Probe-Klausur Technische Mechanik B
|
|
|
- Hans Maier
- vor 9 Jahren
- Abrufe
Transkript
1 Haburg, den 8.. Prof. Dr.-Ing. habil. Thoas Kletschkowski Hochschule für Angewandte Wissenschaften Haburg Fakultät Technik und Inforatik Departent Fahreugtechnik und Flugeugbau Berliner Tor 9 99 Haburg Probe-Klausur Technische Mechanik B Bearbeitungseit: 4 in (Das ist nur ur Orientierung, wenn Sie proben!) Zugelassene Hilfsittel: Schreibwerkeuge, PAPIE (Nae+Matrikelnuer), Lineal, Geo-Dreieck, Winkelesser, EIN Buch ur Technischen Mechanik (. B.: Broundt, Sachs, Sachau, oder ), EINE Matheatische Forelsalung (. B.: Stöcker, ), EINE handgeschriebene Forelsalung (keine Kopie!) auf axial ZWEI DIN-A4-Seiten (beidseitig), Taschenrechner Nae: Vornae: Matrikelnuer: Aufgabe Σ Erreichbare Punkte Erreichte Punkte Note (in Zahlen): Note (in Worten): Datu: Unterschrift des Prüfers Datu der Einsichtnahe Unterschrift des Prüflings
2 Seite von 8 Aufgabe (3 Punkte) Die ebene Kreisbewegung einer Punktasse wird durch den Ortsvektor r ( t) ( t) e ( t) ( t) t unter Verwendung der itrotierenden, orthonoralen Basis ( ), ϕ ( ), beschrieben. ω ( t) ω e Gegeben:, ω it e t e t e ( ) ist der senkrecht ur Ebene stehende Winkelgeschwindigkeistvektor. Gesucht: Berechnen Sie die Koordinaten des Geschwindigkeitsvektors beüglich der Basis e t, e t, e! ( ( ) ϕ ( ) ) v Ergebnis: v v t e t e t e v T ϕ ϕ v ( ) ( ) ( ) it v v ϕ Aufgabe (3 Punkte) e x ( ) e y e β t y e x Die in der Ebene e, e, e Basis ( x y ) Gegeben: e, e, e x y ( x y ) y itrotierende Basis e ( t), e, e ( t) u den Winkel β ( t) verdreht. und β ( t ) β( t) e e ist gegenüber der raufesten Gesucht: Geben Sie die Basistransforation für den Übergang von ( ex, ey, e ) ( ( ),, e x t ey e ( t) ) in Abhängigkeit des Winkels β ( t) an! Ergebnis: T auf Technische Mechanik B, HAW Haburg, Prof. Dr.-Ing. habil. Kletschkowski, Haburg, den 8..
3 Seite 3 von 8 Aufgabe 3 (3 Punkte) Eine Punktasse der Größe ruht unächst auf einer u x kopriierten Feder der Steifigkeit k, die sich nach Entfernen einer Arretierung schlagartig entspannt. Infolge dessen überwindet die Punktasse die Fallbeschleunigung g und steigt senkrecht nach Oben. Gegeben: g, k, Gesucht: Wie hoch kann die Punktasse aufsteigen, bevor sie wieder hinab fällt? Ergebnis: h Aufgabe 4 ( Punkte) U A Ω A Ein unwuchtiges ad dreht it der konstanten Winkelgeschwindigkeit Ω. Die Unwucht U soll durch wei Ausgleichsassen A, die auf der Hälfte des adius in eine Winkelversat von anubringen sind, ausgeglichen werden. Gegeben: Ω,, U Gesucht: Berechnen Sie die Größe der Ausgleichsassen A! Ergebnis: A Technische Mechanik B, HAW Haburg, Prof. Dr.-Ing. habil. Kletschkowski, Haburg, den 8..
4 Seite 4 von 8 Aufgabe 5 (3 Punkte) Eine Punktasse der Größe rutscht eine gegenüber der Vertikalen u den Winkel αgeneigte Ebene hinauf. Der eibungskontakt wischen der Masse und der Ebene ist durch den eibungskoeffiienten µ charakterisiert. Weiterhin ist die Masse über ein Seil it der Masse verbunden, die sich infolge der Erdaniehung (ohne Kontakt u Hang) auf den Boden ubewegt. Das Seil ist undehnbar und biegeschlaff. Es liegt parallel ur Ebene (ohne diese u berühren) und wird reibungsfrei über eine olle ugelenkt. Danach verläuft es senkrecht ur Vertikalen und endet an der Masse. Gegeben: g,,, α, µ Gesucht: Berechnen Sie die Beschleunigung der Masse! Welcher Bedingung uss genügen, dait sich auch wirklich die Ebene hinauf bewegt? Ergebnis: ɺɺ x > Aufgabe 6 (4 Punkte) Eine starre Wale it der Masse und de adius rollt infolge der Erdaniehung ohne u rutschen eine u den Winkel α.geneigte schiefe Ebene hinab. Gegeben: g,,, α Gesucht: Geben Sie das Drehwinkel-Zeit-Geset an! Ergebnis: ϕ ( t) Technische Mechanik B, HAW Haburg, Prof. Dr.-Ing. habil. Kletschkowski, Haburg, den 8..
5 Seite 5 von 8 Aufgabe 7 (3 Punkte) Eine reibungsfrei, drehbar gelagerte starre Wale it der Masse und de adius ϕ( t) wird durch die Punktasse, die sich infolge der Erdaniehung hinab bewegt, in Bewegung gesett, da ein an befestigtes Seil (biegeschlaff und undehnbar) ohne u rutschen auf der Wale abrollt. g Gegeben: g, h,,, Gesucht: Stellen Sie die Bewegungsgleichung beüglich der Koordinate x( t ) it Hilfe des Energiesates auf! x( t) h Ergebnis: ɺɺ ( t) x Aufgabe 8 (3 Punkte) Die freien Schwingungen eines technischen Syste seien durch den an die Anfangsbedingungen x x t v xɺ t angepassten Zeitverlauf ( ) und ( ) D t v D x x( t) e ω x cos t + ω ω + sin ωt ω it ω π T ω D beschrieben. Gegeben: T, v, x, ω Gesucht: Bestien Sie den Däpfungsgrad D so, dass die Auslenkung x( t ) nach einer Zeitspanne, die de Zehnfachen der Periodendauer T entspricht, nur noch x groß ist! Ergebnis: D Technische Mechanik B, HAW Haburg, Prof. Dr.-Ing. habil. Kletschkowski, Haburg, den 8..
6 Seite 6 von 8 Aufgabe 9 (4 Punkte) x( t) k k k k Das oben dargestellte Feder-Masse-Syste führt freie Horiontal-Schwingungen u die statische x t, aus. Die Schwingungen seinen klein, Schrägstellungen in uhelage, gegeben durch ( ) den Federn treten nicht auf und alle Federn sind für x( t ) spannungsfrei. Gegeben: k, Gesucht: Berechnen Sie die Eigenkreisfrequen! Ergebnis: ω Aufgabe (6 Punkte) Der rechts dargestellte biegeelastische Balken (Biegesteifigkeit EI) ist durch die dreiecksförige Streckenlast (Maxialwert q) belastet. Der Balken ist an seine linken Ende fest eingespannt und rechts gelenkig gelagert. Die Länge des Balkens ist a. Bekannt ist der Schnittoentenverlauf M ( x ) in Abhängigkeit von B. A x EI a q B q 6 a 3 3 Gegeben: a, EI, q, M ( x) x + q a x qa + B ( a x) Gesucht: Berechnen Sie it Hilfe des Sates von Castigliano die Lagerreaktion in B! Ergebnis: B Technische Mechanik B, HAW Haburg, Prof. Dr.-Ing. habil. Kletschkowski, Haburg, den 8..
7 Seite 7 von 8 Aufgabe (6 Punkte) Der rechts dargestellte biegeelastische Balken (Biegesteifigkeit EI) ist durch die dreiecksförige Streckenlast (Maxialwert q) belastet. Der Balken ist an seine linken Ende fest eingespannt. Die Länge des Balkens ist a. A x EI a q Gegeben: a, EI, q Gesucht: Berechnen Sie, ausgehend von der Streckenlast, die Gleichung der elastischen Linie w x! Geben Sie alle für die Bestiung der Integrationskonstanten benötigten ( ) andbedingungen an! w( x ) andbedingung : Ergebnis: andbedingung : andbedingung 3: andbedingung 4: Technische Mechanik B, HAW Haburg, Prof. Dr.-Ing. habil. Kletschkowski, Haburg, den 8..
8 Seite 8 von 8 Aufgabe (6 Punkte) q Der rechts dargestellte biegeelastische Träger (Dehnsteifigkeit EA, Biegesteifigkeit EI) ist durch die dreiecksförige Streckenlast (Maxialwert q) belastet. Der Träger ist an seine Fußpunkt fest eingespannt. Die Länge des Balkenabschnitte ist a. Der Balken hat einen quadratischen Querschnitte (Kantenlänge k) x a a Gegeben: a, EA, EI, k, q Gesucht: Berechnen Sie a) die axiale Biegespannung i horiontalen Balkenabschnitt! b) die axiale Noralspannung i Träger! Ergebnis: a) b) Aufgabe 3 (3 Punkte) θ Zwei starre Scheiben sind, wie skiiert, it eine drehelastischen Wellenstück (Torsionssteifigkeit GI, Durchesser D, Länge L) verbunden und jeweils u den Winkel θ gegenüber der Vertikalen verdreht. P θ r r GI P Gegeben: D, L, GI p, θ Gesucht: Berechnen Sie a) das Torsionsoent i Wellenstück! b) die axiale Schubspannung infolge Torsion! Ergebnis: a) b) Technische Mechanik B, HAW Haburg, Prof. Dr.-Ing. habil. Kletschkowski, Haburg, den 8..
Technische Mechanik III
INSTITUT FÜR MECHANIK Technische Universität Darstadt Prüfung Technische Mechanik III Prof. W. Becker Prof. D. Gross Prof. P. Hagedorn Prof. R. Markert Jun. Prof. R. Müller a 27. Februar 2006 (Nae) (Vornae)
Aufgabe 1: (18 Punkte)
MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei
28. August Korrektur
Institut für Technische und um. Mechanik Technische Mechanik II/III Profs. P. Eberhard, M. Hanss SS 2014 P 2 28. August 2014 Bachelor-Prüfung in Technischer Mechanik II/III Aufgabe 1 (6 Punkte) Im skiierten
Technische Mechanik III WiSe Name : Vorname : Matrikelnummer : Klausurnummer : Allgemeine Hinweise:
Technische Mechanik III WiSe 0 6.0.0 Nae : Vornae : Matrikelnuer : Klausurnuer : Aufgabe Punkte 9 0 50 Allgeeine Hinweise: alle Blätter it Naen und Matrikelnuer beschriften! keine grüne oder rote Farbe
Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)
Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:
Übung zu Mechanik 3 Seite 36
Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt
Klausur Technische Mechanik C
Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner
Übung zu Mechanik 1 Seite 65
Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus
Prüfung - Technische Mechanik II
Prüfung - Technische Mechanik II SoSe 2013 2. August 2013 FB 13, Festkörpermechanik Prof. Dr.-Ing. F. Gruttmann Name: Matr.-Nr.: Studiengang: Platznummer Raumnummer Die Aufgaben sind nicht nach ihrem Schwierigkeitsgrad
Übung zu Mechanik 3 Seite 48
Übung zu Mechanik 3 Seite 48 Aufgabe 81 Vor einer um das Maß f zusammengedrückten und verriegelten Feder mit der Federkonstanten c liegt ein Massenpunkt der Masse m. a) Welchen Wert muß f mindestens haben,
ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern
ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 16/17, 25.2.217 1. Aufgabe: (TM3) a g y a S v S ϕ x m P A 1111111 1111111 1111 1111 Die abgebildete homogene
5. Kritische Drehzahl
Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit
τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)
Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung
TECHNISCHE MECHANIK III (DYNAMIK)
Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:
() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2
Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.
ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern
ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv
Probeklausur zur T1 (Klassische Mechanik)
Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte
Übung zu Mechanik 4 Seite 28
Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
Blatt 10. Hamilton-Formalismus- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus
Klausur Technische Mechanik
Klausur Technische Mechanik 05/08/13 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die
KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.
KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.
Übungen zu Lagrange-Formalismus und kleinen Schwingungen
Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der
06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:
Prof Dr-Ing Ams Klausur Technische Mechanik C 06/0/1 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf
Biegelinie
3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung
4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik
c 2 B 2 Schwerpunkt S P 2 S P 1 c 1 m, J O O B 1 Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.4-1 Aufgabenstellung: 4. Drehschwinger Der Drehschwinger besteht aus einem starren Körper, der im Punkt
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem
Klausur Technische Mechanik
Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 11/02/14 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt
KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)
KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen
Übungen zur Theoretischen Physik I: Mechanik
Prof Dr H Friedrich Physik-Departent T30a Technische Universität München Blatt 4 Übungen zur Theoretischen Physik I: Mechanik (Abgabe schriftlich, in der Übungsgruppe in der Woche vo 805-2205) Betrachten
Klausur Technische Mechanik C
Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner
Übung zu Mechanik 3 Seite 7
Übung zu Mechanik 3 Seite 7 Aufgabe 7 Gegeben ist der skizzierte Brückenträger aus geschweißten Flachstählen. Er wird im ungünstigsten Lastfall durch die Schnittgrößen max N 1, max Q 3 und max M 2 beansprucht.
04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:
Klausur Technische Mechanik C 04/0/ Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen,
Übung zu Mechanik 1 Seite 50
Übung zu Mechanik 1 Seite 50 Aufgabe 83 Eine quadratische Platte mit dem Gewicht G und der Kantenlänge a liegt wie skizziert auf drei Böcken, so daß nur Druckkräfte übertragen werden können. Welches Gewicht
Theoretische Physik: Mechanik
Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe
Übungen zu Lagrange-Formalismus und kleinen Schwingungen
Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf
Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch
Vorkurs Matheatik-Physik, Teil 8 c 26 A. Kersch Dynaik. Newton sche Bewegungsgleichung Reaktionsgesetz F geändert Der Bewegungszustand eines Körpers wird nur durch den Einfluss von (äußeren) Kräften F
Übung zu Mechanik 3 Seite 61
Übung zu Mechanik 3 Seite 61 ufgabe 105 Ein Massenpunkt om Gewicht G fällt aus der Höhe h auf eine federnd gestützte Masse om Gewicht G. Um welchen etrag h wird die Feder (Federkonstante c) maximal zusammengedrückt
2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung
140 Kap. 2.4 Biegung Aufgabe 2 Ein exzentrischer Kreisring hat die Halbmesser R = 20 cm, r = 10 cm und die Exzentrizität e = 5 cm. Man suche die Hauptträgheitsmomente in Bezug auf seinen Schwerpunkt. 2.4.2
5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation
Inhalt 1 4 Kinematik der Translation 4.1 Koordinatensysteme 4. Elementare Bewegungen 5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation 6.1 Die Newton sche Aiome 6.1.1 Erstes Newton sches
Übungsaufgaben Systemmodellierung WT 2015
Übungsaufgaben Systemmodellierung WT 2015 Robert Friedrich Prof. Dr.-Ing. Rolf Lammering Institut für Mechanik Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg Holstenhofweg 85, 22043 Hamburg
Klausur Technische Mechanik
Institut für Mechanik und Fluiddynamik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 10/02/10 Aufgabe S1 Gegeben ist ein durch eine Pendelstütze und ein Festlager A abgestütztes Fachwerk.
Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )
Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.
2. Flächenträgheitsmomente
. Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten
2. Flächenträgheitsmomente
. Flächenträgheitsmomente.1 Definitionen. Zusammengesette Querschnitte.3 Hauptachsen Prof. Dr. Wandinger 3. Balken TM 3.-1 .1 Definitionen Flächenträgheitsmomente: Die ur Berechnung der Spannungen eingeführten
Musterlösungen (ohne Gewähr)
Herbst 010 Seite 1/0 rage 1 ( Punkte) Ein masseloser Balken der Länge l stützt sich wie skizziert über einen masselosen Stab auf dem Mittelpunkt P einer Rolle ab. Ein horizontal verlaufendes Seil verbindet
Name: Gruppe: Matrikel-Nummer:
Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober
Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)
Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der
Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme
Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General
Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:
echnische Mechanik III Übung WS 2002 / 2003 Klausur eil 1 Abteilung für obotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer el.: +43/732/2468-9786 Fax: +43/732/2468-9792 [email protected] Sekretariat:
Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler
Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................
Blatt 03.1: Scheinkräfte
Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/
2.2 Arbeit und Energie. Aufgaben
Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.
Biegelinie
3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung
Blatt 6. Schwingungen- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator
Fallender Stein auf rotierender Erde
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen
1. Ebene gerade Balken
1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken
Technische Mechanik III
epetitoriu Technische echanik III Version 3., 09.0.00 Dr.-In. L. Pannin Institut für Dynaik und Schwinunen Gottfried Wilhel Leibniz Universität Hannover Dieses epetitoriu soll helfen, klassische Aufabentypen
(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010
2. Klausur zur Theoretischen Physik I (Mechanik)
2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius
E1 Mechanik Lösungen zu Übungsblatt 2
Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der
9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009
9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit
Lösungen zu Aufgaben Kräfte, Drehmoment c 2016 A. Kersch
Lösungen zu Aufgaben Kräfte, Drehmoment c 2016 A. Kersch Freischneiden Was zeigt die Waage? Behandeln Sie die Person auf der Plattform auf der Waage als eindimensionales Problem. Freischneiden von Person
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
Theoretische Physik I: Weihnachtszettel Michael Czopnik
Theoretische Physik I: Weihnachtszettel 21.12.2012 Michael Czopnik Aufgabe 1: Rudolph und der Weihnachtsmann Der Weihnachtsmann (Masse M) und sein Rentier Rudolph (Masse m) sind durch ein Seil mit konstanter
Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach)
Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Klasse 7Na (Daniel Oehry) Name: Diese Arbeit umfasst vier Aufgaben Hilfsmittel: Dauer: Hinweise: Formelsammlung, Taschenrechner (nicht
Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte
1 Aufgaben FB Maschinenbau Institut für Mechanik FG Maschinendynamik Prof. Dr.-Ing. H. Irretier Dipl.-Ing. A. Stein Klausur Schwingungstechnik 0. September 011 Name Vorname Matr. - Nr. Punkte =50 Aufgabe
2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay
ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +
PN 1 Klausur Physik für Chemiker
PN 1 Klausur Physik für Chemiker Prof. T. Liedl Ihr Name in leserlichen Druckbuchstaben München 2011 Martrikelnr.: Semester: Klausur zur Vorlesung PN I Einführung in die Physik für Chemiker Prof. Dr. T.
Lösung Serie 3 (Modellieren (SIMULINK + MATLAB))
Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Serie 3 (Modellieren (SIMULINK + MATLAB Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten
Technische Universität Berlin. Abt. I Studierenden Service Studienkolleg / Preparatory Course
Technische Universität Berin Abt. I Studierenden Service Studienkoeg / Preparatory Course Schriftiche Prüfung zur Feststeung der Eignung ausändischer Studienbewerber zum Hochschustudium im Lande Berin
Experimentalphysik 1
Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg ([email protected]) Katharina Scheidt ([email protected]) Aufgabe 1: Superposition
Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen
Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit
Formelsammlung: Physik I für Naturwissenschaftler
Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]
die Eigenfrequenz des Systems für Drehschwingungen um den Punkt A und 20 m
ufgabensalung Dynaik ufgabe Der nachfolgen argestellte Einassenschwinger soll untersucht weren. Das Syste besteht aus eine en Balken it er Masse, eine Stab un eine viskosen Däpfer. Berechnen Sie a.) ie
1. Grundlagen der ebenen Kinematik
Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Musterlösung 40 % der Punkte werden zum Bestehen benötigt Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte:
Nachklausur zur Vorlesung Physik I für Chemiker (WS 2017/18)
Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Nachklausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Datum: Montag, 19.03.2017, 10:00-12:00
Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann,
Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, 09.09. 2004 Bearbeitungszeit: 90 min Umfang: 7 Aufgaben Gesamtpunktzahl: 45 Erklärung: Ich erkläre mich damit einverstanden,
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
3. Erzwungene Schwingungen
3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:
Übung zu Mechanik 2 Seite 62
Übung zu Mechanik 2 Seite 62 Aufgabe 104 Bestimmen Sie die gegenseitige Verdrehung der Stäbe V 2 und U 1 des skizzierten Fachwerksystems unter der gegebenen Belastung! l l F, l alle Stäbe: EA Übung zu
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06
Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,
1.2 Räumliche Bewegung. Aufgaben
Technische Mechanik 3 1.2-1 Prof. Dr. Wandinger Aufgabe 1 1.2 Räumliche Bewegung Aufgaben Ein Flugzeug fliegt mit der Geschwindigkeit v F gegenüber der Luft einen angezeigten Kurs von 30. Der Wind weht
Übungsaufgaben zur Hamilton-Mechanik
Übungsaufgaben zur Hamilton-Mechanik Simon Filser 24.9.09 1 Parabelförmiger Draht Auf einem parabelförmig gebogenen Draht (z = ar² = a(x² + y²), a = const), der mit konstanter Winkelgeschwindigkeit ω 0
Rheinische Fachhochschule Köln
Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello Semester Klausur Datum Fach Urteil BM, Ing. K 8 11.7.14 Kinetik, Kinematik Genehmigte Hilfsmittel: Punkte Taschenrechner Literatur
Physik I Musterlösung 2
Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung
Repetitorium D: Starrer Körper
Fakultät für Physik T: Klassische Mechanik, SoSe 206 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis
Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.
1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der
Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte
T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach [email protected] Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.
Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]
Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.
Theoretische Physik I Mechanik Probeklausur - Lösungshinweise
Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,
