Allgemein. nichtlineare, zeit-(in)variante Systeme weakly-nonlinear time-(in)variant systems

Größe: px
Ab Seite anzeigen:

Download "Allgemein. nichtlineare, zeit-(in)variante Systeme weakly-nonlinear time-(in)variant systems"

Transkript

1 1 Allgemein Systeme (device under test, DUT): Elektro-akustische Systeme Abhör- oder Darbietungssräume Leicht Ziele: nichtlineare, zeit-(in)variante Systeme weakly-nonlinear time-(in)variant systems Erfassung System beschreibender Parameter Hohe Genauigkeit der Messung Kurze Messzeit, Hohe Reproduzierbarkeit Hoher Signalrauschabstand (signal-to-noise ratio, SNR)

2 2 Direkte Messung Direkte Messung der Amplitude und Phase: Vanderkooy (1986) Einfache Messsysteme (stepped-sine method) Hohe Energieübertragung Messung nur im stationären Zustand: Sehr lange Dauer bei hoher Frequenzauflösung

3 3 Signal: Impuls: Direkte Impulsmessung Impulsantwort Sehr direkt verfügbar wenig Energie im Signal Sehr hoher Crest-Faktor: Sehr niedrige SNR C= A A EFF =T IR Abhilfe: Wiederholung und Mittelung Müller & Massarani (2001) Periodic Impulse Response (PIR) Periodic Impulse Excitation (PIE) Verdoppelung der Wiederholungen: +3dB SNR

4 4 1-Kanal-FFT Signal: Weißes Rauschen: Amplitudenspektrum: bei f = 0 Hz: 0, sonst: 1 Phasenspektrum: zufällig (gleich verteilt) Im Zeitbereich: zufällig, Gauß'sche Verteilung Crest-Faktor: 1-Kanal-FFT: Nur Amplitudengang erfassbar 2-Kanal-FFT: C= ^A A EFF Gesamte Identifikation Crest-Faktor Wahrscheinlichkeit 1 32,00% 2 4,80% 3 0,37% 3,3 0,10% 3,9 0,01% 4 63 ppm 4,4 10 ppm 4,9 1 ppm 6 2 ppb

5 5 2-Kanal-FFT Erfassung der Amplitude und der Phase H f = Y f X f Müller & Massarani (2001)

6 6 algorithmen in aku stik und compute rmusik Pseudo-Zufallsfolgen Weißes Rauschen: völlig dekorreliert: r xx [n]= [n] Aus der Systemtheorie: r xy [n]= h r xx [n] Mit einem dekorrelierten Signal: r xy [n]=h[n] Ersatz für weißes Rauschen: dekorrelierte Signale Gesucht: Dekorreliertes Signal Deterministisch Niedriger Crest-Faktor binäre Pseudo-Zufallsfolgen

7 7 Golay Codes Zwei binäre Pseudo-Zufallsfolgen: a 1 =[1,1] Zirkuläre Autokorrelation: L... Länge der Folge, b 1 =[1, 1] a n 1 =[a n, b n ] b n 1 =[a n, b n ] a 2 =[1,1,1, 1] b 2 =[1,1, 1,1 ] r xx [n]=r aa [n] r bb [n]=2l [n] L=2 N Zirkuläre Kreuzkorrelation: F {y a [n]} F {a[n]}h F * {a[n]} F {b[n]} H F * {b[n]}=2l H F {y b [n]} r aa [n] r bb [n] r xx [n] Zahorik (2000)

8 8 algorithmen in aku stik und compute rmusik Golay Codes Messprozedur: Anregung mit Folge a: k Wiederholungen (k>1) Aufnahme und Mittelung über die Wiederholungen 2 bis k Eine Periode abwarten Anregung mit Folge b: k Wiederholungen (k>1) Aufnahme und Mittelung über die Wiederholungen 2 bis k Kreuzkorrelation der Antworten mit der Anregungen Summation der Kreuzkorrelationen: Impulsantwort

9 9 Golay Codes Signal-to-noise ratio (SNR): Energie einzelnen Pulses: 1 Energie der Golay Codes: 2L Erhöhung der SNR in db: Wiederholung der Anregung: Mit jeder Verdoppelung steigt SNR um +3dB Länge der Codes: Mindestens gleich lang wie die zu erwartete IR Sonst time-aliasing in der IR 10log 2L

10 10 Maximum Length Sequence (MLS) Probleme der Golay-Codes: Zwei Messungen notwendig Probleme MLS: bei zeitvarianten Systemen Eine binäre Pseudo-Zufallsfolge Autokorrelation: r xx [n]= [n] 1 L 1 Einheitsimpuls Mit einem kleinen Offset Dunn & Hawksford (1993)

11 11 MLS Generierung: Schieberegister Z -1 2 Z -1 1 Z -1 0 x(n) Rückkopplung über EX-OR Länge der Sequenz: Insgesamt 2N Zustände Zustand 0 nicht zielführend Nicht geeignet für Radix-2-FFT-Algorithmus L=2 N 1 EXOR Ordnung N Abzapfung bei bit

12 12 MLS Berechnung der Impulsantwort: r xx [n]= [n] 1 L 1 r xy [n]=h[n] 1 L 1 n=0 N 1 r xy [n]=h[n] 1 L n=0 N 1 h[n] h[n] Mittelwert von h[n] = DC 1 1 L 1 = 1 L 1 L L 1 N 1 L L 1 n=0 r xy [n]=h[n] DC [1 1 L 1 ] r xy [n]= h r xx [n] h[n] 1 L 1 DC

13 13 MLS Berechnung der Kreuzkorrelation: Direkte Methode: Im Frequenzbereich: Fourier-Transformation Radix-2-FFT nicht möglich r xy [n]= 1 L 1 L 1 i=0 Andere FFT-Algorithmen möglich durch Faktorisierung der Länge (FFTW library) Darstellung in Matrizenform: Aus x[n] wird eine rechts-zirkuläre Matrix X Aus y[n] und r xy [n] werden Matrizen Y und R XY x[ i n mod L] y[i] R XY = 1 L 1 X Y Fast Hadamard Transformation: R HY =H 2 n Y

14 14 Fast Hadamard Transformation (FHT) Algorithmus ähnlich der DFT Butterfly, aber kein Bit-reversal Nur Additionen/Subtraktionen L log 2 L Operationen Hadamard-Matrix: R HY =H 2 n Y H 8 H 1 =[1] H 2 =[ ] H 2 n 1=[ H 2 n H 2 n H n] 2 n H =H n H 2 2 n 2 H 32

15 15 MLS Problem: MLS ergibt keine Hadamard-Matrix Lösung: Umformung der MLS-Matrix: X 2 n 1 =P 2 S 2 H 2 n S 1 P 1 P 1, P 2 S 1, S 2... Permutationsmatrizen... Begrenzungsmatrizen (supress) S 2 =[ ] 0 0 S 1 =[0 1] P 1 =[1 0] Borish & Angell (1983) R XY = 1 L 1 P 2 S 2{H 2 n[s 1 P 1 Y ]} r xy [n] h[n]

16 16 MLS Länge der MLS: Mindestens gleich lang wie die zu erwartete IR SNR: 10log L 1 höher als PIE Gleich wie bei Golay-Codes gleicher Länge Nur eine Folge: Mittelung der IR bei zeitvarianten Systemen Weitere Erhöhung der SNR: Verdoppelung der Länge: +3dB

17 17 Einfluss der Verzerrungen auf MLS MLS-Signal: LP-Filter, f=1khz Dunn & Hawksford (1993) IR des Filters nach Korrelation: Mit Verzerrung: Dunn & Hawksford (1993) d {x f [n]}= 10dB x[n] 3 Dunn & Hawksford (1993) Dunn & Hawksford (1993)

18 18 Einfluss der Verzerrungen auf MLS Fehlersignal e[n]=h d [n] h[n] h d [n]=r x f y[n] r dy [n] h d [n]=r xy [n]=r x f d y [n] e[n]=r xd [n] Fehler: Energieverteilung: x[n] 2 x[n] 5 Dunn & Hawksford (1993) Dunn & Hawksford (1993)

19 19 Einfluss der Verzerrungen auf MLS MLS-Länge verlängern (statt mehrfache Mittelung) Immunität gegenüber Verzerrungen: Immunität gegenüber Rauschen: I n = A Je nach System optimale Amplitude! I d = r 1 A L= 6dB L=0dB L= 6dB Verzerrungen OK! Rauschen Dunn & Hawksford (1993)

20 20 Inverse Repeated Sequence (IRS) Dämpfung gerader Verzerrungen: IRS: x[n L]= x[n] x [n]={ m[n], m[n], m[n]... MLS n gerade,0 n 2L n ungerade,0 n 2L 2L 1 r xy = 1 2 L 1 x[n] x[n k ] k =0 ={ r my[n], n gerade r my [n], n ungerade = [n] 1 n L 1 [n L] 0 n 2L Dunn & Hawksford (1993) Dunn & Hawksford (1993)

21 21 PIE, MLS, IRS Immunität gegenüber Verzerrungen: Filter: LP f = 1kHz Distortion :-20dB Länge: 2047 samples Dunn & Hawksford (1993) Auf distortion immunity normalisierte SNR: Dunn & Hawksford (1993)

22 22 Sweeps Probleme von MLS und IRS: Empfindlichkeit auf nichtlineare Verzerrungen Gesucht: Messung des linearen Teils Alle Harmonischen getrennt erfassbar Lösung: Sweeps: x t =sin [ f t ] linearer Sweep: f t = At exponentieller Sweep: f t = A e t / 1

23 23 linearer Sweep Sweeps Farina (2000) System: leicht nichtlinear x Konstanter Abstand zu den Harmonischen! Frequency Time

24 24 Time-Delay-Spectrometry Signal: Linearer Sweep x t =cos t x y Vanderkooy (1986) y R Antwort: y (t )= H (ω) cos [ωt+φ (ω)] y (t )= H (ω ) {cos (ωt)cos [ φ (ω ) ] sin (ω t )sin [ φ (ω ) ]} Demodulation + Tiefpassfilter: y I y R (t )= y (t )cos (ωt ) y I (t )= y (t ) [ sin (ωt )] y R (t )= H (ω ) { 1 2 cos [φ (ω ) ] [1+cos (2ωt) ] 1 2 sin (2ωt)sin [φ (ω ) ]} y R (t)= 1 2 H (ω) cos [φ(ω)] y I (t )= 1 2 H (ω) sin [φ(ω)]

25 25 Time-Delay-Spectrometry Frequenz des Generators = Frequenz des Demodulators Lösung: Anregung verzögern Sonst: Vorteil: Artefakte nach LP-Filterung Automatische Trennung zwischen Lautsprecher und Raum x y Vanderkooy (1986) Verzerrungen Harmonische (nach Filterung weg) y R y I Raumimpulsantwort: Lange Messzeit Tiefe und hohe Frequenzen getrennt messen

26 26 Time-Delay-Spectrometry Artefakte bei tiefen Frequenzen 1-pass Lösung: TDS mit 2 Durchläufen (2-pass TDS) Vanderkooy (1986) 2-pass Vanderkooy (1986) Vanderkooy (1986)

27 27 Sweep: Randbedingungen: Lösungen: Exponentielle Sweeps x t =sin [ A e t / 1 ] [ A (e t / τ 1)] [ A (e t / τ 1)] =ω t 1 =ω t=0 t 2 t=t A= T 1 ln 2 / 1 = Abstand zur N-ten Harmonischen: T ln 2 / 1

28 28 Exponentielle Sweeps Y = X H H =Y X 1 X

29 29 Exponentielle Sweeps Y = X H H =Y X 1 X

30 30 Exponentielle Sweeps Y = X H H =Y X 1 X

31 31 Exponentielle Sweeps Y (ω)= X (ω) H (ω) H =Y X 1 x 10 4 X x 10 4 X Frequency 1 Frequency Time Time

32 32 Exponentielle Sweeps Impulsantwort: Time in ms mit: H (ω)=y (ω) X 1 (ω) X 1 (ω)= F {x( t)} X (ω) 2 Amplitude in db τ 5 = τ K τ 2 L 2 L 1-80 oder: k X 1 (ω)=f {g (t) x( t)} g (t): Abfall von 6 db/oct/s

33 33 Exponentielle Sweeps Abstand zur N-ten Harmonischen: Δ τ i = T ln(i) ln (ω 2 /ω 1 ) i=1,2, Time in ms 0-10 ΔƬ=konst Amplitude in db τ 5 = τ K τ 2 ΔƬ=konst L 2 L 1-80 exponentieller Sweep Farina (2000) k

34 34 Impulsantwort: Gleichzeitige Messung von IR und Klirrfaktor (THD) Amplitudenspektrum einzelner IR-Teile: Farina (2000) THD-Messung: (1kHz)

35 35 Exponentielle Sweeps SNR: Frequenzabhängig Durchschnittlich um 1.5 db niedriger als MLS gleicher Länge Probleme: Transiente Störungen Zeitvariante Systeme Bandbegrenzte Impulsantwort

36 36 algorithmen in aku stik und compute rmusik Vergleich Direkte Impulsantwortmessung (PIE) MLS, IRS, Golay Codes: Höchstmögliche SNR Empfindlich gegenüber nichtlinearer Verzerrungen Sweeps: Linear: TDS (Verzögerung, Frequenzbereich, Messdauer) Exponentiell: Hohe SNR möglich Robust gegenüber nichtlinearer Verzerrungen Empfindlichkeit: transiente Störungen, Zeitvarianz Bandbegrenzt: schlechte zeitliche Auflösung

37 37 Weiterführende Literatur Vanderkooy, J. (1986). Another Approach to Time-Delay- Spectrometry, J. Audio Eng. Soc., 34(7/8): Zhou, B., Green, D.M. (1992). Characterization of external ear impulse responses using Golay codes, J. Acoust. Soc. Am. 92(2 Pt 1): Zahorik, P. (2000). Limitations in using Golay codes for head-related transfer function measurement, J. Acoust. Soc. Am. 107(3): Dunn, C., Hawksford, M.O. (1993). Distortion Immunity of MLS- Derived Impulse Response Measurements, J. Audio Eng. Soc., 41(5): Borish, J., Angell, J.B. (1983). An Efficient Algorithm for Measuring the Impulse Response Using Pseudorandom Noise, J. Audio Eng. Soc. 31(7): Terras, A. (1999). Fourier Analysis on Finite Groups and Applications, Cambridge U. Press, Cambridge, U.K.

38 38 Weiterführende Literatur Farina, A. (2000). Simultaneous Measurement of Impulse Response and Distortion with a Swept-Sine Technique, Presented at the 108 th Convention, 2000 February 19-22, Paris, France Stan, G-B., Embrechts, J-J., Archambeau, D. (2002). Comparison of Different Impulse Response Measurement Techniques, J. Audio Eng. Soc., 50(4) Müller, S., Massarani, P. (2001). Transfer function measurement with sweeps, J. Audio Eng. Soc. 49(6): Majdak, P., Balazs, P., Laback, B. (2007). Multiple Exponential Sweep Method for Fast Measurement of Head-Related Transfer Functions, J. Audio Eng. Soc. 55(7/8):

Allgemein. Erfassung systembeschreibender Parameter Hohe Genauigkeit der Messung (u.a. SNR) kurze Meßzeit

Allgemein. Erfassung systembeschreibender Parameter Hohe Genauigkeit der Messung (u.a. SNR) kurze Meßzeit 1 Allgemein Device Under Test (DUT): elektroakustische Anlagen Abhör- oder Darbietungssräume Ziele: Erfassung systembeschreibender Parameter Hohe Genauigkeit der Messung (u.a. SNR) kurze Meßzeit Hier:

Mehr

Inhalt. Nichtlineare Systeme Voltera Reihenexpansion Statische quasi-nichtlineare Systeme Dynamikprozessoren

Inhalt. Nichtlineare Systeme Voltera Reihenexpansion Statische quasi-nichtlineare Systeme Dynamikprozessoren 1 Inhalt Nichtlineare Systeme Voltera Reihenexpansion Statische quasi-nichtlineare Systeme Dynamikprozessoren Kontrollparameter Anwendungen Frequenzabhängige nichtlineare Systeme Signalverfremdung Messparameter

Mehr

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015

filter Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 1 Filter Ziele Parameter Entwurf Zölzer (2002) Nov 14, 2015 2 Beschreibung Übertragungsfunktion H(z), H(ω) Differenzengleichung y[n] Impulsantwort h[n]: Finite Infinite Impulse Response (FIR) Impulse Response

Mehr

Warum z-transformation?

Warum z-transformation? -Transformation Warum -Transformation? Die -Transformation führt Polynome und rationale Funktionen in die Analyse der linearen eitdiskreten Systeme ein. Die Faltung geht über in die Multiplikation von

Mehr

Digitale Verarbeitung analoger Signale

Digitale Verarbeitung analoger Signale Digitale Verarbeitung analoger Signale Digital Signal Analysis von Samuel D. Stearns und Don R. Hush 7., durchgesehene Auflage mit 317 Bildern, 16 Tabellen, 373 Übungen mit ausgewählten Lösungen sowie

Mehr

Inhalt. Nichtlineare Systeme Voltera Reihenexpansion Statische quasi-nichtlineare Systeme Dynamikprozessoren

Inhalt. Nichtlineare Systeme Voltera Reihenexpansion Statische quasi-nichtlineare Systeme Dynamikprozessoren 1 Inhalt Nichtlineare Systeme Voltera Reihenexpansion Statische quasi-nichtlineare Systeme Dynamikprozessoren Kontrollparameter Anwendungen Frequenzabhängige nichtlineare Systeme Signalverfremdung Messparameter

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

filter Filter Ziele Parameter Entwurf

filter Filter Ziele Parameter Entwurf 1 Filter Ziele Parameter Entwurf 2.3.2007 2 Beschreibung Pol-Nullstellen- Diagramm Übertragungsfunktion H(z) Differenzengleichung y(n) Impulsantwort h(n): Finite Impulse Response (FIR) Infinite Impulse

Mehr

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2

Abtastung. Normalisierte Kreisfrequenz = DSP_9-Abtasttheorem 2 Abtasttheorem Abtastung xn [ ] = xnt ( ) = Acos( ωnt+ ϕ) = Acos( ωˆ n+ ϕ) s s Normalisierte Kreisfrequenz ωˆ = ωt s DSP_9-Abtasttheorem 2 Normalisierte Kreisfrequenz ω hat die Einheit rad/sec, ω ˆ = ωt

Mehr

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms)

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms) Lösungen Lösungen eil I Lösungen zum Kapitel 3. a ut = mv3 t ms ut mv t/ms b ut = mv3t mv3 t ms mv3 t ms mv mv ut t/ms p c ut = V3 t ms sin ms t V ut -V 3 4 5 6 t/ms d xt = 4 s r t s 4 s r t s 4 s r t

Mehr

Multimediale Werkzeuge 1, Audio-Berabeitung. normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1

Multimediale Werkzeuge 1, Audio-Berabeitung. normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1 Multimediale Werkzeuge 1, Audio-Berabeitung normierte Frequenz (normiert auf die halbe Abtastrate, maximale Frequenz ist pi oder 1 Beachte: Teilbänder werden nach den Unter-Abtasten "aufgeblasen" (siehe

Mehr

x[n-1] x[n] x[n+1] y[n-1] y[n+1]

x[n-1] x[n] x[n+1] y[n-1] y[n+1] Systeme System Funtion f, die ein Eingangssignal x in ein Ausgangssignal y überführt. zeitdisretes System Ein- und Ausgangssignal sind nur für disrete Zeitpunte definiert y[n] = f (.., x[n-1], x[n], x[n+1],

Mehr

Allgemein. Zeitdehnung Tonhöhenänderung Kurzzeit-Fourier-Transformation

Allgemein. Zeitdehnung Tonhöhenänderung Kurzzeit-Fourier-Transformation 1 Allgemein Zeitdehnung Tonhöhenänderung Kurzzeit-Fourier-Transformation Phasenvocoder Filterbanksummation Blockfiltertechnik Zeit-Frequenz-Skalierung Effekte Nov 13, 2015 2 Veränderung der Abspielgeschwindigkeit

Mehr

Verzerrungen. Purple Haze. Roland Küng, 2012

Verzerrungen. Purple Haze. Roland Küng, 2012 Verzerrungen Purple Haze Roland Küng, 2012 1 Motivation Was passiert wenn. Netzwerke nur Phase im Spektrum verzerren? Quelle: http://falstad.com/fourier/ Beispiele: Kabel Laufzeiten, Allpässe 2 Motivation

Mehr

Aufgabe 1 (20 Punkte)

Aufgabe 1 (20 Punkte) Augabe 1 (20 Punkte) Es wird ein Sprachsignal x(t) betrachtet, das über eine ISDN-Teleonleitung übertragen wird. Das Betragsspektrum X() des analogen Signals kann dem nachstehenden Diagramm entnommen werden.

Mehr

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner Datenaquisition Sensor Verstärker Filter ADC Objekt Rechner Datenaquisition Verstärker: - linearer Arbeitsbereich - linearer Frequenzgang - Vorkehrungen gegen Übersteuerung (trends, shot noise) - Verstärkerrauschen

Mehr

Faltung, Korrelation, Filtern

Faltung, Korrelation, Filtern Faltung, Korrelation, Filtern Wie beschreibe ich lineare Systeme (z.b. Seismometer) -> Faltung, Konvolution, Dekonvolution? Wie quantifiziere ich die Ähnlichkeit von Zeitreihen (-> Korrelation) Wie quantifiziere

Mehr

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung Audio Signal Audio-Bearbeitung Ampl Vor Unterabtastung Teilband Grenzen Normierte Frequenz (normierte Abtastrate, maximale Frequenz ist pi oder 1) Teilbänder Diese Freq. Anteile «verschwinden» nach dem

Mehr

Biosignalverarbeitung

Biosignalverarbeitung Peter Husar Biosignalverarbeitung Springer Inhaltsverzeichnis 1 Entstehung bioelektrischer Signale 9 1.1 Das Neuron 9 1.2 Elektrische Erregungsleitung und Projektion 15 2 Verstärkung und analoge Filterung

Mehr

ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision

ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision Anforderungen des Standards AES17 an die Messtechnik und Auswertetools Tameq Schweiz GmbH Peter Wilhelm Agenda Analyse von Audio Analog-Digital

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

3. Fourieranalyse und Amplitudenspektren

3. Fourieranalyse und Amplitudenspektren 3.1 Fourieranalyse 3.1.1 Einleitung Laut dem französischen Mathematiker Fourier (1768-1830) kann jedes periodische Signal in eine Summe von sinusförmigen Signalen mit unterschiedlichen Amplituden, Frequenzen

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Auswertung dynamischer Druckdaten von Experimenten an der HF- Brennkammer mit der Hilbert-Huangund der Fourier-Transformation

Auswertung dynamischer Druckdaten von Experimenten an der HF- Brennkammer mit der Hilbert-Huangund der Fourier-Transformation Auswertung dynamischer Druckdaten von Experimenten an der HF- Brennkammer mit der Hilbert-Huangund der Fourier-Transformation C. Pegg, M. Oschwald DLR C. Pegg, M. Oschwald > DIV3 > 11. Oktober 27 > 1 HF-Brennkammer

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100

SYS_A - ANALYSIEREN. Statistik. NTB Druckdatum: SYS A. Histogramm (Praxis) Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 SYS_A - ANALYSIEREN Statistik Gaußsche Normalverteilung (Theorie) Gebrauch: bei n > 100 Histogramm (Praxis) Realisierung Lage Streuung Zufallsvariable Dichte der Normalverteilung Verteilungsfunktion Fläche

Mehr

Parameter Messverfahren Konzepte

Parameter Messverfahren Konzepte Parameter Messverfahren Konzepte Prof. Dr. Stefan Weinzierl Fachgebiet Audiokommunikation TU Berlin Gefell-Workshop 2012 Greiz, 27.03.2012 1. Raumakustik und Klangeigenschaften 2. Messtechnische Parameter

Mehr

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen. Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

Zeitdiskrete Signalverarbeitung

Zeitdiskrete Signalverarbeitung Zeitdiskrete Signalverarbeitung Ideale digitale Filter Dr.-Ing. Jörg Schmalenströer Fachgebiet Nachrichtentechnik - Universität Paderborn Prof. Dr.-Ing. Reinhold Haeb-Umbach 7. September 217 Übersicht

Mehr

Digitale Signalverarbeitung Übungsaufgaben

Digitale Signalverarbeitung Übungsaufgaben Kapitel : Einleitung -: Analoger Tiefpass Dieser Tiefpass mit den Werten R = Ω, L =.5mH R L und C =.5µF ist wie folgt zu analysieren: U e C R. Es springe U e bei t =.5ms auf 5V und bei t = ms wieder auf.

Mehr

Signale und Systeme. Christoph Becker

Signale und Systeme. Christoph Becker Signale und Systeme Christoph Becker 18102012 Signale Definition 1 Ein Signal ist eine Folge von Zahlen {xn)} welche die Bedingung xn) < erfüllt Definition 2 Der Frequenzgang / frequency domain representation

Mehr

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT)

Diskrete Fourier-Transformation und FFT. 1. Die diskrete Fourier-Transformation (DFT) 2. Die Fast Fourier Transform (FFT) Diskrete Fourier-Transformation und FFT 2. Die Fast Fourier Transform (FFT) 3. Anwendungsbeispiele der DFT 1 Wiederholung: Fourier-Transformation und Fourier-Reihe Fourier-Transformation kontinuierlicher

Mehr

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 9. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Abtastung und Rekonstruktion Abtastung: Wandelt bandbegrenzte kontinuierliche

Mehr

Kapitel 8: Zeitdiskrete Zufallssignale

Kapitel 8: Zeitdiskrete Zufallssignale ZHAW, DSV2, 2007, Rumc, 8-1 Kapitel 8: Zeitdiskrete Zufallssignale Inhaltsverzeichnis 1. STOCHASTISCHER PROZESS...1 2. STATISTISCHE EIGENSCHAFTEN EINER ZUFALLSVARIABLEN...2 3. STATISTISCHE EIGENSCHAFTEN

Mehr

Digitale Signalverarbeitungssysteme II: Praktikum 2

Digitale Signalverarbeitungssysteme II: Praktikum 2 Digitale Signalverarbeitungssysteme II: Praktikum 2 Emil Matus 10. Dezember 2010 Technische Universität Dresden Mobile Communications Systems Chair Tel.: +49 351 463 41021 Fax : +49 351 463 41099 Mail:

Mehr

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X.

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X. Audiotechnik II 1.Übungstermin Prof. Dr. Stefan Weinzierl 21.1.21 1. Aufgabe: Amplitudenstatistik analoger Audiosignale a. Ein Signal x(t) hat die durch Abb. 1 gegebene Wahrscheinlichkeitsdichtefunktion

Mehr

1.3 Digitale Audiosignale

1.3 Digitale Audiosignale Seite 22 von 86 Abb. 1.2.12 - Wirkung der Schallverzögerung Effekte sind: Delay, Echo, Reverb, Flanger und Chorus Hört man ein akustisches Signal im Raum, dann werden die Signale von Wänden und anderen

Mehr

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale Zeitsignale Je nach Zeitbasis und Wertemenge des Signals unterscheidet man zeit- und wertkontinuierliche Signale (analoge Signale); zeitdiskrete, aber wertkontinuierliche Signale (zeitdiskrete Signale);

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr

7. Kenndaten eines Audioverstärkers

7. Kenndaten eines Audioverstärkers 7.1 Allgemeines Im Kapitel über die Audiotechnik wurde bereits diskutiert, dass ein Vollverstärker meist zweistufig aufgebaut ist. Die erste Stufe, auch Vorstufe genannt, dient vor allem dazu die Spannung

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 2: Fakultät für Elektro- und Informationstechnik, anfred Strohrmann Einführung Frequenzgang zeitkontinuierlicher Systeme beschreibt die Änderung eines Spektrums bei

Mehr

Akustische Messverfahren

Akustische Messverfahren Akustische Messverfahren Prof.Dr.-Ing. Matthias Blau Institut für Hörtechnik und Audiologie FH Oldenburg/Ostfriesland/Wilhelmshaven XXI. Winterschule der Deutschen Gesellschaft für Medizinische Physik

Mehr

Elektrotechnik-Grundlagen Teil 2 Messtechnik

Elektrotechnik-Grundlagen Teil 2 Messtechnik Version 1.0 2005 Christoph Neuß Inhalt 1. ZIEL DER VORLESUNG...3 2. ALLGEMEINE HINWEISE ZU MESSAUFBAUTEN...3 3. MESSUNG ELEMENTARER GRÖßEN...3 3.1 GLEICHSTROMMESSUNG...3 3.2 WECHSELSTROMMESSUNG...4 4.

Mehr

Mehrkanalige Messung von Impulsantworten

Mehrkanalige Messung von Impulsantworten Projektarbeit durchgeführt von Luka Mikula Institut für Breitbandkommunikation der Technischen Universität Graz Leiter: Univ.-Prof. Dipl.-Ing. Dr. Gernot Kubin Begutachter / Betreuer: Ao. Univ.-Prof. Dipl.-Ing.

Mehr

4. Transiente Analyse

4. Transiente Analyse 4. Transiente Analyse Bei der transienten Analyse wird der zeitliche Verlauf der Antwort auf eine zeitlich veränderliche Last bestimmt. Die zu lösende Bewegungsgleichung lautet: [ M ] [ü ]+[ D ] [ u ]+

Mehr

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1

6Si 6. Signal-und Bildfilterung sowie. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1 6Si 6. Signal-und Bildfilterung sowie Korrelation H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I Bildfilterung und Korrelation Die lineare Bildfilterung wird zur Rauschunterdrückung

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Quantisiertes Signal Zeitdiskretes Signal Digitales Signal Auflösung der A/D- Umsetzer der MicroAutoBox

Mehr

Broadband EMI Noise Measurement in Time Domain

Broadband EMI Noise Measurement in Time Domain Broadband EMI Noise Measurement in Time Domain Florian Krug, Peter Russer Institute for High-Frequency Engineering Technische Universität München fkrug@ieee.org 1 Inhalt Einführung Time-Domain Electromagnetic

Mehr

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes System (LTD-System)

Mehr

Harmonische Schwingungen und komplexe Zeiger

Harmonische Schwingungen und komplexe Zeiger Harmonische Schwingungen und komplexe Zeiger Eine harmonische Schwingung wird durch eine allgemeine sinusartige Funktion beschrieben (Grafik siehe unten: y = y (t = sin (ω t + ϕ Dabei ist die mplitude,

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Periodische Lasten 2.2 Allgemeine zeitabhängige Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

Zusammenfassung der 1. Vorlesung

Zusammenfassung der 1. Vorlesung Zusammenfassung der 1. Vorlesung Einordnung und Motivation Grundlegende Definitionen Kontinuierliches Signal Zeitdiskretes Signal Quantisiertes Signal Digitales Signal Kontinuierliches System Abtastsystem

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

Übungsaufgaben Digitale Signalverarbeitung

Übungsaufgaben Digitale Signalverarbeitung Übungsaufgaben Digitale Signalverarbeitung Aufgabe 1: Gegeben sind folgende Zahlenfolgen: x(n) u(n) u(n N) mit x(n) 1 n 0 0 sonst. h(n) a n u(n) mit 0 a 1 a) Skizzieren Sie die Zahlenfolgen b) Berechnen

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 15: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Entwurfsmethoden für IIR-Filtern sind für Zeitbereich und Bildbereich bekannt Finite-Impulse-Response

Mehr

Puls-Code-Modulation. Thema: PCM. Ziele

Puls-Code-Modulation. Thema: PCM. Ziele Puls-Code-Modulation Ziele Mit diesen rechnerischen und experimentellen Übungen wird die Vorgehensweise zur Abtastung und linearen Quantisierung eines analogen Signals erarbeitet. Bei der Abtastung werden

Mehr

Herzlich Willkommen. zum Fachvortrag. von Harald Bonsel. ACOUSTICON Hörsysteme GmbH Ihr Spezialist für audiologische Messtechnik

Herzlich Willkommen. zum Fachvortrag. von Harald Bonsel. ACOUSTICON Hörsysteme GmbH Ihr Spezialist für audiologische Messtechnik Herzlich Willkommen zum Fachvortrag Mess-Signale und Mess-Strategien von Harald Bonsel ACOUSTICON Hörsysteme GmbH Ihr Spezialist für audiologische Messtechnik Harald Bonsel Fachvortrag: Messsignale und

Mehr

Vortrag der Diplomarbeit

Vortrag der Diplomarbeit Vortrag der Diplomarbeit Entwicklung eines Continuous-Time Delta- Sigma Modulators für den Einsatz in der Positronen-Emissions-Tomographie von 07.09.2009 Überblick und Gliedergung: Teil 1: CT ΔΣ Modulator

Mehr

Die Eigenschaften von Systemen. S gesendet. S gesendet. S gesendet. Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert

Die Eigenschaften von Systemen. S gesendet. S gesendet. S gesendet. Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert Die Eigenschaften von Systemen Ideales System (idealer Wandler): Die Signaleigenschaften werden nicht verändert S gesendet IDEALER WANDLER S gesendet Reales System (realer Wandler): Es entstehen Verzerrungen

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Computergrafik : Übung 6 Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Quiz Warum Filtern im Frequenzraum? Ideales Tiefpassfilter? Parameter? Eigenschaften? Butterworth-Filter?

Mehr

Echtzeitberechnung von Faltungshall für virtuelle Raumakustik. Stefan Heidtmann

Echtzeitberechnung von Faltungshall für virtuelle Raumakustik. Stefan Heidtmann Echtzeitberechnung von Faltungshall für virtuelle Raumakustik Stefan Heidtmann Inhaltsangabe Raumakustik Faltungshall Faltungsalgorithmen Konferenzen 22.01.2016 Stefan Heidtmann 2 Raumakustik Auswirkung

Mehr

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Signaltheorie. Alfred Mertins

Signaltheorie. Alfred Mertins Alfred Mertins Signaltheorie Grundlagen der Signalbeschreibung, Filterbänke, Wavelets, Zeit-Frequenz-Analyse, Parameter- und Signalschätzung 2., überarbeitete und erweiterte Auflage Mit 158 Abbildungen

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

Störgeräuschreduktion bei stimmhaften Sprachsignalen

Störgeräuschreduktion bei stimmhaften Sprachsignalen Störgeräuschreduktion bei stimmhaften Sprachsignalen Einkanaliges Mikrofon Nutzsignal Störgeräusche Allgemein: einkanalige Störgeräuschreduktion Folie 1 Gliederung Störgeräuschreduktion: Arten und Einsatzgebiete

Mehr

Automatische Lautsprecherentzerrung mit Kautz-Filtern

Automatische Lautsprecherentzerrung mit Kautz-Filtern Seminararbeit aus Algorithmen in Akustik und Computermusik 2, SE Automatische Lautsprecherentzerrung mit Kautz-Filtern Sebastian Braun (0673052) Marco Schretter (0230932) Betreuung: Franz Zotter Graz,

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten

Dynamische Lasten. 1. Kraft- und Weganregung 2. Deterministische Lasten. 3. Stochastische Lasten Dynamische Lasten 1. Kraft- und Weganregung 2. Deterministische Lasten 2.1 Allgemeine zeitabhängige Lasten 2.2 Periodische Lasten 2.3 Harmonische Lasten 3. Stochastische Lasten 3.1 Instationäre stochastische

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

Multimedia Systeme. Dr. The Anh Vuong. http: Multimedia Systeme. Dr. The Anh Vuong

Multimedia Systeme. Dr. The Anh Vuong.   http:   Multimedia Systeme. Dr. The Anh Vuong email: av@dr-vuong.de http: www.dr-vuong.de 2001-2006 by, Seite 1 Multimedia-Application Applications Software Networks Authoringssofware, Contentmangement, Imagesprocessing, Viewer, Browser... Network-Architecture,

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

Versuch 3: Amplituden-Frequenzgang

Versuch 3: Amplituden-Frequenzgang Versuch 3: Amplituden-Frequenzgang Versuchsbeschreibung: Das Digitale Audio Analyse System DAAS 4 erlaubt es, mit nur zwei Messungen den Frequenzgang von Lautsprechern, Verstärkern oder Frequenzweichen

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Digital Signal Processing Audio Measurements Custom Designed Tools. Praktische MLS Messung mit typischen Fehlerbildern

Digital Signal Processing Audio Measurements Custom Designed Tools. Praktische MLS Messung mit typischen Fehlerbildern Praktische MLS Messung mit typischen Fehlerbildern In diesem praktischen Beispiel möchten wir Ihnen zeigen, wie Sie mit MLS den Frequenzgang einer Soundkarte messen können. MLS ist ein sehr leistungsfähiges

Mehr

Fachprüfung. Signal- und Systemtheorie

Fachprüfung. Signal- und Systemtheorie Fachprüfung Signal- und Systemtheorie 15. September 2010 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Formelblatt (2 DIN A4-Seiten) Name: Vorname: Matr.-Nr.: Unterschrift:

Mehr

QU Darstellung durch 1-Partikel-System mit zwei Eigenzuständen 0 und 1. (z.b. Spin, Polarisierung, Grund- und erregter Zustand eines

QU Darstellung durch 1-Partikel-System mit zwei Eigenzuständen 0 und 1. (z.b. Spin, Polarisierung, Grund- und erregter Zustand eines 1 Klassische vs. Quantencomputer 1.1 Bits und Qubits KL Darstellung durch gemeinsamen Zustand vieler Elektronen. Diskretisierung durch Schwellwert bezüglich einer Observablen. (z.b. Spannung am Kondensator).

Mehr

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8

Spektrumanalyse. Inhalt. I. Einleitung 2. II. Hauptteil 2-8 Fachhochschule Aachen Campus Aachen Hochfrequenztechnik Hauptstudium Wintersemester 2007/2008 Dozent: Prof. Dr. Heuermann Spektrumanalyse Erstellt von: Name: Mario Schnetger Inhalt I. Einleitung 2 II.

Mehr

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung

Erarbeiten der Diskreten Fourier Transformation (GFT) unter Verwendung von Scilab zur Veranschaulichung Erarbeiten der Diskreten Fourier Transormation (GFT) unter Verwendung von Scilab zur Veranschaulichung 1. Das Prinzip verstehen 2. DFT beschreiben 3. DFT mit Scilab testen 4. Umsetzung der DFT ür einen

Mehr

Kompressionsverfahren

Kompressionsverfahren Kompressionsverfahren Quelle: Steinmetz, Ralf: Multimedia-Technologie: Einführung und Grundlagen, Springer, Verlag Verlustlose Kompressionsalgorithmen RLC Huffman Adaptive Huffman Kodierung Arithmetische

Mehr

Verzerrungsfreies System

Verzerrungsfreies System Verzerrungsfreies System x(n) y(n) n n x(n) h(n) y(n) y(n) A 0 x(n a) A 0 x(n) (n a) h(n) A 0 (n a) H(z) A 0 z a Digitale Signalverarbeitung Liedtke 8.1.1 Erzeugung einer linearen Phase bei beliebigem

Mehr

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann!

Spektralanalyse. Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Spektralanalyse Spektralanalyse ist derart wichtig in allen Naturwissenschaften, dass man deren Bedeutung nicht überbewerten kann! Mit der Spektralanalyse können wir Antworten auf folgende Fragen bekommen:

Mehr

Elektronik II, Grosse Übung 2 Simulationsarten

Elektronik II, Grosse Übung 2 Simulationsarten G. Kemnitz Institut für Informatik, Technische Universität Clausthal 3. Mai 2013 1/23 Elektronik II, Grosse Übung 2 Simulationsarten G. Kemnitz Institut für Informatik, Technische Universität Clausthal

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

Systeme II 8. Die physikalische Schicht (Teil 4)

Systeme II 8. Die physikalische Schicht (Teil 4) Systeme II 8. Die physikalische Schicht (Teil 4) Thomas Janson, Kristof Van Laerhoven*, Christian Ortolf Folien: Christian Schindelhauer Technische Fakultät : Rechnernetze und Telematik, *: Eingebettete

Mehr

RTU560. Multimeter 560CVD03. Anzeige der Leistungsmessung. Merkmale. Anwendung. Datenblatt Multimeter 560CVD03

RTU560. Multimeter 560CVD03. Anzeige der Leistungsmessung. Merkmale. Anwendung. Datenblatt Multimeter 560CVD03 Typ LO HI 1A 5A RTU560 Multimeter 560CVD03 Ohne LCD-: Es sind mehrere Versionen erhältlich: Mit LCD- Abb. 1 Versionen R0031 3U3I x x x R0035 3U3I x x x R0051 3U3I x x x R0055 3U3I x x x R0021 3U3I x x

Mehr

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes

Mehr

Messen elektrischer Leistung Marco Scheck Product Manager Yokogawa

Messen elektrischer Leistung Marco Scheck Product Manager Yokogawa Messen elektrischer Leistung Marco Scheck Product Manager Yokogawa Leistung in seinen Grundzügen 2 Jeder Elektrische Stromkreis welcher an Wechselspannung liegt: Wirkleistung P (Vom Motor wirklich umgesetzte

Mehr

Grundlagen der Statistischen Nachrichtentheorie

Grundlagen der Statistischen Nachrichtentheorie - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:........................... Ich bin mit der Veröffentlichung des Klausurergebnisses unter meiner

Mehr

Digitale Signalverarbeitungssysteme II: Praktikum 1

Digitale Signalverarbeitungssysteme II: Praktikum 1 Digitale Signalverarbeitungssysteme II: Praktikum 1 Emil Matus 18. November 2010 Technische Universität Dresden Mobile Communications Systems Chair Tel.: +49 351 463 41021 Fax : +49 351 463 41099 Mail:

Mehr

Digitale Signalverarbeitung. mit MATLAB

Digitale Signalverarbeitung. mit MATLAB Martin Werner Digitale Signalverarbeitung mit MATLAB Grundkurs mit 16 ausführlichen Versuchen 3., vollständig überarbeitete und aktualisierte Auflage Mit 159 Abbildungen und 67 Tabellen Studium Technik

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d + c d + c uk d + + yk d + c d + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 8 Musterlösung Frequengang eitdiskreter Systeme...

Mehr

Allpass-Transformation

Allpass-Transformation Grundidee: Allpass-Transformation Entwurf eines IIR-Filters H p (z) mit bekanntem Verfahren Abbildung des Frequenzgangs durch Transformation der Frequenzvariablen Transformation durch Substitution ζ =

Mehr

Klirrfaktor Einstellung des NF Doppeltongenerators

Klirrfaktor Einstellung des NF Doppeltongenerators Klirrfaktor Einstellung des NF Doppeltongenerators Die im Bericht "NF Doppeltongenerator für IM 3 Messungen an SSB Sendern" (1) eingesetzten NF Generatoren müssen beide auf sehr geringen Klirrfaktor (Oberwellengehalt)

Mehr

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski

Filtertypen Filter 1. Ordnung Filter 2. Ordnung Weitere Filter Idee für unser Projekt. Filter. 3. November Mateusz Grzeszkowski typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt 3. November 2009 Mateusz Grzeszkowski / 24 Mateusz Grzeszkowski 3. November 2009 typen. Ordnung 2. Ordnung Weitere Idee für unser Projekt Motivation

Mehr