3 Die Finite-Elemente-Methode
|
|
|
- Ella Glöckner
- vor 7 Jahren
- Abrufe
Transkript
1 (3.1) Sei R 2 ein Polygongebiet, d.h. offen, zusammenhängend, und sei ein Polygonzug. Dann heißt T h = {K 1,...,K M } eine zulässige Triangulierung von, wenn a) K m = conv{z m,0,z m,1,z m,2 } Dreieck mit int() /0 für m = 1,...,M, b) = M m=1 K m c) für m k ist int(k m ) int(k k ) = /0 und K m K k = conv ( {z m,0,z m,1,z m,2 } {z k,0,z k,1,z k,2 } ) leer oder eine gemeinsame Ecke oder eine gemeinsame Kante. h = max K Th diam(k ) ist die Gitterweite und V h = M m=1 {z m,0,z m,1,z m,2 }. (3.2) S 1 h = {v C( ): v K P 1 für alle K T h } ist der Raum der linearen Finiten Elemente. (3.3) v S 1 h ist eindeutig durch die Werte v(z) an den Knotenpunkten z V h bestimmt. φ z S 1 h mit φ z(z) = 1 und φ z (y) = 0 für y V h \ {z} ist die Knotenbasis. (3.5) w i L 2 () heißt schwache Ableitung von v L 2 () (nach x i ), wenn für alle ψ C0 () gilt w i ψ dx = v i ψ dx. (3.8) H 1 () = {v L 2 (): i v L 2 ()} ist ein Hilbert-Raum mit (v,w) 1 = (v,w) 0 + ( v, w) 0, v 1 = (v,v) 1. Es gilt S 1 h H1 (). C. Wieners: Numerische Methoden für partielle Differentialgleichungen 1 7
2 (3.9) Sei h K = 2min{r > 0: K B(r,x), x K } und ρ K = 2max{r > 0: B(r,x) K, x K }. Eine Familie von Triangulierungen (T h ) h H heißt a) regulär, wenn C > 0 existiert mit h K /ρ K C, b) uniform, wenn c > 0 existiert mit ch ρ K h K h = max K Th h K. (3.10)Sei ˆK = conv{(0,0),(1,0),(0,1)} das Referenzdreieck, und sei ϕ K : ˆK K die linear affine Transformation ϕ K (ˆx) = (1 ˆx 1 ˆx 2 )z 0 + ˆx 1 z 1 + ˆx 2 z 2. Dann gilt für F K = ϕ K und J K = detf K F K Ch K, J K ChK 2 1, FK Cρ 1 K, J 1 K Cρ 2 K. (3.11)Sei d = 2. Für v C(K ) und ˆv = v ϕ K gilt ch 1 K ˆv 0, ˆK v 0,K Ch K ˆv 0, ˆK. Für v C 1 (K ) und ˆv = v ϕ K gilt ( u) ϕ K = F T ˆ ˆv K und cρ K h 1 K ˆ ˆv 0, v ˆK 0,K Ch K ρ 1 K ˆ ˆv 0,. ˆK Für v C 2 (K ) und ˆv = v ϕ K gilt ( 2 u) ϕ K = F T K cρ K h 2 K ˆ 2ˆv 0, ˆK 2 v 0,K CρK 2 h 1 K ˆ 2ˆv 0,. ˆK 1 ˆ 2ˆvF K. (3.12)H m () = {v H m 1 (): i v H m 1 d ()} mit (v,w) m = (v,w) 0 + ( i v, i w) m 1. i=1 C () ist dicht in H m (). Wenn ein Lipschitz-Gebiet ist, dann ist C m ( ) dicht in H m (). C. Wieners: Numerische Methoden für partielle Differentialgleichungen 1 8
3 (3.13)Sei konvex. Für v H 1 () definiere Qv(x) = 1 ( ) v(y) + v(y)(x y) dy. Dann gilt für Rv = v Qv und x Rv(x) = k(x,z)(x z) 2 v(z)(x z)dz mit k(x,z) 1 2π (3.14)Es existiert C > 0 unabhängig von h,ρ, so dass für alle v H 2 () gilt: a) v Qv 2 C 2 v 0 h 2 ρ 2 x z 2. b) v C v 2 Für d 3 gilt C( ) H 2 (). (3.15)Sei span{φ z 0,φ z 1,φ z 2 } = P 1 und Iv = v(z 0 )φ z 0 + v(z 1 )φ z 1 + v(z 2 )φ z 2. Dann gilt v Iv 2 C 2 v 0 für v H 2 (). (3.16)Sei T h eine uniforme Triangulierung. Dann gilt für I h v = v(z)φ z Sh 1 z V a) v I h h v 1 C h v 2 für alle v H 2 (), b) v I h v 0 C h 2 v 2 für alle v H 2 (). (3.16)Sei (T h ) h H eine Familie von uniformen Triangulierungen mit h 0. Dann ist h H S 1 h dicht in H1 (). C. Wieners: Numerische Methoden für partielle Differentialgleichungen 1 9
4 (3.17)Zu Γ 3 definiere V h = {v h S 1 h : v h(x) = 0 für x Γ 3 }. Sei (T h ) h H eine Familie von uniformen Triangulierungen, so dass (S 1 h ) h H dicht in H 1 () ist. Dann sei V H 1 () der kleinste Hilbertraum, der alle V h (h H ) enthält. Die Spurabbilung γ 3 : H 1 () L 2 (Γ 3 ) ist wohldefiniert und stetig. Es gilt V = {v H 1 (): γ 3 (v) = 0}. (3.18)Sei meas d 1 (Γ 3 ) > 0. Dann existiert C > 0 mit v 0 C ( v 0 + v 0,Γ3 ) für alle v H 1 () (Poincaré-Friedrichs-Ungleichung). (3.19)Sei K C 1 (,R d d ), c C(,R d ), q,f C(), g i C(Γ i ) mit = Γ 1 Γ 2 Γ 3, und α C(Γ 2 ). Sei Lu = (K u) + c u + qu. Sei u C 2 () C 1 ( ) Lösung der Randwertaufgabe Lu = f in, K u ν = g 1 auf Γ 1, K u ν + αu = g 2 auf Γ 2, u = g 3 auf Γ 3. Dann gilt a(u,v) = l(v) für alle v V mit a(u, v) = l(v) = ( K u u + c uv + quv fv dx + g 1 v da + Γ 1 g 2 v da. Γ 2 ) dx + αuv da, Γ 2 C. Wieners: Numerische Methoden für partielle Differentialgleichungen 1 10
5 (3.20)Sei K L (,R d d ), c L (,R d ), q L (), f L 2 (), g 1 L 2 (Γ 1 ), g 2 L 2 (Γ 2 ), α L (Γ 2 ). Dann heißt u H 1 () mit γ 3 (u) = g 3 und a(u,v) = l(v) für alle v V schwache Lösung der Randwertaufgabe (3.19), und u h S 1 h mit γ 3(u h ) = I h g 3 und a(u h,v h ) = l(v h ) für alle v h V h heißt Galerkin-Approximation von u. (3.21)Die Bilinearform a : H 1 () H 1 () R und die Linearform l : H 1 () R sind stetig. (3.22) Es gelte a) K ist positiv definit, d.h. z T K (x)z k 0 z 2 für alle z R d und fast alle x, b) c L () und q 2 1 c 0 in, c) ν c 0 auf Γ 1, d) α ν c 0 auf Γ 2, e) eine der Bedingungen gelte: i) meas d 1 (Γ 3 ) > 0, ii) es existiert mit meas d ( ) > 0 und r 0 > 0 mit q 1 2 c r 0 in, iii) es existiert Γ Γ 1 mit meas d 1 (Γ ) > 0 und c 0 > 0 mit c ν c 0 auf Γ, iv) es existiert Γ Γ 2 mit meas d 1 (Γ ) > 0 und c 0 > 0 mit α c ν c 0 auf Γ. Dann ist a(, ) V -elliptisch, d.h. es existiert α 0 > 0 mit a(v,v) α 0 v 2 1 für alle v V. C. Wieners: Numerische Methoden für partielle Differentialgleichungen 1 11
6 (3.23)Sei a(, ) elliptisch, und sei u D H 1 () mit γ 3 (u D ) = g 3. Dann existiert u h V h mit a(u h,v h ) = l(v h ) a(u D,v h ) und die Lösung ist eindeutig. für alle v h V h (3.24) Sei a(, ) symmetrisch und elliptisch. Definiere F (v) = 1 2 a(v + u D,v + u D ) l(v) für v V. Dann gilt: a) F (u h ) F (v h ) für alle v h V h. b) (V h ) h sei dicht in V mit h 0. Dann ist die Folge der Lösungen u h V h eine Minimalfolge on F ( ): inf F (u h) = inf F (v) >. h v V c) Es existiert u V mit F (u) F (v) für alle v V. Es gilt u h u. d) u V ist eindeutig durch a(u,v) = l(v) a(u D,v) für alle v V charakterisiert. (3.25) Sei a(, ) elliptisch. Dann existiert eine eindeutige Lösung u V der Variationsgleichung a(u,v) = l(v) a(u D,v) für alle v V. C. Wieners: Numerische Methoden für partielle Differentialgleichungen 1 12
7 Sei u V die Lösung aus (3.25) und u h V h die Galerkin-Approximation (3.23). Dann gilt a(u u h,v h ) = 0 für alle v h V h (Galerkin-Orthogonalität). (3.26)Sei a(, ) beschränkt und elliptisch in V. Dann gilt u u h 1 C a inf u v α h 1. 0 v h V h (3.27)Für die Lösung u V aus (3.25) gelte u H 2 (). Dann gilt die Fehler-Abschätzung u u h 1 C h u 2. Die Konstante C > 0 ist unabhängig von h und hängt nur von der Gitterregularität ab. (3.28)Sei f L 2 () und u V Lösung des Problems a(u,v) = (f,v) 0 für alle v V. Dann heißt das Problem (bzw. ) H 2 -regulär, wenn für alle f L 2 () die Lösung u H 2 () erfüllt, und wenn C > 0 existiert mit u 2 C f 0. Wenn konvex ist, dann ist das Laplace-Problem H 2 -regulär. Wenn und die Koeffizienten von L glatt sind, dann ist das Variationsproblem H 2 -regulär. (3.29)Für die Lösung u V aus (3.25) gelte u H 2 (). Zusätzlich sei das adjungierte Problem H 2 -regulär, d.h. für alle f L 2 () und der Lösung w V Lösung des adjungierten Problems a(v,w) = (f,v) 0 für alle v V sei w H 2 () mit w 2 C f 0. Dann gilt die Fehler-Abschätzung u u h 0 C h 2 u 2. C. Wieners: Numerische Methoden für partielle Differentialgleichungen 1 13
Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator
Universität Bielefeld Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Matthieu Felsinger Universität Bielefeld Mathematisches Kolloquium, TU Clausthal 05. Februar 2014 1 Einleitung
Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme
Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über
Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016
Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)
Kapitel VI. Euklidische Geometrie
Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und
Übungen zu Partielle Differentialgleichungen, WS 2016
Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,
Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma. Die Äußere Ableitung. Felix Retter
25.06.2008 Inhaltsangabe Differentialformen Äußere Ableitung Abbildungen Konverse Poincaré Lemma Die p-form Sei P ein Punkt in E n. Der n-dimensionale lineare Raum L = L p wird dann gebildet von n a i
Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.
Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x
Faltung und Approximation von Funktionen
Faltung und Approximation von Funktionen Lisa Bauer und Anja Moldenhauer 9. Juni 2008 1 Die Faltung von Funktionen 1.1 Die Faltung Eine kleine Widerholung mit einem Zusatz: Vergleiche den Vortrag von Benjamin
Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.
Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung
Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen
Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung
Klassifikation von partiellen Differentialgleichungen
Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.
Numerische Simulation mit finiten Elementen
Institut für Numerische Mathematik und Optimierung Numerische Simulation mit finiten Elementen Antje Franke-Börner Übung im gleichnamigen Modul Hörerkreis: 2. MNC, 2. MGPHY, 4. BGIP, 6. BEC-II, 2. MGIN
Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras
Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst
Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten
Mathematik 3 für Informatik
Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4
Numerik II Finite Elemente. R. Verfürth
Numerik II Finite lemente Vorlesungsskriptum Sommersemester 16 R Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Motivation 5 apitel I Analytische Grundlagen 15 I1 Abstrakte
9 Vektorräume mit Skalarprodukt
9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden
MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.
1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine
Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom
Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R
Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla
Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann
Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie
Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende
31 Die Potentialgleichung
3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-
Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?
1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2
Computer-Graphik I Verallgemeinerte Baryzentrische Koordinaten
lausthal omputer-raphik I Verallgemeinerte Baryzentrische Koordinaten. Zachmann lausthal University, ermany [email protected] Verallgemeinerungen der baryzentr. Koord. 1. Was macht man im 2D bei
Die Methode der Finiten Elemente
KAPITEL 2 Die Methode der Finiten Elemente 1. Theoretische Grundlagen Wir bezeichnen im Folgenden mit H m (Ω) L 2 (Ω), Ω R n offen, den Sobolevraum aller Funktionen mit schwachen Ableitungen α u in L 2
Lösungsvorschläge zum 14. Übungsblatt.
Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine
2 Stetigkeit und Differenzierbarkeit
2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,
Konvergenz im quadratischen Mittel - Hilberträume
CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften
Seminar Einführung in die Kunst mathematischer Ungleichungen
Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................
Gerade, Strecke, Halbgerade, Winkel (in (R n,, ))
Gerade, Strecke, Halbgerade, Winkel (in (R n,, )) A B Winkel Gerade Halbgerade Strecke A A A Gerade ist Punktmenge L A,v := {A+t v t R}, wobei v 0. Halbgerade (Strahl) ist Punktmenge H A,v := {A+t v t
κ Κα π Κ α α Κ Α
κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ
Mathematische Methoden für Informatiker
Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen
entspricht der Länge des Vektorpfeils. Im R 2 : x =
Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.
Iterative Verfahren, Splittingmethoden
Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem
WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B
Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und
PRÜFUNG AUS ANALYSIS F. INF.
Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ANALYSIS F. INF. (GITTENBERGER) Wien, am 2. Juli 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8 P.) Sei f : R 2 R mit f(x, y) = e x
6 Komplexe Integration
6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise
Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x),
UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Elektrodynamik Übungsblatt 5 Musterlösungen 13 Aufgabe (a) Der Ausgangspunkt für diese Aufgabe sind die Maxwell-Gleichungen a ( a A b b A a ) = 4π c
4.4 Symmetrische Bilinearformen
4.4. SYMMETRISCHE BILINEARFORMEN 195 4.4 Symmetrische Bilinearformen Alle betrachteten Vektorräume seien euklidisch. Wir betrachten Bilinearformen Φ: V V R, von denen wir nur voraussetzen, daß sie symmetrisch
Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen
Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.
Zusammenfassung der Lebesgue-Integrationstheorie
Zusammenfassung der Lebesgue-Integrationstheorie Das Lebesguesche Integral verallgemeinert das Riemannsche Integral. Seine Vorteile liegen für unsere Anwendungen vor allem bei den wichtigen Konvergenzsätzen,
Analysis I - Stetige Funktionen
Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt
Euklidische und unitäre Vektorräume
Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein
Untersuchen Sie die angegebenen Funktionenfolgen auf gleichmäßige Konvergenz. = 1 n, (1 Punkt ) x 2. x 1 = 1. x n + (1 Punkt )
Aufgabe (glm. Konvergenz) (6+6 Punkte) Untersuchen Sie die angegebenen Funktionenfolgen auf gleichmäßige Konvergenz. a) g n : R R, mit g n (x) = x + n (6 Punkte) b) f n : R R, mit f n (x) = arctan(nx)
Inhaltsverzeichnis INHALTSVERZEICHNIS 1
INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4
Kapitel 3 Finite Element Methode
Kapitel 3 Finite Element Methode. Grundlagen der Methode der Finiten Elemente (FEM) Dir erste Methode bei der Grundzüge der FEM zu finden sind, wurde vor mehr als 5 Jahre von Schellbach beschrieben um
16 Vektorfelder und 1-Formen
45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung
Analysis I. 4. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein
Proseminar Lineare Algebra II, SS 11. Blatt
Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2
Differentialgleichungen
Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra
Extrema von Funktionen mit zwei Variablen
Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser
x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω
5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,
Eigenwerte und Diagonalisierung
Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende
14 Lineare Differenzengleichungen
308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung
B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,
B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,
Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3
Nichtlineare Gleichungssysteme
Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung
MAT Lineare Algebra, SS 07 Prof. Joachim Rosenthal Lösung zu Übungsblatt 7
MAT.4 - Lineare Algebra, SS 07 Prof. Joachim Rosenthal Lösung zu Übungsblatt 7 Aufgabe Sei ϕ : V V R eine symmetrische Bilinearform auf einem reellen Vektorraum V. Für die Vektoren v,...,v n V gelte ϕ(v
Kapitel 2: Mathematische Grundlagen
[ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel [email protected] Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen
Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.
Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines
Numerik partieller Differentialgleichungen I
Numerik partieller Differentialgleichungen I Bernd Simeon Skriptum zur Vorlesung im Sommersemester 2015 TU Kaiserslautern, Fachbereich Mathematik 1. Beispiele und Typeinteilung 2. Finite Differenzen für
Kapitel 16 : Differentialrechnung
Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen
Analysis II (FS 2015): Vektorfelder und Flüsse
Analysis II (FS 215): Vektorfelder und Flüsse Dietmar A. Salamon ETH-Zürich 7. April 215 1 Der Fluss eines Vektorfeldes Sei U R n eine offene Menge und sei f : U R n eine lokal Lipschitz-stetige Abbildung.
Numerik partieller Differentialgleichungen
Numerik partieller Differentialgleichungen Oliver Ernst Professur Numerische Mathematik Sommersemester 2015 Inhalt I Oliver Ernst (Numerische Mathematik) Numerik partieller Differentialgleichungen Sommersemester
Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und
7. Coxeter Graphen Um die endlichen Spiegelungsgruppen zu klassifizieren, wollen wir ihnen nun Graphen zuordnen, die die Gruppen bis auf Isomorphie eindeutig bestimmen. Im Folgenden sei wie vorher Π Φ
Ljapunov Exponenten. Reiner Lauterbach
Ljapunov Exponenten Reiner Lauterbach 28. Februar 2003 2 Zusammenfassung n diesem Teil betrachten wir ein wichtiges Thema: sensitive Abhängigkeit. Zunächst hat man ja stetige Abhängigkeit, wie man sie
Übungen zur Analysis II Blatt 27 - Lösungen
Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R
Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems
Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
y = A(x) y + b(x). (1) y = A(x) y (2)
73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe
00. Einiges zum Vektorraum R n
00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen
3 Optimierung mehrdimensionaler Funktionen f : R n R
3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)
1 Euklidische und unitäre Vektorräume
1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen
Klausur Stochastik und Statistik 31. Juli 2012
Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf
Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder
DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/
Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)
Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben
ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ).
1) a) Wir wollen zeigen, dass {ϕ k (t)ψ j (s)} j,k N0 eine Orthonormalbasis ist. Beachte dabei zunächst, dass (t, s) ϕ k (t)ψ j (s) für alle j, k N 0 messbare Abbildungen auf Ω 1 Ω 2 sind und da Ω 1 ϕ
Mathematik II für Inf und WInf
Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell
4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung
4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt
Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema
Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise
Analytische Geometrie
Kapitel 2 Analytische Geometrie 21 Vektoren Die Elemente des kartesischen Produktes R n, d h die n Tupel oder Zeilenvektoren (a 1,, a n ) mit a k R für k n, interpretiert man als Punkte eines n dimensionalen
4.5 Schranken an die Dichte von Kugelpackungen
Gitter und Codes c Rudolf Scharlau 19. Juli 2009 341 4.5 Schranken an die Dichte von Kugelpackungen Schon in Abschnitt 1.4 hatten wir die Dichte einer Kugelpackung, speziell eines Gitters bzw. einer quadratischen
Numerische Methoden in der Akustik
Numerische Methoden in der Akustik Prof.Dr.-Ing. Matthias Blau Institut für Hörtechnik und Audiologie FH Oldenburg/Ostfriesland/Wilhelmshaven XXI. Winterschule der Deutschen Gesellschaft für Medizinische
Der CG-Algorithmus (Zusammenfassung)
Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine
Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome
Proseminar Lineare Algebra SS10 Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Natalja Shesterina Heinrich-Heine-Universität ASymmetrische Polynome Definition 1 Sei n
Trennung der Variablen, Aufgaben, Teil 1
Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g
Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)
M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.
Aufgaben zur Analysis I aus dem Wiederholungskurs
Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden
ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).
Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)
Kapitel 7. Funktionentheorie. 7.1 Holomorphe und harmonische Funktionen. 1. Definitionen
Kapitel 7 Funktionentheorie In diesem Kapitel geht es meistens um Funktionen, die auf einem Gebiet G C definiert sind und komplexe Werte annehmen. Nach Lust, Laune und Bedarf wird C mit R identifiziert,
Kapitel 3. Konvergenz von Folgen und Reihen
Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden
Höhere Mathematik für Physiker II
Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei
Themen Lagrange-Interpolation Hermite-Interpolation. Splines. Bézier-Kurven. 5 Interpolation. Interpolation Die Lagrangesche Interpolationsaufgabe
5 Themen Lagrange- Bézier-Kurven saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad n. saufgabe sformel Der sfehler 5.1 saufgabe È n = Raum der reellen Polynome vom Grad
Harmonische und Holomorphe Funktionen
Harmonische und Holomorphe Funktionen Jonathan Bischoff LMU München illertal am 14.12.2014 Jonathan Bischoff Harmonische und Holomorphe Funktionen 1/14 Definition harmonische Funktion Sei G R 2 ein Gebiet.
