Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung

Größe: px
Ab Seite anzeigen:

Download "Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung"

Transkript

1 kinetische Gastheorie Zurückführung der makroskopischen Zusammenhänge: p(v,t) auf mikroskopische Ursachen. Atomistische Natur der Gase lange umstritten, Akzeptanz Ende 19. Jahrh., Boltzmann. Modell des idealen Gases: harte Kugeln gerade Flugbahnen Zusammenstöße Richtungsänderung Energie und Impulsaustausch mittlerer Abstand groß gegen Durchmesser Eigenvolumen klein gegen verfügbares Volumen Wechselwirkung für a > 2r o vernachlässigt elastische Stöße Energieumverteilung elastische Stöße mit der Wand Druck 245

2 Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung typischer Verlauf E pot (r) repulsiv attraktiv Idealisierung 1 ( harte Kugel ) gut, wenn: E pot (r min ) << <E kin > Idealisierung 2 ( Teilchenvolumen 0) gut, wenn Dichte gering N V Teilchen << V Behälter N = Gesamtzahl der Teilchen in V Behälter aber: Impuls- und Energieaustausch zwischen Teilchen möglich ro << r 246

3 Dichte bei 1 bar: ρ = Teilchen/cm 3 = Teilchen/m 3 r o (He) 0.05 nm <r> 3 N = 1 m 3 N = Teilchen/m 3 <r> 3 = 1/ N m m 3 Abschätzung <r> m = 3 nm >> r o wenn mittlerer Abstand <r> r o Wechselwirkung und Eigenvolumen nicht vernachlässigbar Eigenschaften realer Gase 247

4 Druck - mikroskopisch Annahme: Druck p = Kraft/ Fläche, hier: p = df da (N,v) / da Moleküle als Massenpunkte nur Translation, keine rotierenden oder schwingenden Moleküle (p = Druck) Impuls df da = d p/dt = df da = N 2 m v pro Zeiteinheit übertragener Impuls ( p = Impulsübertrag) N = N-Stöße-pro-Sekunde für N Stöße mit v da : p = 2 N mv / da (p = Druck) d.h. Druck durch Impulsübertrag n = N/V = Teilchendichte n x = N(v x )/V = Dichte der Teilchen mit v x 50% davon treffen in dt auf da Zahl der Treffer Z auf da in dt: Z = ½ n x v x da dt 248

5 Impulsübertrag daher d( p x ) = Z 2 mv x = ½ n x v x da dt 2 mv x p Druck = df da (N,v) / da = [d( p x )/dt] / da p Druck = ½ 2 n x m v x 2 Impulsübertrag beim elastischen Stoß auf eine Wand nicht nur Teilchen mit v da (also v y = v z = 0) tragen zum Impulsübertrag (und Druck) bei, aber auch schräg zur Wand fliegende Teilchen übertragen nur Impuls p = 2 mv x 249

6 Moleküle haben unterschiedliche Geschwindigkeiten v x 2 ersetzt durch <v x 2 > <v x 2 > = (1/N) N(v x ) v x 2 dv x Druck wirkt isotrop (Impulsübertrag auf Flächen da gleich) <v x 2 > = <v y 2 > = <v z 2 > <v x 2 > = (1/3) <v 2 > p(druck) = (2/3) n ½ m <v 2 > <E kin > p(druck) = (2/3) n <E kin > später: <E kin > = 3/2 kt (definiert T) p = n k T mit n = N/V (N = Gesamtzahl der Teilchen) p V = (2/3) N (½ m <v 2 >) (= const. bei fester T) 250

7 Thermodynamik = statistische Physik Phänomene begründet durch das Wirken sehr vieler Teilchen (typisch N > ) Verhalten einzelner Teilchen kann nur in Gedanken verfolgt werden. Experimente mit einzelnen Atomen oder Molekülen heutzutage jedoch möglich Phänomene durch Mittelwerte, genommen über sehr viele Teilchen, erklären individuelle Eigenschaften, z.b. Geschwindigkeit, charakterisiert durch Verteilungsfunktionen 251

8 kinetische Gastheorie liefert: (*) p V = (2/3) N (½ m <v 2 >) p V N N = Zahl der Moleküle im Volumen V Bezug meistens: Stoffmenge Mol dann N = L Avogardo, V = V Mol auch: N A experimenteller Befund: p V T bei gegebenem N p V = N k T k = Proportionalitätskonstante ½ m <v 2 > = <E kin > T Vergleich mit (*) liefert Definition der absoluten Temperatur: ½ m <v 2 > = <E kin > = (3/2) k T mit k = [J/K] Es gilt nicht nur <v x 2 > = <v y 2 > = <v z 2 > als Mittel (zu fester Zeit) über alle Teilchen sondern auch <v x 2 > t = <v y 2 > t = <v z 2 > t als zeitliches Mittel für einzelnes Teilchen 252

9 Ergoden-Hypothese betrachtet: die mit einem Teilchen verbundene physikal. Größe, z.b. Geschwindigkeit v in Ensemble von N Teilchen: (a) Momentaufnahme aller N Teilchen Bestimmung von v für alle Teilchen Daraus ermitteln: Verteilungsfunktion f <N> (v) Scharmittel (b) Verfolgung der Geschichte eines einzelnen der N Teilchen. Viele [z] Messungen in kurzen Zeitabständen: Verteilungsfunktion f <t> (v) Zeitmittel Ergoden-Hypothese: Wenn sowohl N als auch t (und z) hinreichend groß sind, gilt f <N> = f <t> Scharmittel = Zeitmittel 253

10 Verteilungsfunktion f(v) p = (1/3) n m <v 2 > (siehe Skript S. 150) mit <v 2 > = 2 v f(v) dv hier gemeint f( v) = f( v ) 0 f( v) dv = Bruchteil aller Teilchen mit Geschwindigkeit zwischen v und v + dv Form von f(v) noch zu bestimmen Normierungen: f(v) dv = (N(v)/N ) dv mit N = N (v) dv 0 Gesamtzahl aller Teilchen f (v) dv = (1/N) NN(v) dv = also = N 0 f (v) dv = 1 beachte: daraus gilt N( v > u) = N f( v) dv v> u 254

11 vollständige Herleitung der Geschwindigkeits-Verteilungsfunktion f MB ( v ) (Maxwell-Boltzmann Verteilung) siehe Bücher über statistische Mechanik (resp. Theorievorlesung) im De-Buch (S. 202 und ff.) Zusammenhang mit Barometrischer Höhenformel hergestellt (Beispiel von physikalischer Argumentation) aus Überlegungen der Hydrostatik: p = p o e -(ρo /po) g h = p o e - m g h / (kt) Barometrische Formel für isotherme Atmosphäre im Thermodynamischen Gleichgewicht (Zustandsgrößen p, ρ, T ändern sich zeitlich nicht): Konsistenz zwischen f MB,T ( v ) und Dichte-Verteilung ρ T (h) bei isothermer Atmosphäre (T ist fest) legt fest, wie f MB,T ( v ) aussehen muss, damit sich die korrekte n(h) oder ρ(h) einstellen kann 255

12 alternative Herleitung: allgemeine Aussage aus der Thermodynamik (Genaueres siehe später: statistische Mechanik) System kann Zustände mit Energien E i annehmen (i = 1, 2,...) Zahl der Zustände i mit Energie E i : g i g i = statistisches Gewicht des Zustandes E i Wahrscheinlichkeit W i, das System im Zustand E i zu finden ist: W i = g i e Ei / kt (Boltzmann-Verteilung) e Ei / kt = Boltzmann-Faktor Geschwindigkeitsverteilung: Zustände nicht durch diskrete Variable i gekennzeichnet, sondern durch kontinuierliche Variable v W i W(v) f(v), hier: E i E(v) = ½ mv 2 g i g(v) noch bestimmen sowie Normierung 0 f (v) dv = 1 sicherstellen (hier jeweils v gemeint) 256

13 zum statistischen Gewicht von v dv v Schnitt durch eine Kugel im Raum (v x, v y, v z ) mit Radius r = v. betrachtet: Kugelschale mit Radius v und Dicke dv Häufigkeit des Wertes u mit v u v + dv ist proportional zu V = 4π v 2 dv (Kugelschale) 257

14 Damit wird: f( v ) dv = 4π v 2 C e ½ m v 2 / kt dv C aus Normierungsbedingung bestimmt: 4 π v2 C e ½ m v 2 / kt dv = 1 0 also C 1 = 4π v 2 e ½ m v 2 / kt dv = (m/2πkt) 3/2 damit: Maxwell-Boltzmann-Verteilung: f( v ) = 4π v 2 (m/2πkt) 3/2 e ½ m v 2 / kt statistisches Gewicht Normierungsfaktor Boltzmann-Faktor wesentlich: f( v ) v 2 e ½ m v 2 / kt f( v ) dv = f( v ) = Wahrscheinlichkeit, Teilchen im Intervall dv um v zu finden Wahrscheinlichkeitsdichte Wahrsch. pro Geschwind.-Intervall 258

15 Verteilungsfunktion f( v z ) für die Geschwindigkeitskomponente v z = symmetrische Gausverteilung beachte: im thermodynamischen Gleichgewicht muss gelten f(v z ) = f(-v z ) Gas betrachtet im Volumen mit Höhe dh, derart, dass m g dh << ½ m v z 2 dann keine Richtung ausgezeichnet, also f(v x ) = f(v y ) = f(v z ) 259

16 Verteilungsfunktion für (z.b.) Komponente v z der Geschwindigkeit analoge Überlegung: Boltzmann-Faktor: e z mv /kt statist. Gewicht g (v z ) = 1 (da 1-dimensional) f(v z ) = C e z mv /kt stationäre Situation f(v z ) = f (-v z ) + f v z dv z = 1 C = (m/2πkt) 1/2 aus ( ) also f(v z ) = (m/2πkt) 1/ z e mv /kt entsprechend für f(v x ) und f(v y ) daraus f( v ) über f( v ) = f(v x ) f(v y ) f(v z ) mit der Randbedingung v 2 = v x 2 + v y 2 + v z 2 260

17 Geschwindigkeitsverteilung und charakteristische Geschwindigkeiten Verteilung v erstreckt sich von 0 bis Maximum wahrscheinlichste Geschwindigkeit 2kT v w = m mittlere Geschwindigkeit: v ( ) 8kT 1 v = = v 2 wπ 2 πm = 0 vf v dv mittleres v : v ( ) 2 v = 3kT/m = v f v dv 0 261

18 Variation von f( v ) mit T mit 2 v = 3 k T / m ergibt sich sofort wieder aus E kin = ½ m 2 v E kin = (3/2) k T = (f/2) k T Zahl der Freiheitsgrade typische Werte: v w = 422 m/s N 2, T = 300 K 2 v = 517 m/s Ekin Molekül = (3/2) k T = J 262

19 Teilchendichte (Teilchen/m 3 ) p V mol = N A k T (aus kinet. Gastheorie etc.) später: (N A k) = R experimentell bestimmt R / N A = k = J/K (N A L) N / V = n (Teilchendichte) p = n k T n = p / k T p = 1 bar = 10 5 N/m 2 T = 300 K n = 10 5 (N/m 2 ) / [ (J/K) 300 (K) ] also, bei Druck 1 bar: n [Teil./m 3 ] = [Teil./cm 3 ] 263

20 Energie pro Freiheitsgrad E kin = (3/2) k T da v + v + v = v x y z und folgt = ( ) v 1/3 v 2 2 i Bewegungsenergie verteilt auf v x, v y, v z drei Freiheitsgrade (f trans = 3) daher pro Freiheitsgrad: E kin = ½ kt jedoch: Moleküle rotieren und schwingen auch Energieaufnahme (zusätzlich zur kinetischen Energie der SP-Bewegung!) 264

21 Freiheitsgrade der Translation, Rotation und Vibration gekoppelt durch Stöße. im thermischen Gleichgewicht: Energie pro Freiheitsgrad E = ½ kt 265

22 Gleichverteilungssatz Bei thermischem Gleichgewicht (s.u.) und im Ensemble-Mittelwert gilt Energie pro Freiheitsgrad <E Freiheitsgrad > = ½ kt Atome: f = 3 T R V 2-atomiges Molekül: f = = 7 (5) 3-atomiges Molekül: f = = 12 (6) <E Teilchen > = (f/2) kt <E Freiheitsgrad > = ½ kt gibt quantitativen Zusammenhang E T via statisches Mittel über viele Teilchen oder lange Zeiten. Temperatur ist nur dann physikalisch sinnvolle Größe, wenn weitere Verteilungsfunktionen, z.b. f(v), bestimmten Anforderungen im thermischen Gleichgewicht genügen. 266

23 Transportprozesse in Gasen dominiert durch Streuung Diffusion (Transport von Teilchen) Wärmeleitung (Transport von Energie) später: Viskosität ( Zähigkeit ) (Transport von Impuls) Streuprozess Stoßquerschnitt für harte Kugel Alle Teilchen A, deren Mittelpunkt durch die Fläche σ=π ( r ) 2 1+ r2 um den Mittelpunkt von B laufen, werden durch den Stoß mit B aus ihrer geraden Bahn abgelenkt. Diese Fläche σ heißt Stoßquerschnitt. Annahme harte Kugel ist grobe Näherung i.d.r. Wechselwirkung E pot = E pot (r) (größere Reichweite des Potentials) dann wird σ = σ (E Stoß ) d.h. Stoßquerschnitt abhängig von der Stoßenergie 267

24 Abschwächung durch Streuung Wahrscheinlichkeit für Stoß pro Weglänge x: W = (abgedeckte Fläche) : (Gesamt-Fläche) W = σ i / A σ i = N B σ N B = n B x A W = σ n B x Zahl der Stöße, die Teilchen A erleiden: N A = N A W = N A σ n B x Aus Richtung geradeaus gehen dn A Teilchen auf der Strecke dx verloren dn A / N A = - σ n B dx N A (x) = N o e - σ n B x N o = N A (0) 268

25 mittlere freie Weglänge ( x) Wahrscheinlichkeit für Stoß auf Strecke dx dw = dn A (x)/n o Strecke Λ, die im Mittel ohne Stoß durchlaufen werden kann: mittlere freie Weglänge Λ Λ = x dw(x) 0 Λ = (1/N o ) Λ = σ n B x dn A(x)/dx dx 0 0 xe σ n x B dx N0 Λ = 1 / (σ n B ) [m] N A (Λ) = e [m 2 ] [m -3 ] 269

26 Brownsche Bewegung statistische Verteilung von Richtung und Länge der Wegstücke durch Stöße mit anderen Teilchen Verteilung der Länge L gerade Wegstücke W(L) = a e L / Λ 1 Λ= n σ 270

Zur Erinnerung. Stichworte aus der 14. Vorlesung: Grenzflächenphänomene: Oberflächenspannung. Grenzflächenspannung. Kapillarität

Zur Erinnerung. Stichworte aus der 14. Vorlesung: Grenzflächenphänomene: Oberflächenspannung. Grenzflächenspannung. Kapillarität Zur Erinnerung Stichworte aus der 14. Vorlesung: Grenzflächenphänomene: Oberflächenspannung Grenzflächenspannung Kapillarität Makroskopische Gastheorie: Gesetz on Boyle-Mariotte Luftdruck Barometrische

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Physikalische Chemie IV Statistische Thermodynamik, SS2013

Physikalische Chemie IV Statistische Thermodynamik, SS2013 Physikalische Chemie IV Statistische Thermodynamik, SS013 Inhaltsverzeichnis mit Referenzen 1. Einführung 1.1 Vergleich makroskopische und mikroskopische Systeme: Beispiel: ideales Gas, Herleitung eines

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

Energieumsatz bei Phasenübergang

Energieumsatz bei Phasenübergang Energieumsatz bei Phasenübergang wenn E Vib > E Bindung schmelzen verdampfen Q Aufbrechen von Bindungen Kondensation: Bildung von Bindungen E Bindung Q E Transl. E Bindung für System A B durch Stöße auf

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK?

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK? Impulsstrom Achim Rosch, Institut für Theoretische Physik, Köln zwei Fragen: Belegt das Gutachten wesentliche fachliche Fehler im KPK? Gibt es im Gutachten selbst wesentliche fachliche Fehler? andere wichtige

Mehr

1 Zwei Teilchen in einem Kastenpotenzial

1 Zwei Teilchen in einem Kastenpotenzial 1 Zwei Teilchen in einem Kastenpotenzial Es geht hier darum herauszu nden, welche prinzipiellen Eigenschaften die Wellenfunktion für mehrere Teilchen im gleichen Potenzial aufweisen muss. Wir unterscheiden

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Laserschneiddüsen. CFD-Simulation der Wechselwirkung zwischen einer supersonischen Düsenströmung und einem festen Werkstück

Laserschneiddüsen. CFD-Simulation der Wechselwirkung zwischen einer supersonischen Düsenströmung und einem festen Werkstück Laserschneiddüsen CFD-Simulation der Wechselwirkung zwischen einer supersonischen Düsenströmung und einem festen Werkstück Herr J. A. Comps Herr Dr. M. Arnal Herr Prof. Dr. K. Heiniger Frau Dr. I. Dohnke

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

24. Transportprozesse

24. Transportprozesse 4. Transportprozesse 4.1. Diffusion Gas- und Flüssigkeitsteilchen befinden sich in ständiger unregelmäßiger Bewegung (Gas: BROWNsche Bewegung). unwahrscheinliche Ausgangsverteilungen gleichen sich selbständig

Mehr

Tutorial: Homogenitätstest

Tutorial: Homogenitätstest Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase Physik L17 (16.11.212) Der Druck in n inkl. Exkurs: Ideale uftrieb in n 1 Wiederholung: Der Druck in Flüssigkeiten Der Druck in Flüssigkeiten nit it zunehender Tiefe zu: Schweredruck Die oberen Wasserschichten

Mehr

Institut für Computational Engineering ICE. N ä h e r d ra n a m S ys t e m d e r Te c h n i k d e r Z u ku n f t. w w w. n t b.

Institut für Computational Engineering ICE. N ä h e r d ra n a m S ys t e m d e r Te c h n i k d e r Z u ku n f t. w w w. n t b. Institut für Computational Engineering ICE N ä h e r d ra n a m S ys t e m d e r Te c h n i k d e r Z u ku n f t w w w. n t b. c h Rechnen Sie mit uns Foto: ESA Das Institut für Computational Engineering

Mehr

Anerkannte, gleiche und reproduzierbare Größen sind (auch außerhalb der Physik) notwendig: Handel, Grundbesitz, Navigation, Dosierung...!

Anerkannte, gleiche und reproduzierbare Größen sind (auch außerhalb der Physik) notwendig: Handel, Grundbesitz, Navigation, Dosierung...! . Mechanik. Grundgrößen und Einheiten Anerkannte, gleiche und reproduzierbare Größen sind (auch außerhalb der Physik) notwendig: Handel, Grundbesitz, Navigation, Dosierung...! Beispiel Navigation: historisch:

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Erfahrungen mit Hartz IV- Empfängern

Erfahrungen mit Hartz IV- Empfängern Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Inhaltsverzeichnis Physikalisches Praktikum Versuchsbericht M4 Stoßgesetze in einer Dimension Dozent: Prof. Dr. Hans-Ilja Rückmann email: irueckm@uni-bremen.de http: // www. praktikum. physik. uni-bremen.

Mehr

6. Übungsblatt zur Experimentalphysik 1

6. Übungsblatt zur Experimentalphysik 1 6. Übungsblatt zur Experimentalphysik (Besprechung ab dem 3. Dezember 2006) Aufgabe 6. Loch in der Regentonne Eine h 2m hohe, voll gefüllte Regentonne steht ebenerdig. Versehentlich wird nun die Regentonne

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

Orientierungstest für angehende Industriemeister. Vorbereitungskurs Physik

Orientierungstest für angehende Industriemeister. Vorbereitungskurs Physik Orientierungstest für angehende Industriemeister Vorbereitungskurs Physik Production Technologies Erlaubte Hilfsmittel: Formelsammlung Taschenrechner Maximale Bearbeitungszeit: 1 Stunde Provadis Partner

Mehr

Thermodynamik Wärmeempfindung

Thermodynamik Wärmeempfindung Folie 1/17 Warum fühlt sich 4 warmes wesentlich heißer an als warme? Und weshalb empfinden wir kühles wiederum kälter als kühle? 7 6 5 4 2 - -2 32 32 Folie 2/17 Wir Menschen besitzen kein Sinnesorgan für

Mehr

21. Wärmekraftmaschinen

21. Wärmekraftmaschinen . Wärmekraftmaschinen.. Einleitung Wärmekraftmaschinen (Motoren, Gasturbinen) wandeln Wärmeenergie in mechanische Energie um. Analoge Maschinen ( Kraftwärmemaschinen ) verwandeln mechanische Energie in

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

h- Bestimmung mit LEDs

h- Bestimmung mit LEDs h- Bestimmung mit LEDs GFS im Fach Physik Nicolas Bellm 11. März - 12. März 2006 Der Inhalt dieses Dokuments steht unter der GNU-Lizenz für freie Dokumentation http://www.gnu.org/copyleft/fdl.html Inhaltsverzeichnis

Mehr

Arbeit Leistung Energie

Arbeit Leistung Energie Arbeit Leistung Energie manuell geistig Was ist Arbeit Wie misst man Arbeit? Ist geistige Arbeit messbar? Wann wird physikalische Arbeit verrichtet? Es wird physikalische Arbeit verrichtet, wenn eine Kraft

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

teamsync Kurzanleitung

teamsync Kurzanleitung 1 teamsync Kurzanleitung Version 4.0-19. November 2012 2 1 Einleitung Mit teamsync können Sie die Produkte teamspace und projectfacts mit Microsoft Outlook synchronisieren.laden Sie sich teamsync hier

Mehr

Mean Time Between Failures (MTBF)

Mean Time Between Failures (MTBF) Mean Time Between Failures (MTBF) Hintergrundinformation zur MTBF Was steht hier? Die Mean Time Between Failure (MTBF) ist ein statistischer Mittelwert für den störungsfreien Betrieb eines elektronischen

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

14. Minimale Schichtdicken von PEEK und PPS im Schlauchreckprozeß und im Rheotensversuch

14. Minimale Schichtdicken von PEEK und PPS im Schlauchreckprozeß und im Rheotensversuch 14. Minimale Schichtdicken von PEEK und PPS im Schlauchreckprozeß und im Rheotensversuch Analog zu den Untersuchungen an LDPE in Kap. 6 war zu untersuchen, ob auch für die Hochtemperatur-Thermoplaste aus

Mehr

GEVITAS Farben-Reaktionstest

GEVITAS Farben-Reaktionstest GEVITAS Farben-Reaktionstest GEVITAS Farben-Reaktionstest Inhalt 1. Allgemeines... 1 2. Funktionsweise der Tests... 2 3. Die Ruhetaste und die Auslösetaste... 2 4. Starten der App Hauptmenü... 3 5. Auswahl

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung ρ p ( x) + Uδ ( x) = const Damit kann die Druckänderung in Strömungsrichtung auch durch die

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

WIE WIRKLICH IST DIE WIRKLICHKEIT WIE SCHNELL WERDEN SMART GRIDS WIRKLICH BENÖTIGT? DI Dr.techn. Thomas Karl Schuster Wien Energie Stromnetz GmbH

WIE WIRKLICH IST DIE WIRKLICHKEIT WIE SCHNELL WERDEN SMART GRIDS WIRKLICH BENÖTIGT? DI Dr.techn. Thomas Karl Schuster Wien Energie Stromnetz GmbH WIE WIRKLICH IST DIE WIRKLICHKEIT WIE SCHNELL WERDEN SMART GRIDS WIRKLICH BENÖTIGT? DI Dr.techn. Thomas Karl Schuster Wien Energie Stromnetz GmbH Agenda Einleitung Historisches zum Thema Smart Definitionen

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Wellen. 3.&6. November 2008. Alexander Bornikoel, Tewje Mehner, Veronika Wahl

Wellen. 3.&6. November 2008. Alexander Bornikoel, Tewje Mehner, Veronika Wahl 1 Übungen Seismik I: 3.&6. November 2008 1. Torsionswellenkette Die Torsionswellenkette ist ein oft verwendetes Modell zur Veranschaulichung der ausbreitung. Sie besteht aus zahlreichen hantelförmigen

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Vermeiden Sie es sich bei einer deutlich erfahreneren Person "dranzuhängen", Sie sind persönlich verantwortlich für Ihren Lernerfolg.

Vermeiden Sie es sich bei einer deutlich erfahreneren Person dranzuhängen, Sie sind persönlich verantwortlich für Ihren Lernerfolg. 1 2 3 4 Vermeiden Sie es sich bei einer deutlich erfahreneren Person "dranzuhängen", Sie sind persönlich verantwortlich für Ihren Lernerfolg. Gerade beim Einstig in der Programmierung muss kontinuierlich

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

Folienmodell zur Veranschaulichung der Bewegung von Erde und Mond um ihren gemeinsamen Schwerpunkt: (Verfasser: Werner B. Schneider, Stand 2/2010)

Folienmodell zur Veranschaulichung der Bewegung von Erde und Mond um ihren gemeinsamen Schwerpunkt: (Verfasser: Werner B. Schneider, Stand 2/2010) Folienmodell zur Veranschaulichung der Bewegung von Erde und Mond um ihren gemeinsamen Schwerpunkt: (Verfasser: Werner B. Schneider, Stand 2/2010) Das mit dem Modell verfolgte Ziel besteht darin, die Bewegung

Mehr

Diese Prozesse und noch viele andere Tricks werden in der Digitalfotografie mit Hilfe von Bildbearbeitungsprogrammen, wie z. B. Gimp, bewältigt.

Diese Prozesse und noch viele andere Tricks werden in der Digitalfotografie mit Hilfe von Bildbearbeitungsprogrammen, wie z. B. Gimp, bewältigt. Workflows mit Gimp Workflows sind Arbeitsabläufe, in denen man ein rohes Bildmaterial in ein ansehnliches Foto verwandelt. Denn das, was die Kamera sieht, entspricht selten unseren Vorstellungen eines

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Easy-Monitoring Universelle Sensor Kommunikations und Monitoring Plattform

Easy-Monitoring Universelle Sensor Kommunikations und Monitoring Plattform Easy-Monitoring Universelle Sensor Kommunikations und Monitoring Plattform Eberhard Baur Informatik Schützenstraße 24 78315 Radolfzell Germany Tel. +49 (0)7732 9459330 Fax. +49 (0)7732 9459332 Email: mail@eb-i.de

Mehr

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich.

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Kapitel 1 Animation (Belebung) Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Anwendungen findet die

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Projektarbeit CATIA V5 3D Differenzial

Projektarbeit CATIA V5 3D Differenzial Projektarbeit CATIA V5 3D Differenzial Von Valery Volov Differenzialgetriebe Ein Differenzialgetriebe oder kurz Differenzial genannt ist ein spezielles Planetengetriebe mit einer Standübersetzung i 0 =

Mehr

Chemie Zusammenfassung KA 2

Chemie Zusammenfassung KA 2 Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität Übung 5 : Theorie : In einem Boden finden immer Temperaturausgleichsprozesse statt. Der Wärmestrom läßt sich in eine vertikale und horizontale Komponente einteilen. Wir betrachten hier den Wärmestrom in

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

f) Ideales Gas - mikroskopisch

f) Ideales Gas - mikroskopisch f) Ideales Gas - mikroskopisch i) Annahmen Schon gehabt: Massenpunkte ohne Eigenvolumen Nur elastische Stöße, keine Wechselwirkungen Jetzt dazu: Wände vollkommen elastisch, perfekte Reflektoren Zeitliches

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 04.11.2011 Lösung Übung 2

Übungen zur VL Chemie für Biologen und Humanbiologen 04.11.2011 Lösung Übung 2 Übungen zur VL Chemie für Biologen und Humanbiologen 04.11.2011 Lösung Übung 2 1. Wie viel mol Eisen sind in 12 x 10 23 Molekülen enthalten? ca. 2 Mol 2. Welches Volumen Litern ergibt sich wenn ich 3 mol

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang lektrotechnik - kinetische Gastheorie - Prof. Dr. Ulrich Hahn WS 008/09 Molekularbewegung kleine sichtbare Teilchen in Flüssigkeiten oder Gasen: unregelmäß äßige Zitterbewegung

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr