Reaktion-Diffusion, Chemotaxis und nichtlokale Mechanismen

Größe: px
Ab Seite anzeigen:

Download "Reaktion-Diffusion, Chemotaxis und nichtlokale Mechanismen"

Transkript

1 Reaktion-Diffusion, Chemotaxis und nichtlokale Mechanismen Dennis Meisberger J. D. Murray: Mathematical Biology: I. An Introduction Kapitel

2 Gliederung 1 - Allgemeines und Grundlagen - Die Ficksche Diffusion - Reaktion-Diffusions-Gleichungen - Modelle tierischer Ausbreitung 2 Chemotaxis 3 Nichtlokale Effekte und langreichweitige Diffusion 4 Zellpotentiale, Energieansatz zur Diffusion und Langstrecken-Effekte 5 Fazit

3 Allgemeines und Grundlagen Abb.1: Rasterelektronenmikroskopaufnahme von Nano-Partikeln (Quelle : Ruhr UniversitätBochum)

4 Einfache Zufallsbewegungen zufällige Bewegung von Teilchen auf mikroskopischer Ebene Verteilung der Teilchen aufgrund dieser zufälligen Bewegung mikroskopische unregelmäßige Bewegung führt zu makroskopischer regelmäßiger Bewegung (Diffusion) Herleitung des makroskopischen Verhaltens aus mikroskopischen Verhalten ist jedoch unmöglich, deshalb kontinuierliche Modellgleichung (Teilchendichte)

5 Elementare Grundlagen Abb.2: Eindimensionale Bewegung eines Teilchens

6 Annahmen x = feste Schrittweite t = dafür benötigte Zeit Nach Zeit N t ist Teilchen irgendwo zwischen N x und N x Gesucht ist die Wahrscheinlichkeit p(m, n), mit der ein Teilchen einen Punkt nach m Schritten und n Zeitschritten erreicht

7 Um den Punkt x = m x zu erreichen, bewege sich das Teilchen a Schritte nach rechts b Schritte nach links Dann gilt: m = a b, a + b = n a = n + m, b = n a 2 Die Gesamtanzahl an möglichen n-schritt-wegen ist 2 n und damit ist die Wahrscheinlichkeit p(m, n) = 1 2 n n! a!(n a)!, a = n + m 2

8 Mit der Stirling-Formel n! = Γ (n + 1) = 0 e t t n dt ergibt sich nach kurzer Rechnung gerade die Normalverteilung p(m, n) ( ) ( ) m2 2n e πn m, n >> 1

9 Setze u = p 2 x, wobei p = 2u x die Wahrscheinlichkeit ist, ein Teilchen im Intervall (x, x + x) zu finden Damit ergibt sich p ( x x, ) t { t 2 x t 2πt( x) 2 Mit dem letzen Schritt ergibt sich u(x, t) = } 1 2 e { x2 2t } t ( x) 2 p ( x x lim, ) { } t { } 1 t 1 2 x2 4Dt = e x, t 0 2 x 4πDt

10 D ist dabei der Diffusionskoeffizient oder die Diffusivität Maß für die Beweglichkeit der Teilchen [D] = 1 m2 s Stoff in Blut Hämoglobin Sauerstoff Größenordnung von D 10 7 cm2 s 10 5 cm2 s

11 Die Ficksche Diffusion Die Konzentrationen an Teilchen in einem Medium können sich lokal ändern. Dies bedeutet, dass sich Teilchen von einem Ort an einen anderen begeben, sie müssen diffundieren. 1. Ficksches Gesetz J c x J = D c x c(x, t): Konzentration des Stoffes D: Diffusivität J: Fluss

12 Abb.3: Der Nettofluss in ein Gebiet ist die Differenz des aus einem Gebiet großer Konzentration (links) eintretenden Flusses und des die Region kleiner Konzentration (rechts) austretenden Flusses (Quelle: TU Braunschweig)

13 Die Konzentrationsänderung ist dann dc dt = J(x) J(x + dx) dx Da J(x + dx) = J(x) + ( J x ) dx erhält man c = J x c : zeitliche Konzentrationsänderung J(x) = N Adt : Teilchenstrom-Zufluss J(x + dx) = N Adt : Teilchenstrom-Abfluss

14 Mit dem 1. Fickschen Gesetz erhält man nun das 2. Ficksche Gesetz c = D 2 J x 2 wobei D als konstant angenommen wurde. Eine Lösung der DGL ergibt sich wie folgt: (RB: x = 0 und t = 0: Menge Q an Partikeln vorhanden) Q c(x, t) = e 2 (πdt ) 1 2 ( ) x2 4DT

15 Abb.4: Konzentrationsprofile für die Diffusion von einer Quelle (Quelle: J. D. Murray: Mathematical Biology: I. An Introduction)

16 Reaktion-Diffusions-Gleichungen Betrachte nun drei Dimensionen c(x, t)dv = wobei J: Fluss des Materials V S J ds + f dv V f : eine von c, x und t abhängige Funktion (Quelle) Annahme Volumen V beliebig Konzentration c(x, t) kontinuierlich c + J = f (c, x, t)

17 Es gilt für klassische Diffusionsprozesse J = D c Zwei Beispiele: c = f + (D c) Verallgemeinerung: u = f + (D u) wobei u Vektor und D Matrix Fisher-Gleichung: n = rn ( 1 n K ) + D 2 n

18 Modelle tierischer Ausbreitung D nun abhängig von der Populationsgröße J = D(n) n; dd dn > 0 D(n) = D 0 ( n n 0 ) m ; m, D 0, n 0 > 0 n [( ) n m ] n = D 0 x n 0 x

19 DGL hat exakte analytische Lösung der Form [ ( ) ] 1 2 m n 0 n(x, t) = λ(t) 1 x r 0 λ(t) ; x r 0 λ(t) 0 ; x > r 0 λ(t), wobei ( t λ(t) = t 0 ) 1 2+m ; r0 = QΓ ( 1 m [ π 1 2 n 0 Γ ( 1 m + 1)]; t 0 = ) r 2 0 m 2D 0 (m + 2)

20 Abb.5: Schematische Lösung für vorherige Gleichung als Funktion von x zu verschiedenen Zeiten t (Quelle: J. D. Murray: Mathematical Biology: I. An Introduction)

21 Beispiel für ein Model geringer Insektenpopulation J = U n D(n) n ; x wobei U : Transportgeschwindigkeit [( n n = U 0 [n sgn(x)] + D 0 x keine triviale Lösung möglich jedoch Idee des Lösungsverhaltens wie folgt lim n(x, t) n(x) = t ( ) n 0 1 mu 1 0 x m D 0 n 0 ) m ] n x ; x D 0 mu 0 0 ; x > D 0 mu 0

22 Abb.6: Schematische Form der stationären Verteilung für kleine Insektenpopulationen, die zur Anhäufung neigen (Quelle: J. D. Murray: Mathematical Biology: I. An Introduction)

23 Chemotaxis Allgemeines Beeinflussung der Fortbewegungsrichtung von Lebewesen oder Zellen durch Stoffkonzentrationsgradienten Übermittlung von Informationen über Geruchssinn Bewegung in Richtung höherer Konzentration: positive Chemotaxis (Lockstoff) Bewegung in entgegengesetzte Richtung: negative Chemotaxis (Schreckstoff) Im Folgenden ist a(x, t) Lockstoff und n(x, t) Anzahl an Zellen des Schleimpilzes Dictyostelium discoideum

24 Chemotaxis Chemotaktischer Fluss ist gegeben durch J = nχ(a) a wobei χ(a) eine von der Lockstoffkonzentration abhängige Funktion ist Weiter gilt: J = J Diffusion + J Chemotaxis n = f (n) nχ(a) a + D n. Lockstoff nun Chemikalie, die selbst produziert wird und diffundiert a = g(a, n) + D a a, wobei D a Diffusivität des Lockstoffs g(a, n) Quellterm

25 Chemotaxis Einfaches Modell zur Beschreibung der Ausbreitung eines Schleimpilzes mit f (n) = 0: Rate der Amöbenproduktion vernachlässigbar χ(a) = χ 0 = const. g(a, n) = hn ka, h, k > 0 hn: spontane Lockstoffproduktion ka: Zerfall/Rückgang der Lockstoff-Aktivität n a = D 2 n x 2 χ 0 x = hn ka + D a 2 a x 2 ( n a ) x

26 Nichtlokale Effekte und langreichweitige Diffusion bisher Konzentrationen/Dichten sehr klein durch Ficksche Diffusion makroskopisch gut erklärbar, ausreichend für Vielzahl von Prozessen Annahme bisher: Diffusion ist lokal Betrachte 2 n n(x, t) n(x, t) R 2 für R 0, wobei n die mittlere Dichte in einem Gebiet mit Radius R um x ist: [ ] 3 n av = n(x, t) = 4πR 3 n(x + r, t)dr V

27 Nichtlokale Effekte und langreichweitige Diffusion Nach Taylorentwicklung von n(x + r, t) um x und Integration erhält man n av = ( ) 3 n(x, 4πR 3 t) = n(x, t) R2 2 n(x, t) Proportionalitätsfaktor: 10 3 V dr + 2 n(x, t) V r 2 2 dr 2 n = 10 3 n(x, t) n(x, t) R 2

28 Nichtlokale Effekte und langreichweitige Diffusion Jetzt: Beschreibung nicht-lokaler und langreichweitiger Diffusion Statt J n jetzt: wobei J = N(x): Umgebung von x G [ n(x + r, t)] r N(x) G: funktionaler Zusammenhang des Gradienten resultierender Fluss ) J = D 1 n + D 2 ( 2 n D 1 > 0 und D 2 : Konstanten

29 Nichtlokale Effekte und langreichweitige Diffusion Mit n = J ergibt sich: n = J = D 1 n }{{} 1 1: Durchschnitt nächster Nachbarn ( ) D 2 2 n } {{ } 2 2: biharmonischer Term, Beitrag aus dem Durchschnitt der nächstgelegenen Durchschnittswerte, stabil für D 2 > 0 Lösung ergibt: k: Wellenzahl Für große k, k 2 > D 1 D 2 gilt: n(x, t) e [ (D 1k 2 +D 2 k 4 )t+ik x] n(x, t) t 0 für D 2 > 0 n(x, t) t für D 2 < 0

30 Nichtlokale Effekte und langreichweitige Diffusion Andere wichtige Formulierung n = f (n) + ω(x x )n(x, t)dx, wobei ω(x x ): Kernfunktion, beschreibt Wirkung von n(x, t) auf n(x, t) Gedächtnis f (n): Quellterm Beispiel: neurale Zellen (n Feuerrate, f (n) Impulsfrequenz) Abb.7: Quelle: J. D. Murray: Mathematical Biology: I. An Introduction

31 Nichtlokale Effekte und langreichweitige Diffusion Umformungen (Taylorentwicklung um x) ergeben: n 2 n = f (n) + ω 0 n + ω 2 x 2 + ω 4 n 4 x , wobei ω 2m : Kernmomente Abb.8: Quelle: J. D. Murray: Mathematical Biology: I. An Introduction

32 Zellpotentiale, Energieansatz zur Diffusion und Langstrecken-Effekte Beschreibung der langreichweitigen Diffusion über Energieansatz E[n] = e(n)dx mit V e(n): Energiedichte, innere Energie pro Volumen eines sich entwickelnden räumlichen Musters µ(n): Potential µ(n) = δe δn = e (n) Weiterhin gilt wie bisher n = J = [D µ(n)] = [De (n) n ]

33 Zellpotentiale, Energieansatz zur Diffusion und Langstrecken-Effekte Bei simpler klassischer Diffusion mit konstanter Diffusion gilt: e(n) = n 2 /2 und µ(n) = n, somit Nun Annahme: n = D 2 n Zellen reagieren empfindlich auf Umwelt d.h. Energie zur Aufrechterhaltung der Heterogenität hängt von benachbarten Gradienten ab E[n] = e(n) + k 1 2 n + k 2 ( n) dx n V = D k 4 n + D a 2 n + D b 2 n 3

34 Fazit Gute Beschreibung der meisten Prozesse durch Ficksche Diffusion (lokal) Tierausbreitung (Amöben o.ä.) durch Konzentrationsgefälle gut erklärbar und voraussagbar Chemotaxis findet Anwendung bei Infektionsbekämpfung Beschreibung langreichweitiger Diffusion durch Kernansatz (Nachbarzellen)

Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1

Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1 Mathematische Modelle in der Biologie Biologische Wellen: Einzelspeziesmodell - Teil 1 Andrea Schneider 05.02.2013 Literatur: J.D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer

Mehr

3. Diffusion und Brechungsindex

3. Diffusion und Brechungsindex 3. Diffusion und Brechungsinde Die Diffusion in und aus einer Schicht ist die Grundlage vieler Sensoreffekte, wobei sich die einzelnen Sensoren dann nur noch in der Art der Übersetzung in ein meßbares

Mehr

Diffusion. Prüfungsfrage

Diffusion. Prüfungsfrage Prüfungsfrage Diffusion Die Diffusion. Erstes Fick sches Gesetz. Der Diffusionskoeffizient. Die Stokes-Einstein Beziehung. Diffusion durch die Zellmembrane: passive, aktive und erleichterte Diffusion Lehrbuch

Mehr

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Bildverarbeitung: Diffusion Filters D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Diffusion Idee Motiviert durch physikalische Prozesse Ausgleich der Konzentration eines Stoffes. Konzentration

Mehr

Transport Einführung

Transport Einführung Transport Einführung home/lehre/vl-mhs-1/inhalt/folien/vorlesung/8_transport/deckblatt.tex Seite 1 von 24. p.1/24 1. Einführung 2. Transportgleichung 3. Analytische Lösung Inhaltsverzeichnis 4. Diskretisierung

Mehr

6. Boltzmann Gleichung

6. Boltzmann Gleichung 6. Boltzmann Gleichung 1 6.1 Herleitung der Boltzmann Gleichung 2 6.2 H-Theorem 3 6.3 Transportphänomene G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 6 3. Juni 2013 1 / 23

Mehr

Molekulare Maschinen als Brownsche Motoren

Molekulare Maschinen als Brownsche Motoren Molekulare Maschinen als Brownsche Motoren Gernot Faulseit 10. Juli 2003 Power Stroke vs. Brownsche Ratsche 10. Juli 2003 Power Stroke vs. Brownsche Ratsche gängige Vorstellung bei der Muskelkontraktion:

Mehr

Biologische Oszillatoren und Schalter - Teil 1

Biologische Oszillatoren und Schalter - Teil 1 Biologische Oszillatoren und Schalter - Teil 1 Elena Süs 11.12.2012 Literatur: J.D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Gliederung 1 Motivation 2 Historische Entwicklung

Mehr

Technische Universität Dresden Fachrichtung Physik K.Prokert 09/2001 M. Lange 12/2008. Diffusion. Physikalisches Praktikum. Inhaltsverzeichnis

Technische Universität Dresden Fachrichtung Physik K.Prokert 09/2001 M. Lange 12/2008. Diffusion. Physikalisches Praktikum. Inhaltsverzeichnis Technische Universität Dresden Fachrichtung Physik K.Prokert 9/ M. Lange /8 Physikalisches Praktikum Versuch: DI Diffusion Inhaltsverzeichnis. Aufgabenstellung. Grundlagen 3. Versuchsdurchführung 4. Hinweise

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Einige grundlegende partielle Differentialgleichungen

Einige grundlegende partielle Differentialgleichungen Einige grundlegende partielle Differentialgleichungen H. Abels 17. Oktober 2010 H. Abels (U Regensburg) Grundlegende PDGLn 17. Oktober 2010 1 / 14 Transportgleichung Eine der einfachsten Differentialgleichungen

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

Reaktionskinetik. Maximilian Erlacher. Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer

Reaktionskinetik. Maximilian Erlacher. Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer Reaktionskinetik Maximilian Erlacher Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer Themen: 1 Basisenzymreaktion 2 Michaelis-Menten-Analyse 3 Selbstauslöschende Kinetik

Mehr

Algorithmen in Zellularautomaten

Algorithmen in Zellularautomaten Algorithmen in Zellularautomaten 12. Thomas Worsch Fakultät für Informatik Institut für Theoretische Informatik Sommersemester 2018 Ziele Diffusion weitere Beispiele: Wellen, BZ-Reaktion, Reaktions-Diffusions-Systeme

Mehr

Moderne Theoretische Physik IIIa WS 18/19

Moderne Theoretische Physik IIIa WS 18/19 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik IIIa WS 8/9 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 7 Dr. Stefan Rex Besprechung: 9..9.

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

Gedämpftes Quantentunneln in makroskopischen Systemen

Gedämpftes Quantentunneln in makroskopischen Systemen Gedämpftes Quantentunneln in makroskopischen Systemen Kerstin Helfrich Seminar über konforme Feldtheorie, 27.06.06 Gliederung 1 Motivation 2 Voraussetzungen Allgemein Ungedämpfter Fall 3 Gedämpftes Tunneln

Mehr

5 Der quantenmechanische Hilbertraum

5 Der quantenmechanische Hilbertraum 5 Der quantenmechanische Hilbertraum 5.1 Die Wellenfunktion eines Teilchens Der Bewegungs- Zustand eines Teilchens Elektrons zu einem Zeitpunkt t, in der klassischen Mechanik das Wertepaar r,p von Ort

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

8.1. Kinetische Theorie der Wärme

8.1. Kinetische Theorie der Wärme 8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung

Mehr

Medizinische Biophysik. Stephan Scheidegger ZHAW School of Engineering

Medizinische Biophysik. Stephan Scheidegger ZHAW School of Engineering Medizinische Biophysik Stephan Scheidegger ZHAW School of Engineering Modelle in der medizinischen Biophysik Inhalt ROETGETECHIK Teil A Systembiophysik (Kapitel 1-4) Teil B Strahlenbiophysik (Kapitel 5-8)

Mehr

Übersicht. Rückblick: klassische Mechanik

Übersicht. Rückblick: klassische Mechanik 61 Übersicht 1) Makroskopische k (phänomenologische) h Thermodynamik Terminologie Hauptsätze der Thermodynamik Kreisprozesse Maxwell Viereck response Funktionen Phasenübergänge 2) Statistische i Mechanik

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

Mehr

Ableitungen von skalaren Feldern Der Gradient

Ableitungen von skalaren Feldern Der Gradient Ableitungen von skalaren Feldern Der Gradient In der letzten Vorlesung haben wir das zu einem konservativen Kraftfeld zugehörige Potential V ( r) = F ( s) d s + V ( r0 ) kennengelernt und als potentielle

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 4. Teil Finite-Volumen-Methode

Mehr

8.6.3 Wärmeleitung von Gasen ****** 1 Motivation. 2 Experiment. Wärmeleitung von Gasen V080603

8.6.3 Wärmeleitung von Gasen ****** 1 Motivation. 2 Experiment. Wärmeleitung von Gasen V080603 8.6.3 ****** 1 Motivation Dieser Versuch zeigt qualitativ anhand der unterschiedlichem Abkühlung eines glühenden Drahtes, dass die umgekehrt proportional zur Wurzel aus der Molekularmasse und für nicht

Mehr

Fokker-Planck Gleichung

Fokker-Planck Gleichung Fokker-Planck Gleichung Max Haardt WWU Münster 21. November 2008 Inhalt 1 Einleitung Langevin Gleichung Fokker-Planck Gleichung 2 Herleitung Mastergleichung Kramers-Moyal Entwicklung Fokker-Planck Gleichung

Mehr

Einführung in die Boltzmann-Gleichung. Flavius Guiaş Universität Dortmund

Einführung in die Boltzmann-Gleichung. Flavius Guiaş Universität Dortmund Einführung in die Boltzmann-Gleichung Flavius Guiaş Universität Dortmund Antrittsvorlesung, 19.04.2007 INHALT 1 Herleitung der Boltzmann-Gleichung 2 Boltzmann-Ungleichung und Maxwell-Verteilung 3 H-Theorem

Mehr

1D-Transportgleichung

1D-Transportgleichung Analytische Lösungen der Transportgleichung 1-Transportgleichung Wenn ein gelöster Stoff sich sowohl advektiv, als auch diffusiv in einer Flüssigkeit bewegt, dann gilt folgende Gleichung ( nc t + x x &

Mehr

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014 Elemententstehung 2. Cora Fechner Universität Potsdam SS 2014 alische Grundlagen Kernladungszahl: Z = Anzahl der Protonen Massenzahl: A = Anzahl der Protonen + Anzahl der Neutronen Bindungsenergie: B

Mehr

Übung vom Heute geht es hauptsächlich um den Satz von Gauss und seine Anwendungen. Der Inhalt. Herleitung des SvG. Flächenformel.

Übung vom Heute geht es hauptsächlich um den Satz von Gauss und seine Anwendungen. Der Inhalt. Herleitung des SvG. Flächenformel. Übung vom 7.7.10 Heute geht es hauptsächlich um den Satz von Gauss und seine Anwendungen. Der Inhalt 1 Formulierung des Satzes von Gauss (SvG). 2 Erinnerung an die Denition der Divergenz und intuitive

Mehr

4.4 Berechnung von Wirkungsquerschnitten

4.4 Berechnung von Wirkungsquerschnitten . Berechnung von Wirkungsquerschnitten. Berechnung von Wirkungsquerschnitten Bei Streuprozessen ist der Wirkungsquerschnitt ein Mass für die Wahrscheinlichkeit einer Streuung je einlaufendem Teilchenpaar

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel 2.Transatlantische Vorlesung aus Oaxaca, Mexiko, 20. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg

Mehr

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin

Unstetige Galerkin-Verfahren und die lineare Transportgleichung. Tobias G. Pfeiffer Freie Universität Berlin Unstetige Galerkin-Verfahren und die lineare Transportgleichung Tobias G. Pfeiffer Freie Universität Berlin Seminar DG-Verfahren, 26. Mai 2009 , Voraussetzungen & Ziele Voraussetzungen Kenntnisse in Numerik

Mehr

V Diffusion von H 2

V Diffusion von H 2 V080604 Diffusion von H 8.6.4 Diffusion von H ****** Motivation Dieser Versuch zeigt, dass Wasserstoff schneller als Luft diffundiert. Deshalb entsteht beim Einbzw. Ausströmen von Wasserstoff in einen

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

d. h. die Summe der positiven und negativen Ladungsträger, welche in einer Zeit t durch eine senkrecht stehende Fläche A treten: I = I +

d. h. die Summe der positiven und negativen Ladungsträger, welche in einer Zeit t durch eine senkrecht stehende Fläche A treten: I = I + Elektrolyte Teil II Solvatation, elektrische Leitfähigkeit, starke und schwache Elektrolyte, Ionenstärke, Debye Hückeltheorie, Migration, Diffusion, Festelektrolyte Wie hängt der Strom von der Geschwindigkeit

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Mathematik 2 für Bauingenieure

Mathematik 2 für Bauingenieure Mathematik 2 für Bauingenieure Name (bitte ausfüllen): Prüfung am 6.3.2015 Reinhard Winkler Matrikelnummer (bitte ausfüllen): Die mündliche Prüfung findet in der Woche von 16. bis 20.3.2015 statt. Wenn

Mehr

Thermodynamik. Christian Britz

Thermodynamik. Christian Britz Hauptsätze der Klassische nanoskaliger Systeme 04.02.2013 Inhalt Einleitung Hauptsätze der Klassische nanoskaliger Systeme 1 Einleitung 2 Hauptsätze der 3 4 Klassische 5 6 7 nanoskaliger Systeme 8 Hauptsätze

Mehr

Basisprüfung, Gruppe A Analysis I/II

Basisprüfung, Gruppe A Analysis I/II Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.

Mehr

Theorie der Wärme Musterlösung 11.

Theorie der Wärme Musterlösung 11. Theorie der Wärme Musterlösung. FS 05 Prof. Thomas Gehrmann Übung. Edelgas im Schwerefeld Berechne den Erwartungswert der Energie eines monoatomaren idealen Gases z. B. eines Edelgases in einem zylindrischen

Mehr

Serie 11, Musterlösung

Serie 11, Musterlösung Serie, Musterlösung AN donat.adams@fhnw.ch www.adams-science.com Klasse: Ub Semester: Datum: 30. Mai 07. SIMULINK-Modell Gegeben sei das folgende SIMULINK-Modell: (a) Bestimmen Sie die Differentialgleichung.

Mehr

Statistische Thermodynamik I Lösungen zur Serie 11

Statistische Thermodynamik I Lösungen zur Serie 11 Statistische Thermodynamik I Lösungen zur Serie Verschiedenes 20 Mai 206 Barometrische Höhenformel: Betrachte die rdatmosphäre im homogenen Gravitationspotential M gz der rde Unter der Annahme, dass sich

Mehr

Einführung: Wie kann Ordnung entstehen?

Einführung: Wie kann Ordnung entstehen? Einführung: Wie kann Ordnung entstehen? 1. Probleme mit dem 2. Hauptsatz der Thermodynamik THEORIE: 2. Haupsatz (Boltzmanns H-Theorem): In einem isolierten System kann die Entropie nur zunehmen (und die

Mehr

2 Halbgruppen von Übergangswahrscheinlichkeiten. Markov-Prozesse

2 Halbgruppen von Übergangswahrscheinlichkeiten. Markov-Prozesse 2 Halbgruppen von Übergangswahrscheinlichkeiten Markov-Prozesse Im Folgenden sei (X, B) ein (polnischer) Messraum und T = [0, ) oder T = N 0 Definition 21 Eine Familie (P t ) t T von (X, B) mit Übergangswahrscheinlichkeiten

Mehr

Abbildung 1: Diffusionsverbreiterung im zeitlichen Verlauf eines Sedimentationsgeschwindigkeitsexperiments

Abbildung 1: Diffusionsverbreiterung im zeitlichen Verlauf eines Sedimentationsgeschwindigkeitsexperiments Diffusion Einführung Zusätzlich zu den Sedimentations-, Auftriebs- und Reibungskräften unterliegt ein Partikel im Zentrifugalfeld der ungerichteten und der gerichteten (wechselseitigen) Diffusion. Dabei

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Transformation mehrdimensionaler Integrale

Transformation mehrdimensionaler Integrale Transformation mehrdimensionaler Integrale Für eine bijektive, stetig differenzierbare Transformation g eines regulären Bereiches U R n mit det g (x), x U, gilt für stetige Funktionen f : f g det g du

Mehr

Differenzialgleichungen

Differenzialgleichungen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 30. Januar 2008 (System von) Differenzialgleichung(en) Schwingungsgleichung Newtonsche Mechanik Populationsdynamik...DGLn höherer Ordnung auf

Mehr

Ausgewählte Kapitel der Klassischen Statistischen Physik. Transport in Ratschen

Ausgewählte Kapitel der Klassischen Statistischen Physik. Transport in Ratschen Ausgewählte Kapitel der Klassischen Statistischen Physik Transport in Ratschen Paul Egetmeyer Steffen Nothelfer August 4, 2010 Gliederung Einleitung und Wiederholung Bedingungen Übedämpfte Theorie An-

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

Johannes Veit. 8. Januar 2016

Johannes Veit. 8. Januar 2016 Finite im Ein Blick über den Tellerrand... mit FreeFem++ 8. Januar 2016 im 1 2 im 3 4 Gliederung 5 im 1 2 im 3 4 Gliederung 5 dem Einheitsquadrat Laplace - Gleichung: im u(x) = 0 Man betrachte das Problem

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Kapitel 10. Potentiale Elektronen im Potentialtopf

Kapitel 10. Potentiale Elektronen im Potentialtopf Kapitel 10 Potentiale 10.1 Elektronen im Potentialtopf Mit dem Aufstellen der Schrödinger-Gleichung ist man der realistischen Beschreibung von Quantenobjekten ein großes Stück nähergekommen. Unser Interesse

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Entropie und die Richtung der Zeit

Entropie und die Richtung der Zeit und die Richtung der Zeit 8. Juli 25 Eine Dimension: Zwei Dimensionen: v(x, y)ds = Rand v(1) v() = = = 1 1 1 1 v(x, )dx + Volumen In drei Dimensionen: v( x)dσ = Rand V d v(x) dx dx 1 1 v(1, y)dy v(, y)dy

Mehr

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und

= n + + Thermodynamik von Elektrolytlösungen. Wdhlg: Chemisches Potential einer Teilchenart: Für Elektrolytlösungen gilt: wobei : und Elektrolyte Teil III Solvatation, elektrische Leitfähigkeit, starke und schwache Elektrolyte, Ionenstärke, Debye Hückeltheorie, Migration, Diffusion, Festelektrolyte Thermodynamik von Elektrolytlösungen

Mehr

IX.2 Multipolentwicklung

IX.2 Multipolentwicklung IX. Multipolentwicklung 153 IX. Multipolentwicklung Ähnlich der in Abschn. III.3 studierten Entwicklung des elektrostatischen Skalarpotentials Φ( r) einer Ladungsverteilung ρ el. als Summe der Potentiale

Mehr

Resultate der Quantisierung der Schrödingergleichung in zwei Dimensionen.

Resultate der Quantisierung der Schrödingergleichung in zwei Dimensionen. Resultate der Quantisierung der Schrödingergleichung in zwei Dimensionen. 22. April 2010 In diesem Text werden die in der Tabelle properties of free fermions angeführten Ergebnisse erklärt und einige Zwischenschritte

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Algebraische Gleichungen. Martin Brehm February 2, 2007

Algebraische Gleichungen. Martin Brehm February 2, 2007 Algebraische Gleichungen Martin Brehm February, 007 1. Der Begriff Algebra Algebraische Gleichungen Durch das herauskristalisieren von mehreren Teilgebieten der Algebra ist es schwer geworden eine einheitliche

Mehr

Wahrscheinlichkeitsrechnung und stochastische Prozesse

Wahrscheinlichkeitsrechnung und stochastische Prozesse Kapitel 7 Wahrscheinlichkeitsrechnung und stochastische Prozesse Zufallsvariable, Wahrscheinlichkeitsdichte, Markov-Prozess ( Zukunft hängt von der Vergangenheit nur über die Gegenwart ab. 7. Einführung

Mehr

Kinetische Gastheorie - Die Gauss sche Normalverteilung

Kinetische Gastheorie - Die Gauss sche Normalverteilung Kinetische Gastheorie - Die Gauss sche Normalverteilung Die Gauss sche Normalverteilung Die Geschwindigkeitskomponenten eines Moleküls im idealen Gas sind normalverteilt mit dem Mittelwert Null. Es ist

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 31. 05. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 31. 05.

Mehr

Repetitorium QM 1 - Tag 5

Repetitorium QM 1 - Tag 5 Thermodynamik und 4. März 2016 Inhaltsverzeichnis 1 Thermodynamik Hauptsätze der Thermodynamik 2 Zustandsgrößen Thermodynamik Hauptsätze der Thermodynamik Ziel: Beschreibung des makroskopischen Gleichgewichtszustandes

Mehr

Biophysik der Moleküle!

Biophysik der Moleküle! Biophysik der Moleküle!!"#$%&'()*+,#-./'(&#01#2343!!"#$%&'()*$'+* (,&*-.(/)0&#(/'* 18. Nov. 2010 The cytoskeleton! and beam theory! Intermediary filament! Actin! Microtubuli! Aktin! Intermediäre! Filamente!

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

7.5 Transportprozesse in Gasen

7.5 Transportprozesse in Gasen 7.5 Transportprozesse in Gasen Transport von: Gasvolumina Verteilung einer Molekülsorte in einer anderen Energie Impuls Gasströmung Diffusion Wärmeleitung Viskosität Auftreten bei räumlichem Unterschied

Mehr

1. Vorlesung Partielle Differentialgleichungen

1. Vorlesung Partielle Differentialgleichungen 1. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 21. Oktober 2014 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

Mehr

Die Schrödinger Gleichung

Die Schrödinger Gleichung Die Schrödinger Gleichung Eine Einführung Christian Hirsch Die Schrödinger Gleichung p. 1/16 Begriffserklärung Was ist die Schrödingergleichung? Die Schrödinger Gleichung p. 2/16 Begriffserklärung Was

Mehr

Einführung FEM 1D - Beispiel

Einführung FEM 1D - Beispiel p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie

Mehr

Brownsche Bewegung Seminar - Weiche Materie

Brownsche Bewegung Seminar - Weiche Materie Brownsche Bewegung Seminar - Weiche Materie Simon Schnyder 11. Februar 2008 Übersicht Abbildung: 3 Realisationen des Weges eines Brownschen Teilchens mit gl. Startort Struktur des Vortrags Brownsches Teilchen

Mehr

2 Mikrokanonische Definition der Temperatur

2 Mikrokanonische Definition der Temperatur III Klassische Mechanik & Statistische Mechanik Begründung der Mikrokanonischen Mittelung Für Teilchensystem wie Gase und Flüssigkeiten, aber für klassische Spins, die durch einen meist dreikomponentigen

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Physik B2.

Physik B2. Physik B2 https://e3.physik.tudortmund.de/~suter/vorlesung/physik_a2_ws17/physik_a2_ws17.html 1 Wellen Welle = Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Reaktions-Diffusions-Modelle

Reaktions-Diffusions-Modelle Reaktions-Diffusions-Modelle Gegenstück zu zellulären Automaten: ebenfalls raumorientiert, mit fester Nachbarschaftsrelation und kontextsensitiven Regeln aber: kontinuierlich in Raum, Zeit und Strukturen

Mehr

Stabile periodische Bewegungen (Grenzzyklen)

Stabile periodische Bewegungen (Grenzzyklen) Stabile periodische Bewegungen (Grenzzyklen) 1. Nichtlineare Systeme mit zwei Gleichungen Prinzipiell neu: Alle Systeme mit mindestens 2 unabhängigen DGL können als Lösungen geschlossene Kurven im Phasenraum

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

Höhere Mathematik III für die Fachrichtung Physik

Höhere Mathematik III für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Ioannis Anapolitanos Dipl.-Math. Sebastian Schwarz WS 5/6 6..5 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt

Mehr

Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie

Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie 30.11.2007 Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie Johanna Flock Gliederung Einleitung Kurze Wiederholung Statistischer Mechanik Ensemble Statistische Beschreibung von Kolloid

Mehr

Kapitel 8 Absolutstetige Verteilungen

Kapitel 8 Absolutstetige Verteilungen Kapitel 8 Absolutstetige Verteilungen Vorlesung Wahrscheinlichkeitsrechnung I vom 27. Mai 2009 Lehrstuhl für Angewandte Mathematik FAU 8. Absolutstetige Verteilungen Charakterisierung von Verteilungen

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

3. Ebene Systeme und DGL zweiter Ordnung

3. Ebene Systeme und DGL zweiter Ordnung H.J. Oberle Differentialgleichungen I WiSe 2012/13 3. Ebene Systeme und DGL zweiter Ordnung A. Ebene autonome DGL-Systeme. Ein explizites DGL-System erster Ordung, y (t) = f(t, y(t)), heißt bekanntlich

Mehr

5. Die eindimensionale Wellengleichung

5. Die eindimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 5. Die eindimensionale Wellengleichung Wir suchen Lösungen u(x, t) der eindimensionale Wellengleichung u t t c 2 u xx = 0, x R, t 0, (5.1) wobei die Wellengeschwindigkeit

Mehr

Stefan Hunn. 21.Juni

Stefan Hunn. 21.Juni Fakultät für Physik 21.Juni Übersicht 1 2 3 4 5 zeitabhängige Zufallsvariablen Zeitunabhängige Ω = Menge der möglichen exp. Ergebnisse Zeitabhängige X : Ω R zeitunabh. Zufallvariable X : Ω R R; ω t X (t,

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 7 1 Ergänzungen zur Hydrodynamik Fluide = Flüssigkeiten oder Gase - ideale Fluide - reale Fluide mit "innerer Reibung", ausgedrückt durch die sog. Viskosität Strömungen von Flüssigkeiten, d.h. räumliche

Mehr

Exakte Differentialgleichungen

Exakte Differentialgleichungen Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte

Mehr

Moleküldynamik. Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen. = m a i

Moleküldynamik. Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen. = m a i Mikroskopische Simulation der Molekülbewegungen Moleküldynamik Statistische Mechanik Modell: Klassische Mechanik Newtonsche Bewegungsgleichungen Makroskopische igenschaften des Systems (nergie, Temp, Druck,

Mehr

Ein Integral einer stetigen Funktion über einem Elementarbereich. lässt sich durch Hintereinanderausführung eindimensionaler Integrationen berechnen:

Ein Integral einer stetigen Funktion über einem Elementarbereich. lässt sich durch Hintereinanderausführung eindimensionaler Integrationen berechnen: Satz von Fubini Ein Integral einer stetigen Funktion über einem Elementarbereich V : a j (x 1,..., x j 1 ) x j b j (x 1,..., x j 1 ) lässt sich durch Hintereinanderausführung eindimensionaler Integrationen

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Waermeleitungsgleichung

Waermeleitungsgleichung Waermeleitungsgleichung October 26, 2018 1 Ausführliche Diskussion des Wärmeleitungsgleichungs-Beispiels der Vorlesung Wir betrachten die folgende Aufgabe: Ein Stab der Länge π (auf dem Zahlenstrahl von

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

Quantenmechanik I Sommersemester QM Web Page teaching/ss13/qm1.d.html

Quantenmechanik I Sommersemester QM Web Page  teaching/ss13/qm1.d.html Quantenmechanik I Sommersemester 2013 QM Web Page http://einrichtungen.physik.tu-muenchen.de/t30e/ teaching/ss13/qm1.d.html Hinweise Zusätzliche Übung: Aufgrund des großen Andrangs bieten wir eine zusätzliche

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr