TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

Größe: px
Ab Seite anzeigen:

Download "TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)"

Transkript

1 Aufgabe 1 (Seite 1 von 3) a) Das nebenstehende Syste besteht aus einer i Punkt A drehbar gelagerten Stufenrolle (Radien r und R) sowie einer in Punkt B drehbar gelagerten Ulenkrolle (Radius r). Die jeweiligen Massenträgheitsoente dieser Rollen bzgl. des jeweiligen Mittelpunktes sind durch Θ A bzw. Θ B gegeben. Zusätzlich ist eine Punktasse (Masse ) über einen als asselos anzusehenden Balken starr it der Stufenrolle verbunden. Die als dehnstarr anzunehenden Seile werden schlupffrei auf die Rollen ab- bzw. aufgerollt und sind it zusaengesetzten elastischen Strukturen (Balken, Stäbe und Federn) verbunden. c EA, l c Θ B r B Θ A r A c R EI, l 3R Berechnen Sie die Ersatzfedersteifigkeiten für die zusaengesetzten elastischen Strukturen, die a linken (c l ) und a rechten (c r ) Seil befestigt sind. (2,0 Punkte) c l = c r = b) Das nebenstehende Syste aus Aufgabenteil a) wurde dahingehend odifiziert, dass die links und rechts an Seilen befestigten Eleente durch einzelne Federn ersetzt wurden (Federsteifigkeiten c l, c r ). Die Federn sind in der dargestellten Lage u l l >0 (links) bzw. l r >0 (rechts) vorgespannt. c l ϕ Θ A r A R 3R Θ B r B c r

2 Aufgabe 1 (Seite 2 von 3) Geben Sie die kinetische Energie E kin und potentielle Energie E pot des Systes als Funktion des Freiheitsgrades ϕ an. (3,5 Punkte) Hinweis: Fassen Sie die einzelnen Tere nicht zusaen. E kin = E pot = Stellen Sie die Bewegungsgleichung des Systes bezüglich des Freiheitsgrades ϕ auf. (2,0 Punkte) Geben Sie die Eigenkreisfrequenz ω 0 des Systes an. ω 0 =

3 Aufgabe 1 (Seite 3 von 3) c) Das nebenstehende Syste besteht aus einer in Punkt A drehbar gelagerten Rolle (Radius r, Massenträgheitsoent Θ A bezüglich des Punktes A) sowie aus zwei Punktassen (Masse bzw. 4). In der dargestellten Lage ist die Feder ungespannt. Für eine spezielle Wahl der Anfangsbedingungen ergibt sich die Lösung des Schwingungsprobles zu c r,θ A A 4 g (t) = Acos(ωt)+A wobei A und ω i Folgenden als vorgegebene Größen angesehen werden können. Geben Sie die Lösung (t) dieses Schwingungsprobles an, wobei = 0 die statische Ruhelage beschreibt. (1,5 Punkte) (t) =

4 Aufgabe 2 (Seite 1 von 4) Wie nebenstehend gezeigt bewegt sich eine Punktasse (Masse ) it der konstanten Geschwindigkeit v 1 auf den in Punkt A gelagerten und zunächst in Ruhe befindlichen Stab (Masse M = 5, Länge L) zu. I Kontaktpunkt an der Stelle l ist zusätzlich eine Punktasse (Masse ) fest it de Stab verbunden. y v 1, v 1 A M ω 2 l S l L a) Berechnen Sie das Massenträgheitsoent Θ A des Stabes it der aufgeschweißten Punktasse bezüglich des Punktes A. M + Θ A = Geben Sie nun die Lage des Schwerpunktes l S des Stabes it der aufgeschweißten Punktasse in Abhängigkeit von l, L und an. l S = b) Geben Sie auf der nächsten Seite sätliche zur Lösung des teilelastischen Stoßprobles (Stoßziffer e) notwendigen Gleichungen an. Nehen Sie ferner das Massenträgheitsoent Θ A als bekannte Größe an. Darüber hinaus sollen die oben eingezeichneten Geschwindigkeitsrichtungen angenoen werden. (3,0 Punkte)

5 Aufgabe 2 (Seite 2 von 4)

6 Aufgabe 2 (Seite 3 von 4) Fahrzeug 1 (Masse 1 ) und Fahrzeug 2 (Masse 2 ) fahren aufeinander zu und stoßen frontal zusaen. Laut Zeugenaussagen ist der Fahrer des Fahrzeugs 1 vor de Zusaenstoß it einer Geschwindigkeit v 1 gefahren, während dieses Fahrzeug nach de Stoß zurückgeprallt ist und rutschend die Strecke s 1 zurücklegte. Fahrzeug 2 rutschte nach de Zusaenprall u die Strecke s 2 weiter. Die Oberflächenbeschaffenheit der Straße in Verbindung it de Material sätlicher Reifen kann durch den Gleitreibungskoeffizienten µ beschrieben werden. 1 2 µ g c) Geben Sie die Geschwindigkeit v 1 des Fahrzeugs 1 nach de Zusaenstoß in Abhängigkeit von s 1, µ und 1 an. (1,5 Punkte) v 1 = d) Auf ähnliche Weise wurde die Geschwindigkeit v 2 erittelt, sodass Sie nun v 1, v 1 sowie auch v 2 als bekannt voraussetzen können. Geben Sie nun die Geschwindigkeit v 2 des Fahrzeugs 2 vor de Zusaenstoß in Abhängigkeit der bekannten Größen an. v 2 = e) Wie groß üsste die Stoßzahl e sein, sodass die kinetische Energie nach de Stoß aial wird. e =

7 Aufgabe 2 (Seite 4 von 4) f) Für eine Unfallanalyse-Datenbank wurde der Frontalzusaenstoß (siehe S. 3) zur Erittlung der Stoßzahlenachgestellt. Der Messwert der Geschwindigkeit v 1 des Fahrzeugs 1 vor de Zusaenstoß ist dabei verloren gegangen. Berechnen Sie die Geschwindigkeit v 1 sowie die Stoßzahl e in Abhängigkeit der bekannten Größen v 2, v 1 und v 2. (1,5 Punkte) v 1 = e =

8 Aufgabe 3 (Seite 1 von 2) Zu Zeitpunkt t 0 = 0 brest der bis dahin it der konstanten Geschwindigkeit v 0 fahrende Radlader it a F = a 0, (a 0 > 0), sodass die Ladung der Masse auf der Schaufel gerade zu Rutschen beginnt. Der Abstand der Ladung bis zu Ende der Schaufel beträgt l 0, die Höhe der Ladung über der Erde H 0 und der Abstand zu einer Grube l 1. Die Interaktion der Oberflächen von Ladung und Schaufel kann durch die Reibkoeffizienten µ und µ 0 beschrieben werden. g H 0 l 0 l 1 µ, µ 0 a) Bestien Sie die Absolutbeschleunigung der Ladung a abs zu Zeitpunkt t 0 bezüglich des vorgegebenen Koordinatensystes. (2,0 Punkte) a abs = Bestien Sie die Geschwindigkeit v rel der Ladung relativ zu der des Radladers als Funktion der Zeit i Intervall t 0 t t, wobei die Ladung bei t von der Schaufel fällt. (1,5 Punkte) v rel = b) I Folgenden sei v rel = a rel t, (a rel > 0) bekannt. Bestien Sie den Zeitpunkt t, an de die Ladung von der Schaufel fällt. t =

9 Aufgabe 3 (Seite 2 von 2) c) Der absolut von der Ladung bis zu deren Herabfallen zurückgelegte Weg s und die entsprechende Absolutgeschwindigkeit der Ladungv zu diese Zeitpunkt seien nun bekannt. Bestien Siel 1 so, dass die Ladung genau über der Grube die Bodenhöhe erreicht. Geben Sie außerde die Zeit t w an, die vo Herabfallen bei t bis zu Erreichen der Bodenhöhe vergeht. Die Größe H 0 ist als gegeben vorauszusetzen. (2,0 Punkte) l 1 = t w = Bestien Sie die Koponenten der Aufschlaggeschwindigkeit v A bei Erreichen der Bodenhöhe sowie den Aufschlagwinkel α geäß nebenstehender Zeichnung. (2,0 Punkte) y α v A = e + e y α = d) Bestien Sie die notwendige Beschleunigung a F, sodass die Haftung der Ladung auf der Schaufel (Haftreibungskoeffizient µ 0 ) gerade überwunden wird. Hinweis: Diese Beschleunigung wurde zu Beginn der Aufgabe als bekannt angenoen und soll nun näher spezifiziert werden. (1,5 Punkte)

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

Übung zu Mechanik 3 Seite 48

Übung zu Mechanik 3 Seite 48 Übung zu Mechanik 3 Seite 48 Aufgabe 81 Vor einer um das Maß f zusammengedrückten und verriegelten Feder mit der Federkonstanten c liegt ein Massenpunkt der Masse m. a) Welchen Wert muß f mindestens haben,

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.

Mehr

28. August Korrektur

28. August Korrektur Institut für Technische und um. Mechanik Technische Mechanik II/III Profs. P. Eberhard, M. Hanss SS 2014 P 2 28. August 2014 Bachelor-Prüfung in Technischer Mechanik II/III Aufgabe 1 (6 Punkte) Im skiierten

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

Technische Mechanik III

Technische Mechanik III INSTITUT FÜR MECHANIK Technische Universität Darstadt Prüfung Technische Mechanik III Prof. W. Becker Prof. D. Gross Prof. P. Hagedorn Prof. R. Markert Jun. Prof. R. Müller a 27. Februar 2006 (Nae) (Vornae)

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 16/17, 25.2.217 1. Aufgabe: (TM3) a g y a S v S ϕ x m P A 1111111 1111111 1111 1111 Die abgebildete homogene

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben 2.2 Arbeit und Energie Aufgaben Aufgabe 1: Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt. Für die

Mehr

Technische Mechanik III WiSe Name : Vorname : Matrikelnummer : Klausurnummer : Allgemeine Hinweise:

Technische Mechanik III WiSe Name : Vorname : Matrikelnummer : Klausurnummer : Allgemeine Hinweise: Technische Mechanik III WiSe 0 6.0.0 Nae : Vornae : Matrikelnuer : Klausurnuer : Aufgabe Punkte 9 0 50 Allgeeine Hinweise: alle Blätter it Naen und Matrikelnuer beschriften! keine grüne oder rote Farbe

Mehr

Probe-Klausur Technische Mechanik B

Probe-Klausur Technische Mechanik B Haburg, den 8.. Prof. Dr.-Ing. habil. Thoas Kletschkowski Hochschule für Angewandte Wissenschaften Haburg Fakultät Technik und Inforatik Departent Fahreugtechnik und Flugeugbau Berliner Tor 9 99 Haburg

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Eine Kugel (Masse m 1 ) bewegt sich in Punkt A mit der initialen Geschwindigkeit v A unter dem Winkel γ zur Horizontalen. Nach dem Auftreffen auf

Mehr

Übung zu Mechanik 3 Seite 61

Übung zu Mechanik 3 Seite 61 Übung zu Mechanik 3 Seite 61 ufgabe 105 Ein Massenpunkt om Gewicht G fällt aus der Höhe h auf eine federnd gestützte Masse om Gewicht G. Um welchen etrag h wird die Feder (Federkonstante c) maximal zusammengedrückt

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung

Mehr

c) Um etwa wie viel muss die Leistung des Motors erhöht werden, um die Höchstgeschwindigkeit eines Fahrzeugs zu verdoppeln?

c) Um etwa wie viel muss die Leistung des Motors erhöht werden, um die Höchstgeschwindigkeit eines Fahrzeugs zu verdoppeln? Station A Luftwiderstand Ein Fahrzeug it der Masse = 1000 kg, einer Querschnittsfläche on A = 1,5 ² und eine cw-wert on cw = 0,4 fährt it der Geschwindigkeit auf ebener Strecke. a) Berechne die Luftwiderstandskraft

Mehr

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Prof Dr-Ing Ams Klausur Technische Mechanik C 06/0/1 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

3. Systeme von starren Körpern

3. Systeme von starren Körpern Systeme von starren Körpern lassen sich folgendermaßen berechnen: Die einzelnen starren Körper werden freigeschnitten. Für jeden einzelnen Körper werden die Bewegungsgleichungen aufgestellt. Die kinematischen

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

die Eigenfrequenz des Systems für Drehschwingungen um den Punkt A und 20 m

die Eigenfrequenz des Systems für Drehschwingungen um den Punkt A und 20 m ufgabensalung Dynaik ufgabe Der nachfolgen argestellte Einassenschwinger soll untersucht weren. Das Syste besteht aus eine en Balken it er Masse, eine Stab un eine viskosen Däpfer. Berechnen Sie a.) ie

Mehr

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Klausur Technische Mechanik C 04/0/ Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen,

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Klausur 2 Anmerkung: Diese Klausur enthält 9 Aufgaben, davon eine Multiple

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 11/02/14 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt

Mehr

PHYSIK I. Sommersemester 2007

PHYSIK I. Sommersemester 2007 Testprüfung, Musterlösung 1. Einfache Mechani Die Perle hat nur einen Freiheitsgrad, sie ann sich nur entlang des Drahtes bewegen. Wir bezeichnen den Abstand der Perle von der Drehachse it r. Auf die Perle

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Wiederholung Physik I - Mechanik

Wiederholung Physik I - Mechanik Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV

ERGEBNISSE TECHNISCHE MECHANIK III-IV ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern SS 213, 23.7.213 1. Aufgabe: (TMIII) y C z x A ω B D b r a Im skizzierten System dreht sich die KurbelAB (Länger)

Mehr

Besprechung am

Besprechung am PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2015/16 Übungsblatt 8 Übungsblatt 8 Besprechung am 08.12.2015 Aufgabe 1 Trouble with Rockets: Eine Rakete mit einer anfänglichen Masse M

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung

Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung 1. Trapolinspringer I Diagra unten siehst du in Abhängigkeit von der Höhe die Energieforen eines Trapolinspringers, der sich in unterschiedlichen

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

Ergänzungsübungen zur Vorlesung Technische Mechanik 2 Teil 2 -Kinematik und Kinetik-

Ergänzungsübungen zur Vorlesung Technische Mechanik 2 Teil 2 -Kinematik und Kinetik- Technische Mechanik Teil Kineatik und Kinetik Ergänzungsübungen zur Vorlesung Technische Mechanik Teil -Kineatik und Kinetik- Technische Mechanik Teil Kineatik und Kinetik Aufgabe 1: Ein KFZ wird konstant

Mehr

Beachten sie bitte die Punkteverteilung

Beachten sie bitte die Punkteverteilung Tutor oder Tutorium: Semester: Fachrichtung: Beachten sie bitte die Punkteverteilung Aufgabe Punkte 1 7 2 11 3 6 4 9 5 7 Gesamt 40 Nützliche Formeln und Konstanten: Volumenelement Zylinderkoordinaten:

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte) KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen

Mehr

Übungen zur Theoretischen Physik I: Mechanik

Übungen zur Theoretischen Physik I: Mechanik Prof Dr H Friedrich Physik-Departent T30a Technische Universität München Blatt 4 Übungen zur Theoretischen Physik I: Mechanik (Abgabe schriftlich, in der Übungsgruppe in der Woche vo 805-2205) Betrachten

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Kapitel 5 Weitere Anwendungen der Newton schen Axiome

Kapitel 5 Weitere Anwendungen der Newton schen Axiome Kapitel 5 Weitere Anwendungen der Newton schen Axiome 5.1 Reibung 5.2 Widerstandskräfte 5.3 Krummlinige Bewegung 5.4 Numerische Integration: Das Euler-Verfahren 5.5 Trägheits- oder Scheinkräfte 5.6 Der

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Klausur 2 Kurs 11Ph1e Physik

Klausur 2 Kurs 11Ph1e Physik 2-2-06 Klausur 2 Kurs Phe Physik Lösung Ein stromdurchflossener Leiter ist so in einem Magnetfeld mit konstanter Feldstärke B aufgehängt, dass der Strom überall senkrecht zu den magnetischen Feldlinien

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 05/08/13 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

Technische Mechanik III

Technische Mechanik III epetitoriu Technische echanik III Version 3., 09.0.00 Dr.-In. L. Pannin Institut für Dynaik und Schwinunen Gottfried Wilhel Leibniz Universität Hannover Dieses epetitoriu soll helfen, klassische Aufabentypen

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Probeklausur - Lösung Technische Universität München 1 Fakultät für Physik 1. Wilhelm Tell (13 Punkte) Wilhelm Tell will mit einem Pfeil (m

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Übung zu Mechanik 1 Seite 50

Übung zu Mechanik 1 Seite 50 Übung zu Mechanik 1 Seite 50 Aufgabe 83 Eine quadratische Platte mit dem Gewicht G und der Kantenlänge a liegt wie skizziert auf drei Böcken, so daß nur Druckkräfte übertragen werden können. Welches Gewicht

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Formelsammlung. Mechanik 2. made by professionals. May 24, c 2017 easymech

Formelsammlung. Mechanik 2. made by professionals. May 24, c 2017 easymech Formelsammlung Mechanik 2 made by professionals www.easymech.at office@easymech.at May 24, 2017 c 2017 easymech Kinematik 1. Relativkinematik 1.1. Absolutgeschwindigkeit: v P = v F + v R 1.1.1. Führungsgeschwindigkeit:

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 214/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

3. Erzwungene Schwingungen

3. Erzwungene Schwingungen 3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:

Mehr

Ferienkurs Experimentalphysik Übung 2 - Lösungsvorschlag

Ferienkurs Experimentalphysik Übung 2 - Lösungsvorschlag Ferienkurs Experimentalphysik 1 2011 Übung 2 - Lösungsvorschlag 1. Elastischer Stoß a) Ein Teilchen der Masse m 1 stößt zentral und elastisch mit einem im Laborsystem ruhenden Teilchen der Masse m 2. Wie

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

Besprechung am

Besprechung am PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2014/15 Lösung Übungsblatt 8 Lösung Übungsblatt 8 Besprechung am 02.11.2014 Aufgabe 1 Impulserhaltung : Zwei Personen der Massen m 1 und

Mehr

Physik I - Schriftliche Sessionsprüfung Winter 2017 Dienstag, 31. Januar 2017, 9:00 12:00, HIL G41/HIL G15

Physik I - Schriftliche Sessionsprüfung Winter 2017 Dienstag, 31. Januar 2017, 9:00 12:00, HIL G41/HIL G15 Physik I - Schriftliche Sessionsprüfung Winter 2017 Dienstag, 31. Januar 2017, 9:00 12:00, HIL G41/HIL G15 Bitte zur Kenntnis nehmen: Es befinden sich insgesamt 5 Aufgaben auf 9 SEITEN. Es können insgesamt

Mehr

k = 1, 2,..., n (4.44) J k ϕ

k = 1, 2,..., n (4.44) J k ϕ 236 4 Torsionsschwinger und Längsschwinger ( J1 J2) M J M J2/ J1= 02, 10 0,5 8 1 + 6 2 max 4 5 2 10 2 bezogenes Moment 0 Bild 45 1 2 5 10 relatives Spiel ctϕ S/ M10 Maximales Moment infolge Spiel im Antrieb

Mehr

Arbeit, Leistung und Energie

Arbeit, Leistung und Energie Arbeit, Leistung und Energie Aufgabe 1 Ein Block kann reibungsfrei über einen ebenen Tisch gleiten. Sie üben eine Kraft von 5 Newton in Richtung 37 von der Waagrechten aus. Sie üben diese Kraft aus, während

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

ZUGELASSENE HILFSMITTEL:

ZUGELASSENE HILFSMITTEL: ZUGELASSENE HILFSMITTEL: Täuschungsversuche führen zum Ausschluss und werden als Fehlversuch gewertet. Mobiltelefone und andere elektronische Geräte sind nicht zugelassen, bitte vom Tisch räumen. Mit Annahme

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Probeklausur WS 2014/2015 27.03.2015 Bearbeitungszeit: 90 Minuten Aufgabe 1: Romeo und Julia (ca. 15 min) Julia befindet

Mehr

Prüfung aus Physik III (PHB3) Freitag 24. Juli 2009

Prüfung aus Physik III (PHB3) Freitag 24. Juli 2009 Fachhochschule München FK06 Soerseester 2009 Prüfer: Prof. r. Maier Zweitprüfer: Prof. r. Herberg Prüfung aus Physik III (PHB3) Freitag 24. Juli 2009 Zugelassene Hilfsittel: Forelsalung (Bestandteil der

Mehr

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk.

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk. TechMech Zusammenfassung Ebene & räumliche Bewegungen Drehmoment M [Nm] Andreas Biri, D-ITET 31.07.13 1. Grundlagen Eine starre ebene Bewegung ist entweder eine Translation: alle Punkte haben parallele

Mehr

1. Geradlinige Bewegung

1. Geradlinige Bewegung 1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei

Mehr

b) Bestimmen Sie den Geschwindigkeitsbetrag beim Auftreffen in B und die Beschleunigung

b) Bestimmen Sie den Geschwindigkeitsbetrag beim Auftreffen in B und die Beschleunigung Institut für Mechanik Prof. Dr.-Ing. habi. P. Betsch Prof. Dr.-Ing. habi. Th. Seeig Prüfung in Dynamik 11. März 25 Aufgabe 1 (ca. 20 % der Gesamtpunkte) A α 00 11 00 11 g β B Ein Motorschitten, angenommen

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik Name: Vorname(n): Matrikelnummer: Bitte... SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 16.03.018 Arbeitszeit: 150 min Aufgabe

Mehr

F b. Abbildung 1: Fachwerk

F b. Abbildung 1: Fachwerk AUTOMATION & CONTROL INSTITUTE INSTITUT FÜR AUTOMATISIERUNGS- & REGELUNGSTECHNIK VU Modellbildung Übungsbeispiele: Mechanische Systeme Beispiel 1: Fachwerke bezeichnen eine im Bauingenieurwesen oftmals

Mehr

EXPERIMENTALPHYSIK I - 4. Übungsblatt

EXPERIMENTALPHYSIK I - 4. Übungsblatt Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle

Mehr

Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand

Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand Urs Wyder, 4057 Basel U.Wyder@ksh.ch Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand Hinweis: Verwenden Sie in Formeln immer die SI-Einheiten Meter, Kilogramm und Sekunden resp. Quadrat- und Kubikmeter!

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln ) Physik ET, WS 0 Aufgaben mit Lösung 6. Übung KW 49) 6. Übung KW 49) Aufgabe M 5. Zwei Kugeln ) Zwei Kugeln mit den Massen m = m und m = m bewegen sich mit gleichem Geschwindigkeitsbetrag v aufeinander

Mehr

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 )

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 ) Aufgabe: Schwingung An eine Stahlfeder wird eine Kugel mit der Masse 500g gehängt. Federkraft: F 1 -b (b 50 N/m) Gravitationskraft: F mg (g 9,8 m/s ) m 500g F ma W 1 F( ) d W kin 1 mv b ( t + ϕ ) Acos(

Mehr

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2:

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2: Aufgabe 1: Ein Autoreifen habe eine Masse von 1 kg und einen Durchmesser von 6 cm. Wir nehmen an, dass die gesamte Masse auf dem Umfang konzentriert ist (die Lauffläche sei also viel schwerer als die Seitenwände

Mehr

Lösung VII Veröffentlicht:

Lösung VII Veröffentlicht: 1 Konzeptionelle Fragen (a) Kann Haftreibung Arbeit verrichten? Wenn Haftreibung intern ist, ist sie eine verlustfreie Kraft und leistet keine Arbeit am gewählten System. Als externe Kraft kann Haftreibung

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr