4.4 Berechnung von Wirkungsquerschnitten

Größe: px
Ab Seite anzeigen:

Download "4.4 Berechnung von Wirkungsquerschnitten"

Transkript

1 . Berechnung von Wirkungsquerschnitten. Berechnung von Wirkungsquerschnitten Bei Streuprozessen ist der Wirkungsquerschnitt ein Mass für die Wahrscheinlichkeit einer Streuung je einlaufendem Teilchenpaar an. Der WQ charakterisiert also die Reaktion der Teilchen und ist gleichzeitig unabhängig von der Anzahl der einlaufenden Teilchen, also Experiment-unabhängig. Ein einzelnes Teilchen mit geometrischer Querschnittsfläche r befinde sich in einer Ebene der Fläche A. Trifft ein anderes, viel kleineres Teilchen an einem beliebigen Ort auf die Fläche, so ist in der klassischen Physik die Wahrscheinlichkeit, dass sich die beiden Teilchen treffen, gleich P A. Ist das eintreffende Teilchen ebenfalls ausgedehnt, so stellt die effektive Querschnittsfläche der Reaktion dar, eben den Wirkungsquerschnitt (WQ). In der quantenmechanischen Beschreibung sehr kleiner Elementarteilchen repräsentiert der WQ die effektive Querschnittsfläche oder (Reichweite) der Wechselwirkung zwischen den Teilchen. Trifft anstelle eines einzelnen Teilchens ein Teilchenstrahl mit kleiner Anzahl-Dichte n und Geschwindigkeit v auf die Fläche, so werden in einer Zeit T insgesamt N n v TA Teilchen die Fläche treffen. Für den Teilchenstrahl ist die Anzahl der Streuprozesse pro Zeit ( Übergangsrate ) daher P S T P N n v TA n v. T AT Trifft der Teilchenstrahl nicht auf ein einzelnes Teilchen sondern auf N Teilchen in einem olumen (Teilchendichte n ), so ist die Anzahl der Streuprozesse um diesen Faktor N erhöht, P S T n v N n n v (.0) Für den allgemeinen Fall, dass sich auch die Teilchen N bewegen, ist die Differenz der Geschwindigkeiten v v maßgebend. Außerdem muss berücksichtigt werden, dass man experimentell bei einer Reaktion (p + p p 3 + p ) die Teilchen im Endzustand im Impulsintervall d 3 p 3 d 3 p beobachtet. Der Lorentz-invariante Phasenraumfaktor hierfür, d.h. die Anzahl der quantenmechanischen Zustände in diesem Bereich ist (siehe Abschnitt..) d 3 p 3 d 3 p (.) ( ) 3 E 3 ( ) 3 E Damit ergibt sich insgesamt für den Wirkungsquerschnitt: d P S (T) n n v v d 3 p 3 d 3 p (.) ( ) 3 E 3 ( ) 3 E 5

2 . Berechnung von Wirkungsquerschnitten oder symbolisch d Übergangsrate x Phasenraum Teilchenfluss (.3) Dies ist Fermi s Goldene Regel. Der Phasenraum beinhaltet die Kinematik und ist proportional zur Anzahl der möglichen quantenmechanischen Endzustände. Der Flussfaktor dient der Normierung auf den Fluss der einlaufenden Teilchen. Bezogen auf ein olumen findet man allgemein (siehe Anhang..) F n n v v (p p ) m m (.) Die Übergangsrate beinhaltet das Matrix-Element und damit die Dynamik der Wechselwirkung. Für quantenmechanische Prozesse ist die Wahrscheinlichkeit PS der Streuung in einen bestimmten Endzustand f S i Sf i (.5) Natürlich sollte diese Wahrscheinlichkeit null sein, wenn erimpulserhaltung verletzt ist. Sf i enthält also implizit eine Funktion, so dass man schreibt Sf i i ( ) () (p + p p3 p ) Mf i (.6) Später wird diese Form explizit abgeleitet. Dies ergibt0 (P ) Damit folgt Sf i Mf i ( ) 0 (P ) T. ( ) (p + p p3 p ) T (.7) Bei der Berechnung von Sf i wird demnach eine Funktion quadriert werden müssen. Hierfür gilt bei Integration (p) f (p) (p) f (0) und demnach auch (p) (p) (p) (0). Wegen folgt (p) lim T, inf 3 ipx dt d xe ( ) T (0) lim T, inf T. ( ) Der Grenzwert für alle Zeiten und den ganzen Raum muss natürlich noch durchgeführt werden. Da jedoch sowohl als auch T in der endgültigen Formel für den Wirkungsquerschnitt nicht mehr auftauchen ändert der Limes nichts am Endresultat für diese Berechnung und wird daher nicht weiter mitgeführt. 55

3 . Berechnung von Wirkungsquerschnitten Der Wirkungsquerschnitt setzt sich für Streuprozesse mit p + p p 3 + p also zusammen aus d P S (T) n n v v ( ) 3 d 3 p 3 E 3 ( ) 3 d 3 p E M fi ( ) d p 3 d p (p + p p 3 p ) (p p ) m m ( ) 3 E 3 ( ) 3 E Die Spinoren in M fi beinhalten noch die Normierung (E + m), so dass sich heraushebt. Es wird daher ab jetzt M fi M fi verwendet, was so verstanden werden soll, dass bei der Berechnung von Matrixelementen M ab jetzt als Normierung der Spinoren N E + m verwendet wird. Damit ist der Wirkungsquerschnitt oder explizit d M fi F dq (.8) M fi d ( ) d p 3 d p (p + p p 3 p ) (.9) (p p ) m m ( ) 3 E 3 ( ) 3 E einlaufender Teilchenfluss Lorentz-invarianter Phasenraum (dlips dq) Dies ist die explizite Form von Fermi s goldener Regel für Prozesse. Alle Teile sind explizit Lorentz-invariant... Phasenraumfaktor Der bereits in Gl.. verwendete Phasenraumfaktor soll im Folgenden begründet werden. Gesucht ist die Anzahl der quantenmechanisch erlaubten Zustände eines Teilchens in einem Würfel mit olumen L 3.DieAnzahlderTeilchenimWürfelbleibtkonstant, wenn periodische Randbedingungen für die Wellenfunktion und deren Ableitung vorliegen. In einer Dimension heist das e ipx x e ipx (x+l), so dass Lp x n, (mitn,..). Damit gilt für die Anzahl der Zustände dn im Bereich von p x bis p x + dp x oder in 3 Dimensionen dn dp x L, dn d 3 p ( ). 3 Bei E Teilchen im olumen ist damit die Anzahl der Zustände / Teilchen d 3 p ( ) 3 E (.30) 56

4 . Berechnung von Wirkungsquerschnitten Es soll nun noch gezeigt werden, dass der Ausdruck d 3 pe Lorentzinvariant ist. Bei einer Lorentz-Transformation z.b. in x-richtung gilt, p x p x E, E E p x, so dass dp x dp x de dp x de. Außerdem folgt aus p x E p y p z m bei festgehaltenem p y,p z, dass p x dp x EdE.Setztmandieseinsofolgt dp p x x ( E ) dp x und damit dp x ( px E ) dp x dp x E E p x E. erallgemeinert für alle drei Impulsrichtungen ist also der Ausdruck d 3 p (.3) E für den Phasenraum Lorentz-invariant. Differentielle Wirkungsquerschnitte werden daher oft angegeben in der Form E d d 3 p. (.3).. Teilchenfluss der einlaufenden Teilchen Der Fluss der einfallenden Teilchen hängt von ihrer Dichte sowie ihrer Differenzgeschwindigkeit v v ab, wobei angenommen ist, dass die Geschwindigkeiten entgegengesetzt gerichtet sind. Die Lösungen der Dirac-Gleichung werden so normiert (N (E + m), siehe.), dass die Teilchendichten n j 0 0 N ūu E (.33) betragen. Insgesamt ist damit der Fluss bezogen auf das Reaktionsvolumen F v v E E (v + v ) E E p + p E E E E (p E + p E ) oder F (p p ) m m (.3) wie man durch explizites Ausrechnen des -er Skalarprodukts p p in der letzten Zeile zeigen kann. Der letzte Ausdruck für den Fluss ist explizit-lorentz-invariant. Insbesondere gilt im CMS wegen p i p p auch F p i (E + E ) p i s (.35) Im Fixed-Target-System gilt wegen p 0 entsprechend F m p s (.36) 57

5 .5 Wirkungsquerschnitt im CMS.5 Wirkungsquerschnitt im CMS Der Wirkungsquerschnitt ist augenscheinlich vielfach differentiell in d 3 p 3 und d 3 p. Er sollte aber nur von zwei dieser sechs ariablen abhängen, denn es gilt -er Impulserhaltung. Da die Energien der Teilchen durch die Anfangsbedingungen und die Massen festliegen, müssen die verbleibenden ariablen der Streuwinkel und der Azimuthalwinkel eines der Teilchen sein. Die Richtung des anderen Teilchens ergibt sich dann aus der Impulserhaltung. Das Matrixelement kann aus Symmetriegründen nicht vom Azimuthalwinkel um die Kollisionsachse abhängen. Es ist also M fi M fi ( ).Da der Flussfaktor nicht von den auslaufenden Teilchen abhängt kann demnach der Phasenraum getrennt integriert werden, bis auf die Winkelvariablen. Dies ist besonders einfach im CMS System, da die - Funktion die -er Impulserhaltung garantiert. Man findet (siehe.5.) dq ( ) Hierbei ist das Raumwinkelelement p f d (.37) s d d cos d (.38) und p f der Impuls der beiden Teilchen im Endzustand, so dass Energieerhaltung erfüllt ist, s E 3 (p f ) + E (p f ). Im Schwerpunktsystem ergibt sich aus der goldenen Regel mit dem Flussfaktor (Gleichung.35) für den Wirkungsquerschnitt d d 6 s F p i s (.39) p f p i M fi( ) (.0) Aus dem Phasenraum folgt, dass proportional zum Impuls p f der Teilchen im Endzustand ist. Die Produktion schwerer Teilchen ist also durch den Phasenraum unterdrückt. Bei hohen Energien werden die Massen der Teilchen zunehmend unwichtiger. In diesem Limes (oder bei gleichen Massen m i m f )ist p f p i (.) so dass der Wirkungsquerschnitt quadratisch mit der Schwerpunktsenergie fällt, s (.) Da außer den Massen nur s die Dimension einer Energie trägt ist dies auch aus Dimensionsgründen erforderlich. Der Wirkungsquerschnitt hängt nur durch das Matrixelement vom Streuwinkel ab. 58

6 .5 Wirkungsquerschnitt im CMS.5. Integration des Phasenraums Der Wirkungsquerschnitt ist augenscheinlich vielfach differentiell in d 3 p 3 und d 3 p. Er sollte aber nur von zwei dieser sechs ariablen abhängen, denn es gilt -er Impulserhaltung. Da die Energien der Teilchen durch die Anfangsbedingungen und die Massen festliegen, müssen die verbleibenden ariablen der Streuwinkel und der Azimuthalwinkel eines der Teilchen sein. Die Richtung des anderen Teilchens ergibt sich dann aus der Impulserhaltung. Das Matrixelement kann aus Symmetriegründen nicht vom Azimuthalwinkel um die Kollisionsachse abhängen. Es ist also M fi M fi ( ). Da der Flussfaktor nicht von den auslaufenden Teilchen abhängt kann demnach der Phasenraum getrennt integriert werden, bis auf die Winkelvariablen. Dies ist besonders einfach im CMS System, da die -Funktiondie-erImpulserhaltunggarantiert.ImSchwerpunktssystem (CMS) gilt p + p 0, ; s E + E und (p + p p 3 p ) ( s E 3 (p 3 ) E (p )) 3 ( p 3 p ), wobei explizit die Energien von den Impulsen abhängen, E 3 (p 3 ) p 3 + m 3, E (p ) p + m. Integriert man zunächst über d 3 p so gilt für den Phasenraum dq ( s E ( ) 3 (p 3 ) E (p )) 3 d ( p 3 p ) 3 p 3 d 3 p E 3 (p 3 ) E (p ) ( ) ( d s E 3 (p 3 ) E (p 3 )) 3 p 3 E 3 (p 3 ) E (p 3 ) Führt man die verbleibende Integration in Kugelkordinaten aus, d 3 p 3 p 3 dp 3 d, sokannmandie -FunktionnachihrerPolstelle entwickeln und erhält dq dq ( s E ( ) 3 (p 3 ) E (p 3 )) (p 3 p f ) ( ) d(e 3 (p 3 ) + E (p 3 )) dp 3 ( ) ( ) p f E 3 (p f ) + p f E (p f ) p f d s p 3 dp 3 d E 3 (p 3 ) E (p 3 ) p 3 dp 3 d E 3 (p 3 ) E (p 3 ) p f d E 3 (p f ) E (p f ) Hierbei ist p f der Impuls der beiden Teilchen im Endzustand, so dass Energieerhaltung erfüllt ist, s E 3 (p f ) + E (p f ). Für die -Funktiongiltallgemein (f(x)) i,n (x x i ) f (x i ) wobei f (x i ) die Ableitung der Funktion f(x) an den Nullstellen x i (f(x i ) 0). ist 59

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

II. Klein Gordon-Gleichung

II. Klein Gordon-Gleichung II. Klein Gordon-Gleichung Dieses Kapitel und die zwei darauf folgenden befassen sich mit relativistischen Wellengleichungen, 1 für Teilchen mit dem Spin 0 (hiernach), 2 (Kap. III) oder 1 (Kap. IV). In

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Relativistische Kinematik - Formelsammlung

Relativistische Kinematik - Formelsammlung Relativistische Kinematik - Formelsammlung Editor: Patrick Reichart Physik Department E, TU-München Originalassung vom 0. Dezember 996 letzte Überarbeitung :. März 05 Quelle/Autoren: diverse handschritliche

Mehr

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung kinetische Gastheorie Zurückführung der makroskopischen Zusammenhänge: p(v,t) auf mikroskopische Ursachen. Atomistische Natur der Gase lange umstritten, Akzeptanz Ende 19. Jahrh., Boltzmann. Modell des

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik

Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik Von Torsten Pieper Mannheim 11. November 2013 Zusammenfassung

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

5.8.8 Michelson-Interferometer ******

5.8.8 Michelson-Interferometer ****** 5.8.8 ****** Motiation Ein wird mit Laser- bzw. mit Glühlampenlicht betrieben. Durch Verschieben eines der beiden Spiegel werden Intensitätsmaxima beobachtet. Experiment S 0 L S S G Abbildung : Aufsicht

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung :

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung : Bitte beshäftigen Sie sih mit folgenden Asekten aus dem Gebiet Shwahe Wehselwirkung : igenarten des nuklearen β-zerfalls Fermi- und Gamow-Teller Übergänge 3 vektorielle und axiale Kolung 4 Wiederholen

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider 1 Inhaltsverzeichnis 1 Hamilton Mechanik 3 1.1 Newton Mechanik.......................... 3 1.2 Lagrange............................... 3 1.3

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung 10 Teilchenphysik, HS 007-SS 008, Prof. A. Rubbia ETH Zurich) 7. Die Klein-Gordon-Gleichung Kapitel 7 Bosonfelder: Die Klein-Gordon Gleichung Wir können im Prinzip die Schrödinger-Gleichung einfach erweitern.

Mehr

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen 1 Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II xperimente mit lektronen 1 1.1 U dient zum rwärmen der Glühkathode in der Vakuumröhre. Durch den glühelektrischen

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ;

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ; 4.11. Innere Energie (ideals. Gas): U =!! nr Erhöhung der inneren Energie durch emperaturerhöhung um Δ: bei konstanten olumen (isochor): ΔU = C! Δ Differentiell: du = C v d δq=du=c d => d=δq/c 1. Hauptsatz

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Experimentalphysik VI Kern- und Teilchenphysik Prof. Markus Schumacher ALU Freiburg, Sommersemsester 2010

Experimentalphysik VI Kern- und Teilchenphysik Prof. Markus Schumacher ALU Freiburg, Sommersemsester 2010 Experimentalphysik VI Kern- und Teilchenphysik Prof. Markus Schumacher ALU Freiburg, Sommersemsester 2010 Kapitel 9: Schwache Wechselwirkung Wann ist schwache Wechselwirkung dominant/beobachtbar? a) Bei

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 05.

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Inhaltsverzeichnis Physikalisches Praktikum Versuchsbericht M4 Stoßgesetze in einer Dimension Dozent: Prof. Dr. Hans-Ilja Rückmann email: irueckm@uni-bremen.de http: // www. praktikum. physik. uni-bremen.

Mehr

Das top-quark. Entdeckung und Vermessung

Das top-quark. Entdeckung und Vermessung Das top-quark Entdeckung und Vermessung Inhalt Geschichte Eigenschaften des top-quarks Wie top-paare entstehen Detektion Methoden der Massen-Messung Geschichte Die Vorstellung von Quarks wurde 1961 unabhängig

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Induktionsgesetz (E13)

Induktionsgesetz (E13) Induktionsgesetz (E13) Ziel des Versuches Es soll verifiziert werden, dass die zeitliche Änderung eines magnetischen Flusses, hervorgerufen durch die Änderung der Flussdichte, eine Spannung induziert.

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Wechselspannung. Zeigerdiagramme

Wechselspannung. Zeigerdiagramme niversity of Applied Sciences ologne ampus Gummersbach Dipl.-ng. (FH Dipl.-Wirt. ng. (FH D-0 Stand: 9.03.006; 0 Wie bereits im Kapitel an,, beschrieben, ist die Darstellung von Wechselgrößen in reellen

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V Bedeutung hoher Teilchenenergien Dann ist die Spannung Die kleinsten Dimensionen liegen heute in der Physik unter d < 10 15 m Die zur Untersuchung benutzten Wellenlängen dürfen ebenfalls nicht größer sein.

Mehr

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1) OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

Umsetzung von DEA in Excel

Umsetzung von DEA in Excel Umsetzung von DEA in Excel Thorsten Poddig Armin Varmaz 30. November 2005 1 Vorbemerkungen In diesem Dokument, das als Begleitmaterial zum in der Zeitschrift,,Controlling, Heft 10, 2005 veröffentlichten

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Analyseschritte ROOT Zusammenfassung. Offline-Analyse. Seminar Teilchendetektoren und Experiment an ELSA. Karsten Koop 19.12.

Analyseschritte ROOT Zusammenfassung. Offline-Analyse. Seminar Teilchendetektoren und Experiment an ELSA. Karsten Koop 19.12. 1 / 32 Offline-Analyse Seminar Teilchendetektoren und Experiment an ELSA Karsten Koop 19.12.2007 2 / 32 Gliederung 1 2 Software 3 / 32 Einzelne Ereignisse, Events Bestimmung detektierter Teilchen aus Daten

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf

Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf den Zusammenhang zwischen anharmonischen Kristallwechselwirkungen

Mehr

Direkter Nachweis dunkler Materie

Direkter Nachweis dunkler Materie Direkter Nachweis dunkler Materie Julien Wulf 24.06.11 HAUPTSEMINAR "DER URKNALL UND SEINE TEILCHEN" KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Monte Carlo Simulation

Monte Carlo Simulation Monte Carlo Simulation M. Alexander Thomas 1. Juni 26 Zusammenfassung Die Monte Carlo Methode ist ein in vielen Bereichen nicht mehr wegzudenkendes Hilfsmittel zur Berechung und Simulation wissenschaftlicher

Mehr

Hinweise zum Schreiben einer Ausarbeitung

Hinweise zum Schreiben einer Ausarbeitung Seite 1 Hinweise zum Schreiben einer (Physikalisches Praktikum für Physiker) Autor: M. Saß Fakultät für Physik Technische Universität München 24.11.14 Inhaltsverzeichnis 1 Struktur einer 2 1.1 Die Einleitung..............................

Mehr

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung A Maple-Skripte A.1 Einleitung Bei der Ausführung mechanischer Rechnungen können Computeralgebra-Programme sehr nützlich werden. Wenn man genau weiß, was eingesetzt, umgeformt, zusammengefaßt oder entwickelt

Mehr

erster Hauptsatz der Thermodynamik,

erster Hauptsatz der Thermodynamik, 1.2 Erster Hautsatz der hermodynamik Wir betrachten ein thermodynamisches System, dem wir eine beliebige Wärmemenge δq zuführen, und an dem wir eine Arbeit da leisten wollen. Werden umgekehrt dem System

Mehr

Transportvorgänge. 1. Einleitung. 2. Wärmetransport (makroskopische Betrachtung) KAPITEL D

Transportvorgänge. 1. Einleitung. 2. Wärmetransport (makroskopische Betrachtung) KAPITEL D 3 KAPITEL D Transportvorgänge. Einleitung Bisher wurde das Hauptaugenmerk auf Gleichgewichtszustände gerichtet. Hat man in einem System an unterschiedlichen Orten unterschiedliche Temperaturen, so liegt

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

II.2 Lösung der freien Klein Gordon-Gleichung

II.2 Lösung der freien Klein Gordon-Gleichung II. Lösung der freien Klein Gordon-Gleichung II..1 Allgemeine Lösung Da die Klein Gordon-Gleichung eine lineare partielle Differentialgleichung ist, kann man als Lösungsansatz eine ebene Welle φ(x) N e

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

=N 2. 10 Induktivität

=N 2. 10 Induktivität 10 Induktivität Fließt in einem Leiterkreis ein zeitlich veränderlicher Strom, so erzeugt dieser ein zeitlich veränderliches magnetisches Feld. Dieses wiederum wird in einem Nachbarkreis eine Spannung

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Lernzettel Mathe Inhaltsverzeichnis

Lernzettel Mathe Inhaltsverzeichnis Lernzettel Mathe Inhaltsverzeichnis Aufgabe 1 - Vollständige Induktion 2 Aufgabe 2 - Grenzwertbestimmung 2 Aufgabe 3 - Lin/Log 2 Aufgabe 4 - Barwert/Endwert 3 Aufgabe 5 - Maximalstellen, steigend/fallend

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie Seminar zur Theorie der Teilchen und Felder Van der Waals Theorie Tobias Berheide 18.11.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das Van der Waals Gas 3 2.1 Das ideale Gas..............................

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte März 2008 Zusammenfassung IB 1. Lagebeziehungen zwischen geometrischen Objekten 1.1 Punkt-Gerade Ein Punkt kann entweder auf einer gegebenen

Mehr

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24

Mehr

Wie man sieht ist der Luftwiderstand -abgesehen von der Fahrgeschwindigkeit- nur von Werten abhängig, die sich während der Messung nicht ändern.

Wie man sieht ist der Luftwiderstand -abgesehen von der Fahrgeschwindigkeit- nur von Werten abhängig, die sich während der Messung nicht ändern. Wie hoch ist der - und Luftwiderstand eines Autos? Original s. http://www.arstechnica.de/index.html (Diese Seite bietet außer dieser Aufgabe mehr Interessantes zur Kfz-Technik) Kann man den Luftwiderstand

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Aufgabe 1: Wetterbericht Im Mittel sagt der Wetterbericht für den kommenden Tag zu 60 % schönes und zu 40% schlechtes

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls un Drehimpuls es elektromagnetischen Feles 8.1 Energie In Abschnitt.5 hatten wir em elektrostatischen Fel eine Energie zugeornet, charakterisiert urch ie Energieichte ω el ɛ 0 E. (8.1

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene K. B. Datum des Praktikumstags: 4.12.2007 Matthias Ernst Protokoll-Datum: 8.12.2007 Gruppe 11 Assistent: T. Bentz Testat: AK-Versuch: Modellierung von verbrennungsrelevanten Prozessen Aufgabenstellung

Mehr

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Thermodynamik: Definition von System und Prozess

Thermodynamik: Definition von System und Prozess Thermodynamik: Definition von System und Prozess Unter dem System verstehen wir den Teil der elt, an dem wir interessiert sind. Den Rest bezeichnen wir als Umgebung. Ein System ist: abgeschlossen oder

Mehr

Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie

Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie Tipler-Mosca 6. Arbeit und Energie 6.1 Arbeit und kinetische Energie (Work and kinetic energy) 6. Das Skalarprodukt (The dot product) 6.3 Arbeit und Energie in drei Dimensionen (Work and energy in three

Mehr

Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten

Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten An dieser Stelle müssen wir dringend eine neue physikalische Größe kennenlernen: den Druck. SI Einheit : Druck = Kraft Fläche p = F A 1 Pascal

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Abschwächung von γ-strahlung Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

ZHW / CB / AnP SS 03. Quantitative Bestimmung von Co- und Ni-Ionen im Gemisch Kinetische Untersuchungen an Farbstoffen

ZHW / CB / AnP SS 03. Quantitative Bestimmung von Co- und Ni-Ionen im Gemisch Kinetische Untersuchungen an Farbstoffen UV/VIS Methode: UV/VIS - Spektrometrie Themen: Analyte: Matrix: Quantitative Bestimmung von Co- und Ni-Ionen im Gemisch Kinetische Untersuchungen an Farbstoffen Ni 2+, 2+, Murexid Rostfreier Stahl, Wasser

Mehr