SIMULATION VON LICHTBÖGEN

Größe: px
Ab Seite anzeigen:

Download "SIMULATION VON LICHTBÖGEN"

Transkript

1 Institut für Energietechnik SIMULATION VON LICHTBÖGEN Dipl.-Phys. Mario Mürmann Rapperswil, 24. April 2018

2 Inhaltsverzeichnis Was sind Lichtbögen aus phänomenologischer Sicht? aus mikroskopischer Sicht? im Vergleich mit metallischen Leitern? Physik von Lichtbögen Welche physikalischen Phänomene sind beteiligt? Benötigen wir Gleichungen? Wenn ja, welche? Welches «Material» hat ein Lichtbogen? Modellierung und Simulation von Lichtbögen Wie kann man das Verhalten von Lichtbögen vorhersagen? Anwendungsbeispiele Simulationsresultate 2

3 Was sind Lichtbögen? Was ist ein Lichtbogen? Blitze «Elektrischer Strom durch Luft (Gas)» Auftreten in Natur (Gewitter) und in Geräten (Schalter, Steckdosen, Eisenbahn etc.) Gase gelten eigentlich als Isolatoren Entstehung eines Plasmas durch Freisetzen von Elektronen Isolierendes Gas wird zu elektrischem Leiter Freie Ladungsträger ähnlich wie in einem Metall, aber völlig anderes Verhalten Quelle: 3

4 Was sind Lichtbögen? Was ist ein Lichtbogen? Blitze «Elektrischer Strom durch Luft (Gas)» Auftreten in Natur (Gewitter) und in Geräten (Schalter, Steckdosen, Eisenbahn etc.) Gase gelten eigentlich als Isolatoren Entstehung eines Plasmas durch Freisetzen von Elektronen Isolierendes Gas wird zu elektrischem Leiter Freie Ladungsträger ähnlich wie in einem Metall, aber völlig anderes Verhalten Quelle: 4

5 Was sind Lichtbögen? Was ist ein Lichtbogen? Im Metall sind Elektronen frei beweglich Im Metall sind Atomrümpfe starr Im Gas trennen sich Atomrümpfe und Elektronen bei hohen Temperaturen, Drücken und elektr. Feldstärken Metall Quelle: Ein (leitfähiges) Plasma entsteht Gaseigenschaften bleiben erhalten Physikalische Beschreibung erfordert Kenntnis von Fluiddynamik, Elektrodynamik, Chemie, Wärmetransport etc. Quelle: 5

6 Was sind Lichtbögen? Was ist ein Lichtbogen? Im Metall sind Elektronen frei beweglich Im Metall sind Atomrümpfe starr Im Gas trennen sich Atomrümpfe und Elektronen bei hohen Temperaturen, Drücken und elektr. Feldstärken Ein (leitfähiges) Plasma entsteht Gaseigenschaften bleiben erhalten Physikalische Beschreibung erfordert Kenntnis von Fluiddynamik, Elektrodynamik, Chemie, Wärmetransport etc. Quelle: Kloc, P., Aubrecht, V., Bartlova, M., Coufal, O.: Radiation transfer in air and air-cu plasmas for two-temperature profiles, Journal of Physics D: Applied Physics, 2015,

7 Physik von Lichtbögen Physik eines Lichtbogens Fluiddynamik - kompressible, turbulente Strömung - Temperatur und Druck werden ermittelt Navier-Stokes-Gleichungen ρ + ρv = 0 ρv + ρv v = p + τ + σ E B + ρ el E ρh + ρhv λ T = p + τv + σe2 j rad ρ = f(p, T) 7

8 Physik von Lichtbögen Physik eines Lichtbogens Fluiddynamik - kompressible, turbulente Strömung - Temperatur und Druck werden ermittelt Elektrodynamik - Strom und Spannung werden ermittelt - Kraftwirkung auf Ladungen Maxwell-Gleichungen D = ρ el B = 0 E = B H = σe + D 8

9 Physik von Lichtbögen Physik eines Lichtbogens Strahlungstransportgleichung Fluiddynamik - kompressible, turbulente Strömung - Temperatur und Druck werden ermittelt j Rad = 0 4πε ν,i κ ν,i 0 4π I ν dω dν Elektrodynamik - Strom und Spannung werden ermittelt - Kraftwirkung auf Ladungen Wärmetransport - Konvektiver Wärmetransport - Strahlungstransport (T~20000 K) 9

10 Physik von Lichtbögen Physik eines Lichtbogens Fluiddynamik - kompressible, turbulente Strömung - Temperatur und Druck werden ermittelt Elektrodynamik - Strom und Spannung werden ermittelt - Kraftwirkung auf Ladungen Wärmetransport - Konvektiver Wärmetransport - Strahlungstransport (T~20000 K) Chemische Reaktionen - Kontakt- und Gehäuseabbrand Quelle: Kloc, P., Aubrecht, V., Bartlova, M., Coufal, O.: Radiation transfer in air and air-cu plasmas for two-temperature profiles, Journal of Physics D: Applied Physics, 2015,

11 Physik von Lichtbögen Physik eines Lichtbogens Fluiddynamik - kompressible, turbulente Strömung - Temperatur und Druck werden ermittelt Elektrodynamik - Strom und Spannung werden ermittelt - Kraftwirkung auf Ladungen Wärmetransport - Konvektiver Wärmetransport - Strahlungstransport (T~20000 K) Chemische Reaktionen - Kontakt- und Gehäuseabbrand Elektrischer Schaltkreis L I 0 + R 1 I C I 1 = U 0 R 1 I C I 1 R 2 I 2 R 2 I 2 = 0 I 0 I 1 I 2 = 0 11

12 Physik von Lichtbögen Kopplung der verschiedenen Gleichungen D = ρ el B = 0 E = B H = σe + D j el = σe I 2 = j el da R 2 = f σ j Rad = 0 4πε ν,i κ ν,i 0 4π I ν dω dν ρv ρh ρ + ρv = 0 + ρv v = p + τ + σ E B + ρ el E + ρhv λ T = p + τv + σe2 j Rad ρ = f(p, T) L I 0 + R 1 I C I 1 = U 0 R 1 I C I 1 R 2 I 2 R 2 I 2 = 0 I 0 I 1 I 2 = 0 12

13 Physik von Lichtbögen Kopplung der verschiedenen Gleichungen Elektrische Leitfähigkeit, Ohmsche Wärme und Feldkräfte koppeln Navier-Stokes- und Maxwell-Gleichungen D = ρ el B = 0 E = B H = σe + D j el = σe I 2 = j el da R 2 = f σ j Rad = 0 4πε ν,i κ ν,i 0 4π I ν dω dν ρv ρh ρ + ρv = 0 + ρv v = p + τ + σ E B + ρ el E + ρhv λ T = p + τv + σe2 j Rad ρ = f(p, T) L I 0 + R 1 I C I 1 = U 0 R 1 I C I 1 R 2 I 2 R 2 I 2 = 0 I 0 I 1 I 2 = 0 13

14 Physik von Lichtbögen Kopplung der verschiedenen Gleichungen Elektrische Leitfähigkeit, Ohmsche Wärme und Feldkräfte koppeln Navier-Stokes- und Maxwell-Gleichungen Strahlungseigenschaften koppeln Navier- Stokes-Gleichungen an Strahlungstransport j Rad = D = ρ el B = 0 E = B H = σe + D 0 4πε ν,i κ ν,i 0 4π j el = σe I 2 = j el da R 2 = f σ I ν dω dν ρv ρh ρ + ρv = 0 + ρv v = p + τ + σ E B + ρ el E + ρhv λ T = p + τv + σe2 j Rad ρ = f(p, T) L I 0 + R 1 I C I 1 = U 0 R 1 I C I 1 R 2 I 2 R 2 I 2 = 0 I 0 I 1 I 2 = 0 14

15 Physik von Lichtbögen Kopplung der verschiedenen Gleichungen Elektrische Leitfähigkeit, Ohmsche Wärme und Feldkräfte koppeln Navier-Stokes- und Maxwell-Gleichungen Strahlungseigenschaften koppeln Navier- Stokes-Gleichungen an Strahlungstransport Elektrische Stromdichte und Lichtbogenwiderstand koppeln Maxwellgleichungen an Schaltkreis ρv ρh ρ + ρv = 0 + ρv v = p + τ + σ E B + ρ el E + ρhv λ T = p + τv + σe2 j Rad ρ = f(p, T) j Rad = D = ρ el B = 0 E = B H = σe + D 0 4πε ν,i κ ν,i L I 0 + R 1 I C I 1 = U 0 R 1 I C I 1 R 2 I 2 R 2 I 2 = 0 I 0 I 1 I 2 = 0 0 4π j el = σe I 2 = j el da R 2 = f σ I ν dω dν 15

16 Physik des Lichtbogens Materialparameter Zum Schliessen der Gleichungen werden Materialparameter benötigt σ,ρ,λ,κ,h,cp,l,r1,c,u0 D = ρ el B = 0 E = B H = σe + D j el = σe I 2 = j el da R 2 = f σ j Rad = 0 4πε ν,i κ ν,i 0 4π I ν dω dν ρv ρh ρ + ρv = 0 + ρv v = p + τ + σ E B + ρ el E + ρhv λ T = p + τv + σe2 j Rad ρ = f(p, T) L I 0 + R 1 I C I 1 = U 0 R 1 I C I 1 R 2 I 2 R 2 I 2 = 0 I 0 I 1 I 2 = 0 16

17 Physik von Lichtbögen Materialparameter Spezifische Enthalpie h Wärmeleitfähigkeit λ Dichte ρ Viskosität η Elektr. Leitfähigkeit σ Absorptionskoeffizienten κ Quelle: Kloc, P., Aubrecht, V., Bartlova, M., Coufal, O.: Radiation transfer in air and air-cu plasmas for two-temperature profiles, Journal of Physics D: Applied Physics, 2015,

18 Physik von Lichtbögen Materialparameter Spezifische Enthalpie h Wärmeleitfähigkeit λ Dichte ρ Viskosität η Elektr. Leitfähigkeit σ Absorptionskoeffizienten κ Parameter müssen vorab als Funktion von Temperatur und Druck tabelliert sein. Quelle: Kloc, P., Aubrecht, V., Bartlova, M., Coufal, O.: Radiation transfer in air and air-cu plasmas for two-temperature profiles, Journal of Physics D: Applied Physics, 2015,

19 Physik von Lichtbögen Materialparameter Spezifische Enthalpie h Wärmeleitfähigkeit λ Dichte ρ Viskosität η Elektr. Leitfähigkeit σ Absorptionskoeffizienten κ Parameter müssen vorab als Funktion von Temperatur und Druck tabelliert sein. Quelle: Cressault, Y., Gleizes, A., Riquel, G.: Properties of air-aluminum thermal plasmas, Journal of Physics D: Applied Physics, 2012,

20 Physik von Lichtbögen Materialparameter Spezifische Enthalpie h Wärmeleitfähigkeit λ Dichte ρ Viskosität η Elektr. Leitfähigkeit σ Absorptionskoeffizienten κ Parameter müssen vorab als Funktion von Temperatur und Druck tabelliert sein. Quelle: Kloc, P., Aubrecht, V., Bartlova, M., Coufal, O.: Radiation transfer in air and air-cu plasmas for two-temperature profiles, Journal of Physics D: Applied Physics, 2015,

21 Modellierung und Simulation von Lichtbögen Physikalische Modellierung Fluiddynamik (inkl. Mesh Motion) E-Dynamik Elektrodynamik (inkl. Mesh Motion) Strahlungsmodellierung Fluiddynamik Strahlung Schaltkreissimulation Plasmachemie (durch Materialparameter berücksichtigt) Lichtbogensimulation Kontaktabbrand und Gehäuseerosion Gute Interpolation der Materialdaten notwendig Schaltkreis Chemie Abbrand Mixture Model in CFD (bestenfalls) nicht notwendig 21

22 Modellierung und Simulation von Lichtbögen Simulationsumgebung Software am IET: Star-CCM+ von Siemens PLM (ehemals CD-Adapco) Entwicklungszusammenarbeit IET - Siemens Alternative: Ansys Fluent + EMAG + MpCCI Vereinfacht: Matlab / Python etc. Projekte Projektpartner weltweit sowie Entwicklungsprojekte in CH 22

23 Modellierung und Simulation von Lichtbögen Vereinfachte «Simulation»: Behandlung des Lichtbogens in 1D als AWP u = f(u, t) Änderung des Lichtbogenwiderstands durch Ansatz von Cassie/Mayr oder durch Änderung der Temperatur (fixe Geometrie) u = I 0 I 0 I1 I 2T R = 2 R τ 1 RI 2 P Cassie/Mayr f T Temperatur R L I 0 + R 1 I C I 1 = U 0 R 1 I C I 1 R 2 I 2 R 2 I 2 = 0 I 0 I 1 I 2 = 0 23

24 Modellierung und Simulation von Lichtbögen Vereinfachte «Simulation»: Behandlung des Lichtbogens in 1D als AWP Änderung des Lichtbogenwiderstands durch Ansatz von Cassie/Mayr oder durch Änderung der Temperatur (fixe Geometrie) 24

25 Anwendungsbeispiel 1: Bewegte Kontakte Mesh Motion aufgrund bewegter Kontakte Netz (Mesh) ändert sich aufgrund potentiell vorhandener Bewegungen Zunächst Deformation des Netzes Dann Austausch des Netzes durch Remeshing oder Laden von vordefinierten Netzen 25

26 Anwendungsbeispiel 2: Niederspannungsschalter «Numerical analysis of arc plasma behaviour during contact opening process in low-voltage switching device» Yi Wu, Mingzhe Rong, Zhiqiang Sun, Xiaohua Wang, Fei Yang and Xingwen Li Quelle: Wu, Y. et al.: Numerical analysis of arc plasma behaviour during contact opening process in low-voltage switching device, Journal of Physics D: Applied Physics, 2007,

27 Anwendungsbeispiel 2: Niederspannungsschalter 27

28 Anwendungsbeispiel 3: «Arc Rails» Experimentelle und numerische Untersuchungen an der TU Braunschweig: Thomas Rüther (2008): Experimente Alexandra Mutzke (2009): Numerische Simulation, ANSYS + ANSYS CFX Julia Rüther (2014): Numerische Simulation, ANSYS + ANSYS CFX Christian Rümpler (2009) (TU Ilmenau, Fraunhofer Institute SCAI): Numerische Simulation: ANSYS + ANSYS Fluent via MpCCI, mit Abbrand Modell besteht aus zwei parallelen Leitern und einer «Splitter Plate» Lichtbogen wird experimentell mit einem Draht gezündet, numerisch durch einen leitfähigen Kanal Der elektrische Strom dient als Randbedingung, die Spannung wird ermittelt. 28

29 Anwendungsbeispiel 3: «Arc Rails» 29

30 Anwendungsbeispiel 4: Blitzschutzgerät Blitzschutzgerät der Firma Streamer-Electric Ableiten der Blitzenergie gegen Erde Anschliessendes wird ein schnelles Löschen des Lichtbogens angestrebt 30

31 Anwendungsbeispiel 4: Blitzschutzgerät Blitzschutzgerät der Firma Streamer-Electric Ableiten der Blitzenergie gegen Erde Anschliessendes wird ein schnelles Löschen des Lichtbogens angestrebt 31

32 Anwendungsbeispiel 4: Blitzschutzgerät Blitzschutzgerät der Firma Streamer-Electric Ableiten der Blitzenergie gegen Erde Anschliessendes wird ein schnelles Löschen des Lichtbogens angestrebt 32

33 Anwendungsbeispiel 4: Blitzschutzgerät Blitzschutzgerät der Firma Streamer-Electric Ableiten der Blitzenergie gegen Erde Anschliessendes wird ein schnelles Löschen des Lichtbogens angestrebt 33

34 Anwendungsbeispiel 4: Blitzschutzgerät 34

35 Simulation von Lichtbögen Lichtbogensimulation am IET 3D-Simulationen mittels Star-CCM+ (3D) oder vereinfachte Rechnungen mit Matlab/Simulink Berücksichtigte Phänomene: Fluiddynamik inkl. Strahlung und chem. Reaktionen Elektrodynamik Materialabbrand Bewegte Geometrien Elektrische Schaltkreise Zunehmende Vernetzung mit Industriepartnern 35

6.2.6 Ohmsches Gesetz ******

6.2.6 Ohmsches Gesetz ****** 6..6 ****** Motivation Das Ohmsche Gesetz wird mithilfe von verschiedenen Anordnungen von leitenden Drähten untersucht. Experiment 6 7 8 9 0 Abbildung : Versuchsaufbau. Die Ziffern bezeichnen die zehn

Mehr

Höhere Experimentalphysik 1

Höhere Experimentalphysik 1 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 3. Vorlesung 10.11.2017 Zusammenfassung der letzten Vorlesung Ladungen können auch bewegt werden dann aber gilt eine gänzlich andere

Mehr

Klassischer Ladungstransport. Faouzi Saidani. Auf dem Weg zur Nanoelektronik. Faouzi Saidani. Universität Freiburg

Klassischer Ladungstransport. Faouzi Saidani. Auf dem Weg zur Nanoelektronik. Faouzi Saidani. Universität Freiburg Auf dem Weg zur Nanoelektronik Universität Freiburg 12. Mai 2010 Inhalt Das Drudemodell und seine Grundannahmen Gleichstromleitfähigkeit Halleffekt und Magnetwiderstand Wechselstromleitfähigkeit Wärmeleitfähigkeit

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 4 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

6.4.4 Elihu-Thomson ****** 1 Motivation

6.4.4 Elihu-Thomson ****** 1 Motivation V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Numerische Modellierung des Wärmetransports bei der Messung der Wärmeleitfähigkeit von Dämmstoffen

Numerische Modellierung des Wärmetransports bei der Messung der Wärmeleitfähigkeit von Dämmstoffen Numerische Modellierung des Wärmetransports bei der Messung der Wärmeleitfähigkeit von Dämmstoffen AK Thermophysik, Aachen 09.03.2015 Maya Krause, Eva Katharina Rafeld Überblick EMRP-Projekt SIB 52 Thermo

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14,

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14, Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 14, 20.05.2009 Vladimir Dyakonov Experimentelle Physik VI dyakonov@physik.uni-wuerzburg.de Professor Dr. Vladimir

Mehr

Strömungen in Wasser und Luft

Strömungen in Wasser und Luft Strömungen in Wasser und Luft Strömungssimulationen im UZWR Daniel Nolte März 2009 Mathematische Strömungsmodelle Navier Stokes Gleichungen (Massenerhaltung, Impulserhaltung, Energieerhaltung) ρ + (ρ U)

Mehr

IHR FORSCHUNGS- UND ENTWICKLUNGSPARTNER IM BEREICH ENERGIE.

IHR FORSCHUNGS- UND ENTWICKLUNGSPARTNER IM BEREICH ENERGIE. IHR FORSCHUNGS- UND ENTWICKLUNGSPARTNER IM BEREICH ENERGIE www.iet.hsr.ch Impressum Herausgeber IET Institut für Energietechnik Oberseestrasse 10 CH-8640 Rapperswil T +41 (0)55 222 49 87 iet@hsr.ch www.iet.hsr.ch

Mehr

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum: Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen

Mehr

Elektrodynamische Wellen

Elektrodynamische Wellen Elektrodynamische Wellen Hannah Vogel 23.01.2017 Hannah Vogel Elektrodynamische Wellen 23.01.2017 1 / 33 Inhaltsverzeichnis 1 Elektrische und Magnetische Kräfte und Felder 2 Die Maxwell schen Gleichungen

Mehr

Prof. Dr. T. Müller Dr. F. Hartmann Blatt 8 Bearbeitung:

Prof. Dr. T. Müller Dr. F. Hartmann Blatt 8 Bearbeitung: Institut für Experimentelle Kernphysik, KIT Übungen zur Klassischen Physik II (Elektrodynamik) SS 2016 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 8 Bearbeitung: 15.6.2016 1. Stromdichte, elektrisches Feld

Mehr

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4

1 Elektrostatik Elektrische Feldstärke E Potential, potentielle Energie Kondensator... 4 Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Feldstärke E............................... 3 1.2 Potential, potentielle Energie............................ 4 1.3 Kondensator.....................................

Mehr

Verbesserte Modellierung von Wandreibung und Wärmeübergang bei hochviskosen Ölen

Verbesserte Modellierung von Wandreibung und Wärmeübergang bei hochviskosen Ölen Verbesserte Modellierung von Wandreibung und Wärmeübergang bei hochviskosen Ölen Moritz Schenker TU Berlin Straße des 17. Juni 135 10623 Berlin Co-Autor: Dr. Andreas Spille-Kohoff CFX Berlin Software GmbH

Mehr

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG. Versuch: Elektrische Leitfähigkeit (Sekundarstufe I) Moduli: Physikalische Eigenschaften

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG. Versuch: Elektrische Leitfähigkeit (Sekundarstufe I) Moduli: Physikalische Eigenschaften TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG Schülerlabor Science meets School Werkstoffe & Technologien in Freiberg Versuch: (Sekundarstufe I) Moduli: Physikalische Eigenschaften 1 Versuchsziel Die Messung

Mehr

Kontinuumsmechanische Simulation von Granulaten mit der Anwendung pneumatischer Transport

Kontinuumsmechanische Simulation von Granulaten mit der Anwendung pneumatischer Transport Kontinuumsmechanische Simulation von Granulaten mit der Anwendung pneumatischer Transport Fraunhofer Institut für Industrie- und Wirtschaftsmathematik (ITWM), Kaiserslautern Sebastian Rau Sebastian Schmidt

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 29. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 29. 05.

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 2 Thema: Elektrischer Strom und Magnetostatik I Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 2 Elektrischer Strom 3 2.1

Mehr

Mit 184 Bildern und 9 Tabellen

Mit 184 Bildern und 9 Tabellen Physik II Elektrodynamik Einfuhrungskurs für Studierende der Naturwissenschaften und Elektrotechnik von Klaus Dransfeld und Paul Kienle Bearbeitet von Paul Berberich 5., verbesserte Auflage Mit 184 Bildern

Mehr

Gekoppelte Simulation von Lichtbogen, Materialtransfer und Schmelzbad

Gekoppelte Simulation von Lichtbogen, Materialtransfer und Schmelzbad Fakultät Maschinenwesen Institut für Fertigungstechnik Professur Fügetechnik und Montage Workshop Lichtbogenphysik O.-v.-G.-Universität Magdeburg 12.03.2013 Gekoppelte Simulation von Lichtbogen, Materialtransfer

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

18. Vorlesung III. Elektrizität und Magnetismus

18. Vorlesung III. Elektrizität und Magnetismus 18. Vorlesung III. Elektrizität und Magnetismus 17. Elektrostatik Zusammenfassung Nachtrag zur Influenz: Faraday-Käfig 18. Elektrischer Strom (in Festkörpern, Flüssigkeiten und Gasen; elektrische Stromkreise)

Mehr

Auf dem Weg zur Beherrschung der Gefahren Simulation der Wechselwirkungen des HF Feldes mit Implantaten

Auf dem Weg zur Beherrschung der Gefahren Simulation der Wechselwirkungen des HF Feldes mit Implantaten Auf dem Weg zur Beherrschung der Gefahren Simulation der Wechselwirkungen des HF Feldes mit Implantaten Prof. Dr. Waldemar Zylka Professor der Physik und Medizintechnik Fachhochschule Gelsenkirchen Fachbereich

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Experimentalphysik 2

Experimentalphysik 2 Repetitorium zu Experimentalphysik 2 Ferienkurs am Physik-Department der Technischen Universität München Gerd Meisl 5. August 2008 Inhaltsverzeichnis 1 Übungsaufgaben 2 1.1 Übungsaufgaben....................................

Mehr

Thermodynamik II Musterlösung Rechenübung 10

Thermodynamik II Musterlösung Rechenübung 10 Thermodynamik II Musterlösung Rechenübung 0 Aufgabe Seitenansicht: Querschnitt: Annahmen: stationärer Zustand Wärmeleitung in axialer Richtung ist vernachlässigbar konstante Materialeigenschaften Wärmeleitungswiderstand

Mehr

Optimale Steuerung Studieren geht über Probieren

Optimale Steuerung Studieren geht über Probieren Studieren geht über Probieren Antrittsvorlesung 23. Oktober 2008 Danksagungen Hans Josef Pesch Fredi Tröltzsch Karl Kunisch Martin Bernauer Frank Schmidt Gerd Wachsmuth Wegweiser Einmal von A nach B bitte!

Mehr

Elektrizitätslehre 2.

Elektrizitätslehre 2. Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig

Mehr

Elektrotechnik: Übungsblatt 2 - Der Stromkreis

Elektrotechnik: Übungsblatt 2 - Der Stromkreis Elektrotechnik: Übungsblatt 2 - Der Stromkreis 1. Aufgabe: Was zeichnet elektrische Leiter gegenüber Nichtleitern aus? In elektrischen Leitern sind die Ladungen leicht beweglich, in Isolatoren können sie

Mehr

Modellierung, Simulation und Optimierung von Spinnprozessen

Modellierung, Simulation und Optimierung von Spinnprozessen Modellierung, Simulation und Optimierung von Spinnprozessen Dr. Walter Arne Dr. Dietmar Hietel Fraunhofer-Institut für Technound Wirtschaftsmathematik, Kaiserslautern 31. Hofer Vliesstofftage, 9./10. November

Mehr

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur?

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Wie berechnet man die innere Energie, wie die spezifische Wärme?

Mehr

Elektrodynamik eines Plasmas

Elektrodynamik eines Plasmas Elektrodynamik eines Plasmas Elektrodynamik eines Plasmas Klassifikation von Plasmen Klassisches Plasma / Quantenplasma nicht-relativistisches / relativistisches Plasma Schwach / stark wechselwirkendes

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Dynamik des lokalen Strom/Spannungsverhaltens von Nafion-Membranen

Dynamik des lokalen Strom/Spannungsverhaltens von Nafion-Membranen Dynamik des lokalen Strom/Spannungsverhaltens von Nafion-Membranen Präsentation der Ergebnisse der Aversumsprojekte 2009 Steffen ink a Wolfgang G. Bessler, b A. Masroor, b Emil Roduner a a Universität

Mehr

Dielektrizitätskonstante

Dielektrizitätskonstante Dielektrizitätskonstante Spannung am geladenen Plattenkondensator sinkt, wenn nichtleitendes Dielektrikum eingeschoben wird Ladung bleibt konstant : Q = C 0 U 0 = C D U D Q + + + + + + + + + + + - - -

Mehr

Opto-elektronische. Materialeigenschaften VL # 4

Opto-elektronische. Materialeigenschaften VL # 4 Opto-elektronische Materialeigenschaften VL # 4 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte

Mehr

Simulationsgestützte tzte Auslegung von Lineardirektantrieben mit MAXWELL, SIMPLORER und ANSYS. Matthias Ulmer, Universität Stuttgart

Simulationsgestützte tzte Auslegung von Lineardirektantrieben mit MAXWELL, SIMPLORER und ANSYS. Matthias Ulmer, Universität Stuttgart Simulationsgestützte tzte Auslegung von Lineardirektantrieben mit MAXWELL, SIMPLORER und ANSYS Matthias Ulmer, Universität Stuttgart Gliederung 1. Motivation und Zielsetzung 2. Elektrodynamische Lineardirektantriebe

Mehr

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13.

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13. 13. Makroskopische Felder Teil VI Das elektromagnetische Feld in Materie Im Prinzip erlauben die Maxwell-Gleichungen von Teil III das elektromagnetische Feld beliebiger Materieanordnungen zu berechnen,

Mehr

Grundbegriffe der Elektrotechnik

Grundbegriffe der Elektrotechnik Grundbegriffe der Elektrotechnik Inhaltsverzeichnis 1 Die elektrische Ladung Q 1 2 Die elektrische Spannung 2 2.1 Die elektrische Feldstärke E....................................................... 2 2.2

Mehr

Simulationsunterstützte Produktentwicklung von Leistungsmodulen für Bahnantriebe

Simulationsunterstützte Produktentwicklung von Leistungsmodulen für Bahnantriebe 28. 4. 2016, Samuel Hartmann, ABB Semiconductors Simulationsunterstützte Produktentwicklung von Leistungsmodulen für Bahnantriebe Symposium für Produktentwicklung & Product Lifecycle Management Agenda

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit -

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Dies Mathematicus 211 25. November 211 Gliederung 1 Motivation: Mischvorgänge in einem Rührer 2 Mathematische Modellierung

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

Semesterendprüfung EL1

Semesterendprüfung EL1 Semesterendprüfung EL1 Zeit: 90 Minuten Datum: 22 Januar 2016 Maximale Punktzahl: 44 Name und Vorname: Klasse: ET15t Note: Erreichte Punktzahl: Wichtig: Die Lösungswege müssen ersichtlich sein Die Lösungen

Mehr

6.4.2 Induktion erzeugt Gegenkraft ******

6.4.2 Induktion erzeugt Gegenkraft ****** V642 6.4.2 ****** Motivation Ein permanenter Stabmagnet wird durch einen luminiumring bewegt. Der dabei im Ring fliessende Induktionsstrom bewirkt, dass der Ring der Bewegung des Stabmagneten folgt. 2

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Experimentelle Physik II

Experimentelle Physik II Experimentelle Physik II Sommersemester 8 Vladimir yakonov Lehrstuhl Experimentelle Physik VI VL5 4-6-8 el. 9/888 dyakonov@physik.uni-wuerzburg.de Experimentelle Physik II 5. as freie Elektronengas 5.

Mehr

1 Ideale Fluide. 1.1 Kontinuitätsgleichung. 1.2 Euler-Gleichungen des idealen Fluids. 1.3 Adiabatengleichung

1 Ideale Fluide. 1.1 Kontinuitätsgleichung. 1.2 Euler-Gleichungen des idealen Fluids. 1.3 Adiabatengleichung Handout zum Vortrag über Euler- und Navier-Stokes-Gleichungen, Potential- und Wirbelströmungen von Niels Bracher. 1 Ideale Fluide 1.1 Kontinuitätsgleichung Die hydrodynamische Kontinuitätsgleichung beschreibt

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Elektrische und Thermische Leitfähigkeit von Metallen

Elektrische und Thermische Leitfähigkeit von Metallen Elektrische und Thermische Leitfähigkeit von Metallen Virtueller Vortrag von Andreas Kautsch und Andreas Litschauer im Rahmen der VO Festkörperphysik Grundlagen Outline elektrische Leitfähigkeit Gründe

Mehr

Einführung in die Astronomie I

Einführung in die Astronomie I Einführung in die Astronomie I Teil 6 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 20. Juni 2017 1 / 30 Übersicht Teil 6 Sternatmosphären Strahlungstransport

Mehr

Simulation reaktiver und nichtreaktiver Strömungen

Simulation reaktiver und nichtreaktiver Strömungen Statustreffen IWRMM, Karlsruhe, 15.4.2005 Simulation reaktiver und nichtreaktiver Strömungen Jochen Fröhlich Universität Karlsruhe Arbeitsbereiche des TCP Zusammenschluss 1.1.2004 Institut für Chemische

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # %

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # % ! #! #!! % & ( )!! +, +,# #!.. +, ) + + /)!!.0. #+,)!## 2 +, ) + + 3 4 # )!#!! ), 5 # 6! # &!). ) # )!#! #, () # # ) #!# #. # ) 6 # ) )0 4 )) #, 7) 6!!. )0 +,!# +, 4 / 4, )!#!! ))# 0.(! & ( )!! 8 # ) #+,

Mehr

Hilfe. Excel Makros. Version /2007. Josef BERTSCH Gesellschaft m.b.h & Co. Kessel und Energietechnik Apparatebau Nahrungsmittelanlagen

Hilfe. Excel Makros. Version /2007. Josef BERTSCH Gesellschaft m.b.h & Co. Kessel und Energietechnik Apparatebau Nahrungsmittelanlagen Stoffdaten für Luft Excel Makros Hilfe Version 1.7-01/2007 Josef BERTSCH Gesellschaft m.b.h & Co Kessel und Energietechnik Apparatebau Nahrungsmittelanlagen Zentrale: A-6700 Bludenz, Herrengasse 23 Tel.:

Mehr

Aufgabe III: Die Erdatmosphäre

Aufgabe III: Die Erdatmosphäre Europa-Gymnasium Wörth Abiturprüfung 212 Leistungskurs Physik LK2 Aufgabe III: Die Erdatmosphäre Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Taschenrechner

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit

Mehr

EINFÜHRUNG IN DIE PLASMAPHYSIK UND IHRE TECHNISCHE ANWENDUNG

EINFÜHRUNG IN DIE PLASMAPHYSIK UND IHRE TECHNISCHE ANWENDUNG EINFÜHRUNG IN DIE PLASMAPHYSIK UND IHRE TECHNISCHE ANWENDUNG Herausgegeben von GUSTAV HERTZ und ROBERT ROMPE 2., erweiterte Auflage Mit 145 Abbildungen und 10 Tabellen AKADEMIE-VERLAG BERLIN 1968 INHALTSVERZEICHNIS

Mehr

Untersuchung von Realgaseigenschaften in ANSYS CFX am Beispiel einer Lavaldüsenströmung

Untersuchung von Realgaseigenschaften in ANSYS CFX am Beispiel einer Lavaldüsenströmung Diplomarbeit Untersuchung von Realgaseigenschaften in ANSYS CFX am Beispiel einer Lavaldüsenströmung vorgelegt von cand. Ing. Nicole Nenn Matrikel-Nr.: 210658 betreut von Prof. Dr.-Ing Frank Thiele Dipl.

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #6 am 3.05.007 Vladimir Dyakonov (Klausur-)Frage des Tages n einem Blitz kann die Potentialdifferenz

Mehr

Verfeinerte Betrachtung der Schüttkegelentladung dank Modellierung

Verfeinerte Betrachtung der Schüttkegelentladung dank Modellierung Verfeinerte Betrachtung der Schüttkegelentladung dank Modellierung Dr. Serge Forestier Infotag Swissi Process Safety 17.09.2015 Folie 1 Inhaltverzeichnis 1. Beurteilung 2. Erste Annäherung 3. Was machen

Mehr

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators Formeln und Naturkonstanten 1. Allgemeines Energieströme P = v F P = ω M P = U I P = T I S Energiestromstärke bei mechanischem Energietransport (Translation) Energiestromstärke bei mechanischem Energietransport

Mehr

Physikalische Chemie II (PCII) Thermodynamik/Elektrochemie Vorlesung und Übung (LSF# & LSF#101277) - SWS: SoSe 2013

Physikalische Chemie II (PCII) Thermodynamik/Elektrochemie Vorlesung und Übung (LSF# & LSF#101277) - SWS: SoSe 2013 Physikalische Chemie II (PCII) Thermodynamik/Elektrochemie Vorlesung und Übung (LSF#105129 & LSF#101277) - SWS: 4 + 2 SoSe 2013 Prof. Dr. Petra Tegeder Ruprecht-Karls-Universität Heidelberg; Fachbereich

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Übungen zur Physik II PHY 121, FS 2018

Übungen zur Physik II PHY 121, FS 2018 Übungen zur Physik II PHY 2, FS 208 Serie 0 Abgabe: Dienstag, 5. Mai 2 00 Quellenfrei = source-free Wirbel = curl, ey, vortex Verschiebungsstrom = isplacement current Eisenkern = iron/magnet core quellenfreies

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in

Mehr

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik Mechanische Eigenschaften Die Matrix der Verzerrungen ε ij und die Matrix der mechanischen Spannungen σ ij bilden einen Tensor 2. Stufe und werden durch den Tensor 4. Stufe der elastischen Koeffizienten

Mehr

Physikalische Chemie Praktikum. Elektrolyte: Dissoziationskonstante von Essigsäure λ von NaCl ist zu ermitteln

Physikalische Chemie Praktikum. Elektrolyte: Dissoziationskonstante von Essigsäure λ von NaCl ist zu ermitteln Hochschule Emden/Leer Physikalische Chemie Praktikum Vers. Nr. 16 April 2017 Elektrolyte: Dissoziationskonstante von Essigsäure λ von NaCl ist zu ermitteln In diesem Versuch soll die Dissoziationskonstante

Mehr

7. Kritische Exponenten, Skalenhypothese

7. Kritische Exponenten, Skalenhypothese 7. Kritische Exponenten, Skalenhypothese 1 Kritische Exponenten, Universalitätsklassen 2 Beziehungen zwischen den kritischen Exponenten 3 Skalenhypothese für die thermodynamischen Potentiale G. Kahl (Institut

Mehr

E2: Wärmelehre und Elektromagnetismus 15. Vorlesung

E2: Wärmelehre und Elektromagnetismus 15. Vorlesung E2: Wärmelehre und Elektromagnetismus 15. Vorlesung 11.06.2018 Wissenschaftliche Instrumente aus dem 18. und 19. Jahrhundert aus der Sammlung des Teylers Museum in Haarlem, Niederlande Heute: - Reihen-

Mehr

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

Das elektrische Potential

Das elektrische Potential Das elektrische Potential Wir gehen nun genauso wie in der Mechanik vor: nachdem wir die elektrische Kraft diskutiert und durch eine Feldgröße beschrieben haben (das elektrische Feld E), betrachten wir

Mehr

Praktikum. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007

Praktikum. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007 Praktikum Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007 Block 1 jeder Anfang ist eindimensional Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

Zusammenfassung v08 vom 16. Mai 2013

Zusammenfassung v08 vom 16. Mai 2013 Zusammenfassung v08 vom 16. Mai 2013 Gleichstrom Elektrischer Strom ist definiert als die Ladungsmenge dq, dieinderzeitdt durch eine Fläche tritt: Daraus folgt das differentielle Ohm sche Gesetz j = σ

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #4 am 3.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Magnetohydrodynamik. Ivan Kostyuk Universität Heidelberg

Magnetohydrodynamik. Ivan Kostyuk Universität Heidelberg Magnetohydrodynamik Ivan Kostyuk Universität Heidelberg 22.05.2015 Inhalt 1. Ladungen in Elektromagnetischen Feldern 1.1 E B Drift 1.2 Ladungen in inhomogenen magnetischen Feldern 1.3 Magnetische Flasche

Mehr

Inhaltsverzeichnis. Formelzeichen...

Inhaltsverzeichnis. Formelzeichen... Inhaltsverzeichnis Formelzeichen... xv 1 Einführung. Technische Anwendungen... 1 1.1 Die verschiedenen Arten der Wärmeübertragung... 1 1.1.1 Wärmeleitung... 2 1.1.2 Stationäre, geometrisch eindimensionale

Mehr

Transportkoeffizienten von Alkoholen und Wasser: Molekulare Simulation und Messungen mit der Taylor-Dispersions Methode

Transportkoeffizienten von Alkoholen und Wasser: Molekulare Simulation und Messungen mit der Taylor-Dispersions Methode ProcessNet Jahrestagung, 8 - September 9, Mannheim Transportkoeffizienten von Alkoholen und Wasser: Molekulare Simulation und Messungen mit der Taylor-Dispersions Methode Gabriela Guevara-Carrión, Jadran

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

E2: Wärmelehre und Elektromagnetismus 15. Vorlesung

E2: Wärmelehre und Elektromagnetismus 15. Vorlesung E2: Wärmelehre und Elektromagnetismus 15. Vorlesung 11.06.2018 Wissenschaftliche Instrumente aus dem 18. und 19. Jahrhundert aus der Sammlung des Teylers Museum in Haarlem, Niederlande Heute: - Reihen-

Mehr

Der Magnetismus. Kompass. Dauermagnete (Permanentmagnete) Elektromagnet

Der Magnetismus. Kompass. Dauermagnete (Permanentmagnete) Elektromagnet Der Magnetismus Dauermagnete (Permanentmagnete) Kompass Elektromagnet Anwendungsbeispiele: magnetischer Schraubendreher Wozu? Magnetische Schraube im Ölbehälter des Motors magn. Türgummi beim Kühlschrank

Mehr

Inhalt. 10. Elektrostatik. 10. Elektrostatik

Inhalt. 10. Elektrostatik. 10. Elektrostatik Inhalt 10. Elektrostatik 10.1 Elektrische Ladung 10.2 Coulombsches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 1.1 Der Raum 10.1 Elektrische

Mehr

Zur Erinnerung V M. Stichworte aus der 17. Vorlesung: Viskosität. laminare Strömung, Gesetz von Hagen- Poiseuille. Gleichungen der Strömungslehre

Zur Erinnerung V M. Stichworte aus der 17. Vorlesung: Viskosität. laminare Strömung, Gesetz von Hagen- Poiseuille. Gleichungen der Strömungslehre Zur Erinnerung Stichworte aus der 17. Vorlesung: Viskosität laminare Strömung, Gesetz von Hagen- Poiseuille F R = η u dv V M ρ = t π p = ρ R 8η z 4 Gleichungen der Strömungslehre Temperatur, Temperaturskalen,

Mehr

Wärmeübertrager ein Exkurs in zwei Welten

Wärmeübertrager ein Exkurs in zwei Welten Wärmeübertrager ein Exkurs in zwei Welten Dipl.-Ing. Roland Kühn Eine Einführung in die Wärmeübertragung und was den konventionellen Wärmeübertrager von einem thermoelektrischen unterscheidet Roland Kühn

Mehr

Grundlagen der Elektrotechnik LF-2

Grundlagen der Elektrotechnik LF-2 Grundbildung IT-Systemelektroniker Grundlagen der Elektrotechnik LF-2 Mitschriften der Ausbildung Jörg Schumann 13. Februar 2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Ladungsträger 3 2 elektrische Spannung

Mehr

Klausur. Strömungsmechanik

Klausur. Strömungsmechanik Strömungsmechanik Klausur Strömungsmechanik. Juli 007 Name, Vorname: Matrikelnummer: Fachrichtung: Unterschrift: Bewertung: Aufgabe : Aufgabe : Aufgabe 3: Aufgabe 4: Gesamtpunktzahl: Klausur Strömungsmechanik

Mehr

Das Ohmsche Gesetz. Selina Malacarne Nicola Ramagnano. 1 von 15

Das Ohmsche Gesetz. Selina Malacarne Nicola Ramagnano. 1 von 15 Das Ohmsche Gesetz Selina Malacarne Nicola Ramagnano 1 von 15 21./22. März 2011 Programm Spannung, Strom und Widerstand Das Ohmsche Gesetz Widerstandsprint bestücken Funktion des Wechselblinkers 2 von

Mehr

CFX Berlin Software GmbH Simulationskompetenz aus Berlin

CFX Berlin Software GmbH Simulationskompetenz aus Berlin Anwendungsbeispiele Simulation Abgasreinigung im Anlagenbau CFX Berlin Software GmbH Simulationskompetenz aus Berlin CFX Berlin Software GmbH Tel.: +49 30 293 811 30 E-Mail: info@cfx-berlin.de www.cfx-berlin.de

Mehr

Wärmeleitfähige Polyamide

Wärmeleitfähige Polyamide VDI- Arbeitskreis Kunststofftechnik Bodensee Rorschach 08.05.2014 Dr. Georg Stöppelmann, Research & Development EMS-Chemie AG Business Unit EMS-GRIVORY, Europe + 41 81 632 6558 georg.stoeppelmann@emsgrivory.com

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Verbrennungstheorie und Modellierung

Verbrennungstheorie und Modellierung Verbrennungstheorie und Modellierung Institut für Technische Verbrennung RWTH-Aachen Prof. Dr.-Ing. Norbert Peters Grundsätzliche Flammentypen Verbrennungsmoden Diffusionsflammen z.b. Kerzenflammen, Dieselmotoren

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 05. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 05.

Mehr

Millikan-Versuch. Einleitung

Millikan-Versuch. Einleitung Millikan-Versuch Einleitung Schon der Name Quantenphysik drückt aus, dass auf der Ebene der kleinsten physikalischen Objekte (z.b. Atome, Protonen, Neutronen oder Elektronen), bestimmte physikalische Gröÿen

Mehr

Simulationsgestützte Auslegung von Lineardirektantrieben mit MAXWELL, SIMPLORER und ANSYS

Simulationsgestützte Auslegung von Lineardirektantrieben mit MAXWELL, SIMPLORER und ANSYS Simulationsgestützte Auslegung von Lineardirektantrieben mit MAXWELL, SIMPLORER und ANSYS Dipl.-Ing. Matthias Ulmer, Prof. Dr.-Ing. Wolfgang Schinköthe Universität Stuttgart, Institut für Konstruktion

Mehr