ei der Rundung mit t-stelliger Mntisse utreten knn, heißt Mshinengenuigkeit, und ergit sih ls t Andere Möglihkeit, die Mshinengenugkeit zu deinieren: Größte

Mehr

3.4 Kondition eines Problems

3.4 Kondition eines Problems 38 KAPITEL 3. FEHLERANALYSE Beispiel 3.18 Betrachte M(10, 5, 1). Dann sind x 4.2832, y 4.2821, z 5.7632 darstellare Zahlen und (x y)z 0.00633952. Das korrekte Ergenis in M ist daher 0.0063395. Der Ausdruck

Mehr

2.8. Absoluter Rundungsfehler:

2.8. Absoluter Rundungsfehler: .8. Asoluter Rundungsehler: rd rd rd t e et rd Prolem: Ein soluter Fehler von der Größe 0. ist - ei der Zhl. reht groß, er - ei der Zhl 3456.7 sehr klein. Beispiel: Million + Jhr lter Dinosurierknohen

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 Eenso, denn 5?

Mehr

Beispiel: Berechnung von. Allerdings ist die Auswertung in dieser Form numerisch instabil

Beispiel: Berechnung von. Allerdings ist die Auswertung in dieser Form numerisch instabil Beispiel: Berechug vo Prolemtisch? 6, ) ( f Allerdigs ist die Auswertug i dieser Form umerisch istil d Auslöschug im letzte Schritt! ) ( für cod Koditio ist OK, d (L Hospitl) Etspreched lässt sich die

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

3.1 Multiplikation Die Multiplikation von algebraischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt:

3.1 Multiplikation Die Multiplikation von algebraischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt: .1 Multipliktion Die Multipliktion von lgerischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt: c Multipliktor Multipliknd Produkt Kommuttivgesetz (Vertuschungsgesetz)

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

3. Das Rechnen mit Brüchen (Rechnen in )

3. Das Rechnen mit Brüchen (Rechnen in ) . Ds Rechnen mit Brüchen (Rechnen in ) Brüche sind Teile von gnzen Zhlen. Zwischen zwei unterschiedlichen gnzen Zhlen ht es immer unendlich viele Brüche. Brüche entstehen us einer Division; eine gnze Zhl

Mehr

Numerische Programmierung Konkrete Mathematik

Numerische Programmierung Konkrete Mathematik Numerische Progrmmierung Konkrete Mthemtik Litertur o Numerik für Informtiker (Huckle/Schneider) = Numerische Methoden o Folien voriger Semester o Herzerger: Wissenschftliches Rechnen o Opfer: Numerik

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN Mthemtik: Mg. Schmid Wolfgng+LehrerInnentem ) Rottion um die -Achse ARBEITSBLATT 5L- BERECHNEN VON RAUMINHALTEN Es geht hier um folgende Aufgenstellung. Eine gegeene Funktion f() soll in einem estimmten

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Numerische Programmierung Konkrete Mathematik

Numerische Programmierung Konkrete Mathematik Numerische Progrmmierung Konkrete Mthemtik Litertur o Numerik für Informtiker (Huckle/Schneider) = Numerische Methoden o Folien voriger Semester o Herzerger: Wissenschftliches Rechnen o Opfer: Numerik

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

18. Algorithmus der Woche Der Euklidische Algorithmus

18. Algorithmus der Woche Der Euklidische Algorithmus 18. Algorithmus der Woche Der Euklidische Algorithmus Autor Friedrich Eisenrnd, Universität Dortmund Heute ehndeln wir den ältesten ereits us Aufzeichnungen us der Antike eknnten Algorithmus. Er wurde

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

DEMO. Algebraische Kurven 2. Ordnung ohne xy-glied INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL

DEMO. Algebraische Kurven 2. Ordnung ohne xy-glied INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   FRIEDRICH W. BUCKEL Algerische Kurven. Ordnung ohne x-glied Üersicht üer lle möglichen Formen und Gleichungen Text Nr. 5301 DEO tnd 1. Juli 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR CHULATHEATIK 5301 Algerische Kurven.

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mthemtisches Institut Prof. Dr. F. Vllentin Dr. A. Gundert Einführung in die Mthemtik des Opertions Reserch Aufge (5+5= Punkte) Sommersemester 4 Lösungen zur Klusur (5. Septemer 4).

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

13-1 Funktionen

13-1 Funktionen 3- Funktionen 3 Integrle: Flächeninhlte Seien < reelle Zhlen, sei I = [, ] = { R } ds Intervll der Zhlen zwischen und Wir etrchten eine stetige Funktion f : I R und ds zugehörige Integrl f() d (dies ist

Mehr

Minimierung von DFAs. Minimierung 21 / 98

Minimierung von DFAs. Minimierung 21 / 98 Minimierung von DFAs Minimierung 21 / 98 Ein Beispiel: Die reguläre Sprche L({, } ) Wie stellt mn fest, o ein Wort ds Suffix esitzt? Ein erster Anstz: Speichere im ktuellen Zustnd die eiden zuletzt gelesenen

Mehr

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt.

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt. 64 Kpitel. Integrlrechnung Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel ls uch die prtielle Integrtion zur Anwendung kommt..4.6 Beispiel Um eine Stmmfunktion für rctn zu finden, beginnen

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Die Keplersche Fassregel

Die Keplersche Fassregel Die Keplersche Fssregel K. Gerer Bei vielen Aufgen, z.b. ei der Lösung von Differentilgleichungen, tucht die Schwierigkeit uf, dss Integrtionen nicht durchgeführt werden können. So können z.b. die folgenden

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

2.6 Reduktion endlicher Automaten

2.6 Reduktion endlicher Automaten Endliche Automten Jörg Roth 153 2.6 Reduktion endlicher Automten Motivtion: Wir sind n Automten interessiert, die mit möglichst wenigen Zuständen uskommen. Automten, die eine Sprche mit einem Minimum n

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Übungsaufgaben zu Mathematik 2

Übungsaufgaben zu Mathematik 2 Ü F-Studiengng Angewndte lektronik SS 8 Üungsufgen zu Mthemtik Vektor- und Mtrizenrechnung 9 Die ckpunkte des Dreiecks ABC seien durch ihre Ortsvektoren OA ( ) OB (7) und OC (8) gegeen Berechnen Sie die

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Numerische Quadratur nach Archimedes

Numerische Quadratur nach Archimedes Huptseminr Oktläume und hierrchische Bsen Numerische Qudrtur nch Archimedes Forschungs- und Lehreinheit Inormtik V Ingenieurnwendungen in der Inormtik numerische Progrmmierung uruer Christin den 05.06.003

Mehr

Zusatzaufgabe 1 für Informatiker

Zusatzaufgabe 1 für Informatiker Rheinisch-Westfälische Technische Hochschule Institut für Geometrie und Prktische Mthemtik Mthemtisches Prktikum (MPr) Sommersemester 00 Prof. Dr. Wolfgng Dhmen Dipl.-Mth. Jens Berger, Dipl.-Mth. Dipl.-Phs.

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017 HM I Tutorium 3 Lucs Kunz. Ferur 07 Inhltsverzeichnis Theorie. Differentilgleichungen erster Ordnung..................... Linere DGL zweiter Ordnung..........................3 Uneigentliche Integrle.............................

Mehr

= f (x). Anmerkung: Stammfunktionen finden ist also die Umkehrung der Ableitung, es wird daher auch manchmal als Aufleiten bezeichnet.

= f (x). Anmerkung: Stammfunktionen finden ist also die Umkehrung der Ableitung, es wird daher auch manchmal als Aufleiten bezeichnet. .Stmmfunktionen Integrlrechnung Im folgenden sei I R ein Intervll ds mit mindestens 2 verschiedene Punkte enthält.. Stmmfunktionen Definition: Eine differenzierre Funktion F : I R heißt Stmmfunktion einer

Mehr

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 2. Besprechung in KW44

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 2. Besprechung in KW44 Technische Universität München Winter 08/9 Prof. J. Esprz / Dr. M. Luttenerger, C. Welzel 08//0 HA- TA- Diskrete Strukturen Tutorufgenltt Besprechung in KW Bechten Sie: Soweit nicht explizit ngegeen, sind

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Musterlösungen zum 6. Übungsblatt

Musterlösungen zum 6. Übungsblatt Musterlösungen zum 6 Üungsltt Anlysis ei Dr Rolf Busm WS 6/7 Aufge 6 (Tois Hessenuer) ) 3 ep()d, setze u = ep(), v = 3 dnn gilt: 3 ep()d = ep() 3 = e (3 ep() ) 3 ep() d = e 3e + 6 ep() = 6e 3e + 6e 6e

Mehr

Vorkurs Mathematik. Vorlesung 3. Die rationalen Zahlen

Vorkurs Mathematik. Vorlesung 3. Die rationalen Zahlen Prof. Dr. H. Brenner Osnrück WS 2014/2015 Vorkurs Mthemtik Vorlesung 3 Die rtionlen Zhlen Definition 3.1. Unter einer rtionlen Zhl versteht mn einen Ausdruck der Form, woei, Z und 0 sind, und woei zwei

Mehr

Lösungsvorschlag zur 9. Hausübung in Analysis II im SS 12

Lösungsvorschlag zur 9. Hausübung in Analysis II im SS 12 FAKULTÄT FÜR MATHEMATIK, CAMPUS ESSEN Prof. Dr. Ptrizio Neff.6. Lösungsvorschlg zur 9. Husüung in Anlysis II im SS Husufge (6+8+8+8+6+8 Punkte): Berechnen Sie folgende Integrle, sofern sie existieren.

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6.1 Voremerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Oertionen. Sie heen sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus Klusur Formle Sprchen und Automten Grundlgen des Compilerus 25. Novemer 2014 Nme: Unterschrift: Mtrikelnummer: Kurs: Note: Aufge erreichre erreichte Nr. Punkte Punkte 1 10 2 10 3 12 4 11 5 9 6 6 7 11 8

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten)

Klausur über den Stoff der Vorlesung Grundlagen der Informatik II (90 Minuten) Institut für Angewndte Informtik und Formle Beschreiungsverfhren 2.7.24 Klusur üer den Stoff der Vorlesung Grundlgen der Informtik II (9 Minuten) Nme: Vornme: Mtr.-Nr.: Semester: (SS 24) Ich estätige,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Lernkarten. Analysis. 11 Seiten

Lernkarten. Analysis. 11 Seiten Lernkrten Anlysis Seiten Zum Ausdrucken muss mn jeweils eine Vorderseite drucken, dnn ds Bltt wenden, nochmls einlegen und die Rückseite drucken. Am esten druckt mn die Krten uf festem Ppier oder uf Visitenkrten-

Mehr

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3. 5 5. Einführung Die Gleichung x 9 ht die Lösung. x 9 Z 9 x Die Gleichung x ht die Lösung. x Z x Definition Die Gleichung x, mit, Z und 0, ht die Lösung: x x Ist kein Vielfches von, so entsteht eine neue

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Ausgleichsfunktionen / Interpolation / Approximation

Ausgleichsfunktionen / Interpolation / Approximation HTL Slfelden Ausgleichsfuntionen Seite von 5 Wilfried Rohm, HTL Slfelden Zur Beispielsüersicht Ausgleichsfuntionen / nterpoltion / Approximtion Führen Sie zunächst eine Begriffslärung der oigen Begriffe

Mehr

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist 6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:

Mehr

Orientierungstest Mathematische Grundlagen

Orientierungstest Mathematische Grundlagen Orientierungstest Mthemtische Grundlgen Lösungen:. Welche Zhlenmengen git es? Beispiele? Menge der ntürlichen Zhlen N {,,, } Menge der gnzen Zhlen Z {,, 0,,, } Menge der rtionlen Zhlen Q Menge ller ls

Mehr

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom: Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 Ynnick.Schroer@rub.de 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q

Mehr

G2.3 Produkte von Vektoren

G2.3 Produkte von Vektoren G Grundlgen der Vektorrechnung G. Produkte von Vektoren Ds Sklrprodukt Beispiel: Ein Schienenfhrzeug soll von einem Triler ein Stück s gezogen werden, der neen den Schienen fährt (vgl. Skizze). Wir wollen

Mehr

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 2. November 2017 Rndll Munroe, https://xkcd.com/851_mke_it_better/, CC-BY-NC 2.5 Mrkus Krötzsch, 2. November 2017 Formle Systeme

Mehr

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3 Mthemtik fu r Ingenieure (Mschinenu und Sicherheitstechnik). Semester Apl. Prof. Dr. G. Herort Dr. T. Pwlschyk SoSe6 Areitsheft Bltt Hinweis: Besuchen Sie die Vorlesung und vervollst ndigen Sie Areitsheft.

Mehr

Mathematik Name: Vorbereitung KA2 K1 Punkte:

Mathematik Name: Vorbereitung KA2 K1 Punkte: Pflichtteil (etw 40 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet werden dürfen.) Aufgbe : [4P] Leiten Sie

Mehr

5) Laplace-Wahrscheinlichkeit eines Zufallsexperiments

5) Laplace-Wahrscheinlichkeit eines Zufallsexperiments von Jule Menzel, 12Q4 5) Lplce-Whrscheinlichkeit eines ufllsexperiments Ergenis ω 1 ω 2 ω 3 ω 4 ω 1 Ω ω 2 ω 3 ω 4 Ergenismenge ist ein Ereignis ist Teilmenge von Ω kurz: c Ω Ws ist ein Ereignis? Beispiel:

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s 6 Integrlrechnung ================================================================== 6.1 Lokle Änderungsrte und Gesmtänderung ------------------------------------------------------------------------------------------------------------------

Mehr

9.5. Uneigentliche Integrale

9.5. Uneigentliche Integrale 9.5. Uneigentliche Integrle Bestimmte und unestimmte Integrle hängen zwr eng zusmmen, er die Existenz des einen grntiert nicht immer die des nderen: Eine integrierre Funktion muß keine Stmmfunktion esitzen,

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Fehlerfortpflanzung. Fehler bei Fließkomma-Arithmetik. Addition x ` y ` z. Fehlerfortpflanzung. Analyse des Relativen Fehlers

Fehlerfortpflanzung. Fehler bei Fließkomma-Arithmetik. Addition x ` y ` z. Fehlerfortpflanzung. Analyse des Relativen Fehlers Numerisches Programmieren (IN0019) Frank R. Schmidt. Kondition und Stabilität Winter Semester 016/017 Fließkommazahlen (Wdh.) Eine Fließkommazahl benutzt die folgende Zahlendarstellung Fließkomma-Arithmetik

Mehr

Gliederung. Kapitel 1: Endliche Automaten

Gliederung. Kapitel 1: Endliche Automaten Gliederung. Einleitung und Grundegriffe. Endliche utomten 2. Formle Sprchen 3. Berechenrkeitstheorie 4. Komplexitätstheorie E: diversion.. Grundlgen.2..3. Grenzen endlicher utomten /2, S. 28 Prof. Steffen

Mehr

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3 Bruchrechnung W. Kippels 6. Dezemer 08 Inhltsverzeichnis Vorwort Einleitung Die Bruchrechenregeln. Addition gleichnmiger Brüche........................ Addition ungleichnmiger Brüche.......................

Mehr

5. Vektor- und Matrizenrechnung

5. Vektor- und Matrizenrechnung Ü F-Studiengng Angewndte lektronik, SS 6 Üungsufgen zur Lineren Alger und Anlysis II Vektor- und Mtrizenrechnung Für die Vektoren = (,,,) und = (,,,) erechne mn die Linerkomintion ( ) + ( + ), die Längen,

Mehr