M6a Kreisel mit drei Achsen
|
|
|
- Maike Brahms
- vor 8 Jahren
- Abrufe
Transkript
1 Fakultät für hysik und Geowissenschaften hysikalisches Grundraktikum M6a Kreisel mit drei Achsen Aufgaben 1. Bestimmen Sie das Trägheitsmoment der Kreiselscheibe aus der Winkelbeschleunigung bei bekanntem Drehmoment sowie aus einer Drehzahlmessung. 2. Messen Sie die räzessionsfrequenz in Abhängigkeit von der Rotationsfrequenz der Kreiselscheibe für zwei unterschiedliche Drehmomente. iteratur Gerthsen hysik, D. Meschede, 24. Auflage, 2.4.5, 2.4.6, 2.5 W. Demtröder, Exerimentalhysik 1, 7. Auflage, 5.7 ubehör Kreisel der Firma B Scientific, Drehzahlmesser, Stouhr Schwerunkte zur Vorbereitung - Drehimuls, Drehmoment, Rotationsgeschwindigkeit - Trägheitsmoment, Trägheitstensor - Rotation um feste und freie Achsen - Kreisel, räzession, Nutation - Eulersche Gleichungen 1
2 Hinweise zur Versuchsdurchführung Warnhinweis. Das Drehzahlmessgerät arbeitet mit einem roten aser ( nm) der aserklasse 2 (maximale Ausgangsleistung < 1 mw). Die aseraustrittsöffnung ist mit einem dreieckigen aserwarnzeichen gekennzeichnet. Sehen Sie nicht in den aserstrahl, richten Sie diesen nicht auf ersonen und siegelnde Flächen. aserstrahlung der Klasse 2 kann zu Augenverletzungen führen. ur Anassung an den otimalen Messbereich des Drehzahlmessgeräts (RM = rotations er minute) ist die Kreiselscheibe mit 8 reflektierenden Streifen markiert - beachten Sie dies bei der Auswertung! Um zuverlässige Messwerte zu erhalten, sollte der Abstand des Geräts zur Scheibe < 5 cm sein. Warnhinweis. Achten Sie beim Aufziehen des Kreisels auf die umstehenden ersonen; beachten Sie, dass der Aufziehfaden sich manchmal wie eine eitsche verhält. Für alle Aufgaben sind die Messunsicherheiten zu berechnen. Aufgabe 1 Die Kreiselachse wird horizontal ausgerichtet und arretiert. Der Faden wird auf die Fadentrommel aufgewickelt, in die Fadenschlaufe wird ein Gewicht eingehängt. Messen Sie die eit, die das Gewicht benötigt, um aus der Ruheosition den Boden zu erreichen; messen Sie sofort danach die Drehzahl der Kreiselscheibe. Führen Sie das Exeriment insgesamt zehnmal durch, berechnen Sie Mittelwert und Standardabweichung. Überlegen Sie sich während der raktikumsvorbereitung, wie Sie aus den Messdaten das Trägheitsmoment berechnen. eiten Sie die entsrechenden Gleichungen her. Vergleichen Sie den gemessenen Wert des Trägheitsmoments mit dem aus Masse und Abmessungen berechneten. Es handelt sich um die Komonente I des Trägheitsmomenttensors. Aufgabe 2 Die Arretierung wird entfernt und die Kreiselachse mit Hilfe des Gegengewichts ins Gleichgewicht gebracht. rüfen Sie, dass die Kreiselachse bei beliebiger Neigung stabil ist. Der freie Kreisel wird bei horizontaler Kreiselachse aufgezogen. Dann wird am der Kreiselscheibe gegenüberliegenden Ende der horizontalen Stange ein zusätzliches Gewicht eingehängt und der Kreisel freigegeben. Stoen Sie die eit für einen halben räzessionsumlauf; messen Sie zu Beginn und zum Ende des halben räzessionsumlaufs die Drehzahl der Kreiselscheibe. Verwenden Sie den Mittelwert der Drehzahlen als Rotationsfrequenz. Führen Sie die Messungen für zehn unterschiedliche Rotationsfrequenzen im Bereich von 200 bis 600 U/min und für Gewichte von 47 g und 94 g durch. Stellen Sie die räzessionsfrequenz in geeigneter Weise als Funktion der Rotationsfrequenz dar und vergleichen Sie mit der Theorie. Theoretische Grundlagen Einen starren Körer, der frei rotiert oder an einem einzigen unkt unterstützt wird, nennt man Kreisel. Oftmals sind bei Kreiseln die Richtungen des Drehimulses und der Drehgeschwindigkeit nicht arallel; gerade dies macht den Reiz ihrer Bewegungen aus. Die Dreheigenschaften des 2
3 starren Körers werden durch den Trägheitstensor I beschrieben. Drehimuls und Drehgeschwindigkeit sind dann durch I (1) verknüft. Im Hautachsensystem des starren Körers, welches i.d.r. durch einfache Symmetriebetrachtungen erkennbar ist, hat der Trägheitstensor Diagonalform I I I I. (2) Hier werden lediglich symmetrische Kreisel mit I1 I2 betrachtet. Die Bewegungen des Kreisels lassen sich im aborsystem, welches ein Inertialsystem sein soll, durch die fundamentale Gleichung für Rotationsbewegungen beschreiben: d M, () wobei M das wirkende Drehmoment bezeichnet. Es ist günstig, ein zweites Koordinatensystem zu betrachten, nämlich das Hautachsensystem, welches mit dem starren Körer fest verbunden ist und sich gegenüber dem aborsystem mit der momentanen Rotationsgeschwindigkeit dreht. In diesem System sei der Drehimuls durch den Vektor gegeben. Wie aus der Betrachtung rotierender Bezugssysteme bekannt, sind die Drehimulsvektoren in den beiden Koordinatensystemen über die Gleichung d d (4) verknüft. Ausgedrückt in den Komonenten des Hautachsensystems liefert die letzte Gleichung das folgende Gleichungssystem welches als Eulersche Gleichungen bekannt ist. d1 M1 I1 ( I I2) 2 d2 M 2 I2 ( I1 I) 1, (5) d M I ( I2 I1) Beschleunigung einer Scheibe durch eine fallende Masse Wir betrachten eine Scheibe mit Masse m und Radius R, die sich um eine feste Achse dreht, die durch den Schwerunkt geht und senkrecht zur großen Scheibenfläche steht. Das Trägheitsmoment ist dann 1 2 I mr. (6) 2
4 An der Scheibe sei eine masselose Fadentrommel mit Radius r befestigt. Um diese werde ein masseloser Faden gewickelt und in diesen werde ein Gewicht der Masse m eingehängt. Das Gewicht fällt unter Einfluss der Schwerkraft, aus der Ruhe startend, und treibt dabei die Scheibe an. Es gilt mit der durch den Faden transmittierten Kraft F: I M rf m a m g F. (7) Dabei bezeichnet die Winkelbeschleunigung der Scheibe, a die Beschleunigung der usatzmasse. Da der Faden von der Fadentrommel abrollt, gilt a r. kann aus Fallhöhe h und Fallzeit t bestimmt werden. Alternativ lässt sich aus dem Energieerhaltungssatz m gh I mv I mr (8) mittels Messung der Drehzahl ebenfalls das Trägheitsmoment bestimmen. 2. räzession Wir betrachten einen symmetrischen Kreisel bestehend aus Kreiselscheibe, Achse und Gegengewicht, der im Schwerunkt unterstützt wird. Rotiert die Kreiselscheibe um die Figurenachse, so sind Drehgeschwindigkeit und Drehimuls arallel. Da kein Drehmoment wirkt, ist der Drehimuls eine Erhaltungsgröße und der Kreisel zeigt mit der Figurenachse entlang der Drehimulsachse, die im betrachteten Fall eine horizontale Ausrichtung hat. Wird die Achse nun außerhalb des Schwerunkts mit einem kleinen Gewicht m belastet, so wirkt ein Drehmoment senkrecht zum Drehimuls. Dabei ist M r G (9) G m g die Schwerkraft und r ein Vektor, der ausgehend vom Schwerunkt auf die usatzmasse deutet. Das Drehmoment ändert nun die Richtung des Drehimulses, jedoch nicht seinen Betrag, so dass sich der Drehimuls mit der Drehgeschwindigkeit um die Vertikale dreht. Im eitintervall dreht sich der Drehimuls um den Winkel d mit so dass die Kreisfrequenz der räzession durch d d, (10) d d / M (11) gegeben ist. In vektorieller Form lässt sich dies als M (12) 4
5 schreiben. Diese Bewegung des Drehimulses nennt man räzession; sie erfolgt mit der räzessionsgeschwindigkeit und wird durch ein Drehmoment getrieben. Wird die usatzmasse mit einem Abstand z von der vertikalen Drehachse aufgehängt, und ist der Kreisel horizontal justiert, so ist das Drehmoment durch M m gz (1) gegeben. Den Drehimuls erhält man aus I I I, (14) 1 wobei die Komonente der Winkelgeschwindigkeit entlang der Figurenachse bezeichnet. Da wird der erste Term auf der rechten Seite von (14) vernachlässigt.. Nutation Nun betrachten wir einen kräftefrei gelagerten symmetrischen Kreisel, auf den kein Drehmoment wirkt. Dann ist der Drehimuls wiederum eine Erhaltungsgröße und zeigt im aborsystem in eine feste Richtung. Falls die Drehgeschwindigkeit arallel zur Figurenachse ist, so sind Figurenachse und die Achsen der Drehgeschwindigkeit und des Drehimulses allesamt arallel und der Kreisel rotiert um die ortsfeste Drehimulsrichtung. Im interessanten Fall sind jedoch Drehgeschwindigkeit und Drehimuls nicht arallel, nachdem z.b. die Drehachse durch einen temorären Kraftstoß ausgelenkt wurde. In diesem Fall lauten die Eulerschen Gleichungen: d1 I1 ( I I1) 2 0 d2 I1 ( I I1) 1 0. (15) d I 0 Mit I I 1 (16) I1 folgt so dass d1 2 0 d2 1 0 const, (17) 5
6 cos( t) sin( t) I1 cos( t) I1 sin( t) I, (18) d.h. die Drehachse läuft auf einem Kegel um die Figurenachse um. Diesen Kegel nennt man Gangolkegel. Der Betrag der Drehgeschwindigkeit ist durch Umlaufkreisfrequenz jedoch durch. 2 2 gegeben, der Betrag der Andererseits kann man die rojektion der Drehgeschwindigkeit auf die Richtung des Drehimulses berechnen: ( 1 2 ) I1 I I1 I. (19) Diese ist konstant, d.h. der Winkel zwischen Drehgeschwindigkeit und Drehimuls ist konstant. Da die Drehgeschwindigkeit sich jedoch in ihrer Richtung zeitlich ändert, muss sie auf einem Kegel um die Drehimulsrichtung umlaufen; den entsrechenden Kegel nennt man Rastolkegel. Im Endeffekt bewegt sich die Figurenachse ebenfalls um die Drehimulsrichtung, d.h. der Gangolkegel rollt auf dem Rastolkegel ab und bildet dadurch den Nutationskegel. Die gemeinsame Bewegung von Figurenachse und momentaner Drehachse wird als Nutation bezeichnet. Die halben Öffnungswinkel von Gangolkegel und Nutationskegel lassen sich aus den Neigungen der Drehachse bzw. des Drehimulses bezüglich der Figurenachse berechnen. Der halbe Öffnungswinkel des Nutationskegels ist daher durch I1 tan (20) I gegeben, der halbe Öffnungswinkel des Gangolkegels durch tan. (21) Im Fall eines rolaten Kreisels ist I 1 > I, so dass der Öffnungswinkel des Nutationskegels größer ist als derjenige des Gangolkegels. Dieser Fall ist in der Abbildung dargestellt. 6
7 arameter Durchmesser Kreisscheibe: Masse Scheibe: Abstand Kreisscheibe-vertikale Drehachse: Masse Gegengewichte: Massestücke für usatzgewicht: Abstand usatzgewicht-vertikale Drehachse: Durchmesser Fadentrommel: 2R = 250 mm m = 1500 g z S = 165 mm m G1 = 1400 g, m G2 = 50 g jeweils m = 47 g z = 275 mm 2r = 65 mm 7
Kreisel mit drei Achsen
Fakultät für hysik und Geowissenschaften hysikalisches Grundraktikum M6 Kreisel mit drei Achsen Aufgaben 1. Bestimmen Sie das Trägheitsmoment der Kreiselscheibe aus der Winkelbeschleunigung bei bekanntem
Kreisel mit drei Achsen
M42 Name: Kreisel mit drei Achsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)
Physikalisches Praktikum M 7 Kreisel
1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/
M19. Kreisel. Ein Kreisel, bei dem die Summe aller Drehmomente M i bezüglich des Schwerpunktes verschwindet (1) heißt kräftefrei.
M19 Kreisel Bei symmetrischen Kreiseln sollen die räzession und die Nutation untersucht und damit die dynamischen Eigenschaften eines Kreisels veranschaulicht werden. 1. Theoretische Grundlagen 1.1 Begriffsbestimmungen
Versuch 4: Kreiselpräzession
Versuch 4: Kreiselpräzession Inhaltsverzeichnis 1 Einführung 3 2 Theorie 3 2.1 Allgemeines zur Rotation von Körpern.................... 3 2.2 Die Eulersche Kreiselgleichung......................... 3 2.3
Versuch 4 - Trägheitsmoment und Drehimpuls
UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 4 - Trägheitsmoment und Drehimpuls 23. überarbeitete Auflage 2009 Dr. Stephan Giglberger Prof.
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum
Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1
Kreisel. Was ist ein symmetrischer-, was ein kräftefreier-, was ein schwerer Kreisel?
Rotation starrer Körper, Drehimpuls, Drehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier-, schwerer, Nutation, Präzession. Schriftliche VORbereitung: Beantworten Sie bitte die folgenden Fragen:
Versuch P2-71,74: Kreisel. Vorbereitung. Von Jan Oertlin und Ingo Medebach. 11. Mai Drehimpulserhaltung 2. 2 Freie Achse 2
Versuch P - 71,74: Kreisel Vorbereitung Von Jan Oertlin und Ingo Medebach 11. Mai 010 Inhaltsverzeichnis 1 Drehimpulserhaltung Freie Achse 3 Kräftefreie Kreisel 3 4 Dämpfung des Kreisels 3 5 Kreisel unter
Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]
Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD
Probeklausur zur T1 (Klassische Mechanik)
Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte
1 Trägheitstensor (Fortsetzung)
1 Trägheitstensor (Fortsetzung) Wir verallgemeinern den in der letzten Stunde gefundenen Trägheitstensor auf den Fall einer kontinuierlichen Massenverteilung durch die Einführung der Integration über das
Versuch P2-71,74: Kreisel. Auswertung. Von Jan Oertlin und Ingo Medebach. 25. Mai Drehimpulserhaltung 2. 2 Freie Achse 2
Versuch P2-71,74: Kreisel Auswertung Von Jan Oertlin und Ingo Medebach 25. Mai 2010 Inhaltsverzeichnis 1 Drehimpulserhaltung 2 2 Freie Achse 2 3 Kräftefreie Kreisel 2 4 Dämpfung des Kreisels 3 5 Kreisel
5.3 Drehimpuls und Drehmoment im Experiment
5.3. DREHIMPULS UND DREHMOMENT IM EXPERIMENT 197 5.3 Drehimpuls und Drehmoment im Experiment Wir besprechen nun einige Experimente zum Thema Drehimpuls und Drehmoment. Wir betrachten ein System von N Massenpunkten,
Versuch 3 Das Trägheitsmoment
Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung
Grundbegriffe: Drehimpulserhaltungssatz, Kreisel, Figuren-, Drehimpuls- und momentane Drehachse, Präzession und Nutation
M10 GYROSKOP PHYSIKALISCHE GRUNDLAGEN Grundbegriffe: Drehimpulserhaltungssatz, Kreisel, Figuren-, Drehimpuls- und momentane Drehachse, Präzession und Nutation 1. Begriff des Kreisels: Ein Kreisel ist ein
Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1
Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3
IM3. Modul Mechanik. Maxwell sches Rad
IM3 Modul Mechanik Maxwell sches Rad In dem vorliegenden Versuch soll die Energieerhaltung anhand des Maxwell schen Rades untersucht werden. Das Maxwell sche Rad ist ein Metallrad mit grossem Trägheitsmoment,
Kreiselversuche. Abb. 1: Vorführkreisel mit verstellbarem Aufpunkt.
Kreiselversuche Abb. 1: Vorführkreisel mit verstellbarem Aufpunkt. Geräteliste: Fahrradreifen mit Handgriffen, Fahrradreifen mit Verstellbarem Aufpunkt, Drehstuhl, kräftefreier Kreisel, Umkehrkreisel,
4.9 Der starre Körper
4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte
Kräftefreier symmetrischer Kreisel
Kräftefreier symmetrischer Kreisel Grannahmen: Symmetrieachse = "" Winkelgeschwindigkeit im körperfesten System: Euler-Gleichungen: [per Konvention wählen wir Richtung von so, dass mit für harm. Osz. Lösung:
Einführung in die Physik für Maschinenbauer
Einführung in die Physik für Maschinenbauer WS 011/01 Teil 5 7.10/3.11.011 Universität Rostock Heinrich Stolz [email protected] 6. Dynamik von Massenpunktsystemen Bis jetzt: Dynamik eines einzelnen
Fallender Stein auf rotierender Erde
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen
5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)
5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem
Solution V Published:
1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale
Wiederholung Physik I - Mechanik
Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure
LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.
7.5 Drehimpuls Translation Rotation Geschwindigkeit Masse v m Translationsenergie Kraft Impuls Ekin F 1 mv F ma p d p F dt p m v p E kin m R. Girwidz 1 7.5 Drehimpuls Drehscheml für Zentralkräfte: M 0
Übungen zu Lagrange-Formalismus und kleinen Schwingungen
Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf
Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann,
Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, 09.09. 2004 Bearbeitungszeit: 90 min Umfang: 7 Aufgaben Gesamtpunktzahl: 45 Erklärung: Ich erkläre mich damit einverstanden,
Theoretische Physik: Mechanik
Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der
Rotation starrer Körper, Drehimpuls, Drehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier -, schwerer Kreisel, Nutation, Präzession.
Kreisel 1. LITERATUR emtröder; Tipler, Hering/Martin/Stohrer; Gerthsen 2. STICHPUNKTE Rotation starrer Körper, rehimpuls, rehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier -, schwerer Kreisel,
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem
Massenträgheitsmomente homogener Körper
http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine
25. Vorlesung Sommersemester
25. Vorlesung Sommersemester 1 Die Euler-Winkel Die Euler-Winkel geben die relative Orientierung zweier gegeneinander gedrehter Koordinatensysteme an, indem definiert wird, in welcher Reihenfolge welche
0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel
0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf
Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.
Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert M04 Energieumwandlung am Maxwellrad (Pr_PhI_M04_Maxwellrad_6, 14.7.014)
Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018
Ludwig Maximilians Universität München Fakultät für Physik Lösungsblatt 8 Übungen E Mechanik WS 27/28 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen
Rotationsgerät. Wir können 4 Parameter variieren, die die Beschleunigung des Systems beeinflussen:
Rotationsgerät Übersicht Mit diesem Gerät wird der Einfluss eines Moments auf einen rotierenden Körper untersucht. Das Gerät besteht aus einer auf Kugellagern in einem stabilen Rahmen gelagerten Vertikalachse.
Rotierende Bezugssysteme
Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.
6 Mechanik des Starren Körpers
6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=
5. Kritische Drehzahl
Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit
Starrer Körper: Drehimpuls und Drehmoment
Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und
Versuch M11 für Nebenfächler Kreisel
Versuch M11 für Nebenfächler Kreisel I. Physikalisches Institut, Raum 105 Stand: 17. Juli 2012 generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte Versuchspartner angeben bitte
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
115 - Kreiselgesetze
115 - Kreiselgesetze 1. Aufgaben 1.1 Bestimmen Sie die Nutationsfrequenz des kräftefreien Kreisels in Abhängigkeit von der Kreiselfrequenz. 1.2 Bestimmen Sie die Präzessionsperiode des schweren Kreisels
Drehimpuls, Drehmoment, Kraft-/Drehmoment-"Wandler"
Aufgaben 5 Rotations-Mechanik Drehimpuls, Drehmoment, Kraft-/Drehmoment-"Wandler" Lernziele - das Drehimpulsbilanzgesetz verstehen und anwenden können. - wissen, dass sich die Wirkung einer Kraft nicht
Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )
Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.
9 Teilchensysteme. 9.1 Schwerpunkt
der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton
Physikalisches Grundpraktikum Abteilung Mechanik
M10 Physikalisches Grundpraktikum Abteilung Mechanik Kreisel 1 Vorbereitung Erhaltungssätze der Mechanik Analogien zwischen Rotation und Translation Trägheitsmomente und deren Berechnung Satz von Steiner
Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)
sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden [email protected]. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen
5. Zustandsgleichung des starren Körpers
5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch
Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr
Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments
Trägheitsmoment - Steinerscher Satz
Trägheitsmoment - Steinerscher Satz Gruppe 4: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 13. Januar 2009 1 Inhaltsverzeichnis 1 Theorieteil 3 1.1 Frage 2................................
2. Translation und Rotation
2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche
8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels
8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung
Physikalisches Pendel
Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft.
() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2
Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.
2. Physikalisches Pendel
2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung
3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1
3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe
Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei
Inhalt 1 9 Dynamik der Drehbewegung 9.1 Rotation eines Massenpunktes um eine feste Achse 9. Arbeit und Leistung bei der Drehbewegung 9.3 Erhaltungssätze 9.4 Übergang vom Massenpunkt zum starren Körper
Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2:
Aufgabe 1: Ein Autoreifen habe eine Masse von 1 kg und einen Durchmesser von 6 cm. Wir nehmen an, dass die gesamte Masse auf dem Umfang konzentriert ist (die Lauffläche sei also viel schwerer als die Seitenwände
Rotationsmechanik öffentliche Sonntagsvorlesung, 13. Januar Lesender: PD Dr. Frank Stallmach
Fakultät für Phsik und Geowissenschaften Rotationsmechanik 130. öffentliche Sonntagsvorlesung, 13. Januar 2013 Lesender: PD Dr. Frank Stallmach Assistenz: Ael Märcker WOG Landesseminar zur Vorbereitung
Probeklausur Physik für Ingenieure 1
Probeklausur Physik für Ingenieure 1 Othmar Marti, ([email protected]) 19. 1. 001 Probeklausur für Ingenieurstudenten Prüfungstermin 19. 1. 001, 8:15 bis 9:15 Name Vorname Matrikel-Nummer
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht und Rotation Dr. Daniel Bick 16. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 16. November 2016 1 / 39 Impuls
Versuch 4 Kreiselpräzession
Physikalisches A-Praktikum Versuch 4 Kreiselpräzession Protokollant: Julius Strake Mitpraktikant Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 17.07.2012 Unterschrift: Inhaltsverzeichnis
E1 Mechanik Lösungen zu Übungsblatt 2
Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der
Blatt 10. Hamilton-Formalismus- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus
M10 PhysikalischesGrundpraktikum
M10 PhysikalischesGrundpraktikum Abteilung Mechanik Kreisel 1 Vorbereitung Erhaltungssätze der Mechanik Analogien zwischen Rotation und Translation Trägheitsmomente und deren Berechnung Satz von Steiner
Musterlösung 2. Klausur Physik für Maschinenbauer
Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit
S1 Bestimmung von Trägheitsmomenten
Christian Müller Jan Philipp Dietrich S1 Bestimmung von Trägheitsmomenten Versuch 1: a) Versuchserläuterung b) Messwerte c) Berechnung der Messunsicherheit ud u Versuch 2: a) Erläuterungen zum Versuchsaufbau
Übungen zu Experimentalphysik 2
Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld
Physik I Übung 10 - Lösungshinweise
Physik I Übung - Lösungshinweise Stefan Reutter WS / Moritz Kütt Stand: 7. Februar Franz Fujara Aufgabe War die Weihnachtspause vielleicht doch zu lang? Bei der Translation eines Massenpunktes und der
Physik I Musterlösung 2
Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und
Übung zu Mechanik 1 Seite 65
Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus
Kreisbewegung Ein Bild sagt mehr als tausend Worte.
Kreisbewegung Ex. 20.4 (3. Gebot) Du sollst Dir keine Bilder machen von Dingen, die im Himmel, auf der Erde, im Wasser oder unter der Erde sind. Ein Bild sagt mehr als tausend Worte. 1 Einführung Die Erde
= 0 (dynamisches Gleichgewicht).
Drehbewegung (M6) Ziel des Versuches Der Versuch besteht aus zwei Teilen. Im ersten Teil ist der Zusammenhang zu überprüfen, der zur Zentripetalkraft führt, im zweiten Teil lernen Sie die Wirkung der Corioliskraft,
Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen
Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit
Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50)
Physik 1, WS 015/16 Musterlösung 8. Aufgabenblatt (KW 50) Aufgabe (Bleistift) Ein dünner Bleistift der Masse m und der Länge L steht zunächst mit der Spitze nach oben zeigend senkrecht auf einer Tischplatte.
1. Probe - Klausur zur Vorlesung E1: Mechanik
Fakultät für Physik der LMU 27.12.2011 1. Probe - Klausur zur Vorlesung E1: Mechanik Wintersemester 2011/2012 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel und Dr. Frank Jäckel Name:... Vorname:... Matrikelnummer:...
1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:
Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung
V12 Beschleunigte Bewegungen
Aufgabenstellung: 1. Ermitteln Sie die Fallbeschleunigung g aus Rollexperimenten auf der Rollbahn. 2. Zeigen Sie, dass für die Bewegung eines Wagens auf der geneigten Ebene der Energieerhaltungssatz gilt.
Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation
Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener
Lösung IV Veröffentlicht:
Fx = mg sin θ = ma x 1 Konzeptionelle Frage I Welche der der folgenden Aussagen über Kraft Bewegung ist korrekt? Geben sie Beispiele an (a) Ist es für ein Objekt möglich sich zu bewegen, ohne dass eine
Elastizität und Torsion
INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den
Klausur Technische Mechanik C
Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner
Übung zu Mechanik 4 Seite 28
Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche
Faszination Kreisel. Vom Spielzeug zur technischen Anwendung. Thomas Wilhelm
Vom Spielzeug zur technischen Anwendung Thomas Wilhelm 1. Spielzeug Kreisel Symmetrische Kreisel (zwei Hauptträgheitsmomente gleich groß), meist Rotationskörper Einfacher Kreisel Einfacher Kreisel Unterschiedliche
Physikalisches Grundpraktikum. Versuch 4. Kreiselpräzession. Mitarbeiter: Tobias Wegener. Marten Düvel
Physikalisches Grundpraktikum Versuch 4 Kreiselpräzession Praktikant: Alexander Osterkorn E-Mail: [email protected] Mitarbeiter: Tobias Wegener Tutor: Gruppe: Marten Düvel 3 Durchgeführt
Versuch dp : Drehpendel
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung
Experimentalphysik für ET. Aufgabensammlung
Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe
