1 Einführung. 1.1 Analog - Digital Unterscheidung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1 Einführung. 1.1 Analog - Digital Unterscheidung"

Transkript

1 1 Einführung Was ist eigentlich Digitaltechnik? Wird der Begriff Digitaltechnik getrennt, so ergeben sich die Worte DIGITAL und TECHNIK. Digital kommt von digitus (lat. der Finger) und deutet darauf hin, dass nur eine endliche und abzählbare Anzahl von unterscheidbaren Elementen existiert. Weiterhin definiert der Brockhaus den Begriff Technik: "Die Technik ist dabei Hilfsmittel und Maßnahmen, mit deren Hilfe sich der Mensch mit Kenntnis der Naturgesetzlichkeit die Natur umgestaltet und in seine Dienste stellt". Von Technik wird also dann gesprochen, wenn Hilfsmittel eingesetzt oder Maßnahmen angewendet werden, um ein bestimmtes Ziel zu erreichen. So werden in unserer analogen Welt heutzutage viele Verarbeitungen digital durchgeführt. Unterstützt wird diese digitale Verarbeitung durch den rasanten Aufstieg der Computertechnik vom Beginn der vierziger Jahre bis heute. Soll die Verarbeitung digital durchgeführt werden, sind die analogen Signale in eine rechnerverständliche digitale Form mit nur einer endlichen Anzahl von Werten zu konvertieren. Der Konvertierungsvorgang von einem analogen zum rechnerverständlichen digitalen Signal wird hier insoweit nur behandelt, wie es zum Verständnis der Repräsentation eines analogen Signals in digitaler Form notwendig ist. Weiterhin werden Elemente benötigt, die die aus dem Konvertierungsvorgang resultierenden digitalen Werte verarbeiten können. Das sind Digitalrechner, die aus digital arbeitenden Grundbausteinen, den Logikelementen, aufgebaut sind. Durch das Zusammenspiel von Logikelementen ergibt sich das digitale Rechnersystem, das in geschickter Art und Weise über seine Logikelemente die digitalen Signale zum gewünschten Ergebnis verknüpft. Dazu beschreibt und behandelt die Digitaltechnik die Methoden und Verfahren der digitalen Verarbeitung von Signalen über Logikelemente. 1.1 Analog - Digital Unterscheidung Analog bedeutet, dass eine nichtabzählbare Menge unterschiedlicher Werte existiert. Eine Größe aus dieser Menge ist kontinuierlich, da sie jeden Wert aus dieser Menge annehmen kann. Der Begriff analog stammt aus dem griechischen und bedeutet aber auch gleichartig, ähnlich. Größen, deren Werte nicht direkt zugänglich sind, können so analog zu einer anderen Größe dargestellt werden.

2 2 1 Einführung Analoge Darstellung Es soll eine elektrische Spannung betrachtet werden. Deren Größe kann analog zu einem Winkelausschlag eines Zeigers von einem Messgerät angezeigt werden. Analog zu einer Änderung der elektrischen Spannung wird sich dann auch der Winkelausschlag des Zeigers verändern. Da innerhalb des Messbereichs der Zeiger (in Abhängigkeit von der elektrischen Spannung) jeden beliebigen Winkel " annehmen kann, ist die Zeigerstellung und damit der Winkel und somit auch die diesen Winkel verursachende elektrische Spannung kontinuierlich (Abb. 1.1). 7 8 # # = = J B K J J J I K J 9 A H Abbildung 1.1 Spannungsmessung: Analogie der elektrischen Spannungsmessung zu einem Winkelausschlag " eines Zeigers Jetzt sollen zwei Zahlen 'analog' miteinander multipliziert werden. Dazu werden die Zahlen als ihre Logarithmen in Längeneinheiten auf einem festen Teil und einem beweglichen Schieber abgebildet (Rechenschieber, Abb.1.2). Durch Logarithmieren geht die Multiplikation in eine Addition ihrer Logarithmen über. Ein Produkt kann durch Addition von Längen gebildet werden. Abbildung 1.2 Multiplikation: Analogie durch Addition von Längen über einen Rechenschieber Bei der Produktbildung, z.b. das Produkt 9, wird der bewegliche Teil des Rechenschiebers (heller dargestellt) mit der 1 über den ersten Faktor (8) positioniert. Das Ergebnis der Multiplikation wird auf dem festen Teil (dunkler dargestellt) unter der Zahl des zweiten Faktors (9) abgelesen. In diesem Beispiel ist die Markierung 7 2, die durch das kleine schwarze Dreieck gekennzeichnet ist. Gleich-

3 1.1 Analog-Digital Unterscheidung 3 zeitig können auch alle Ergebnisse des Produktes x, x 0 ú abgelesen werden. Der bewegliche Teil des Rechenschiebers kann innerhalb der Längeneinheit jede Position einnehmen. Dies bewirkt, dass die Positionen, denen die Zahlen als Längen analog zu ihrem Logarithmus zugeordnet sind, kontinuierlich sind Digitale Darstellung Der analogen Darstellung steht die digitale Darstellung gegenüber. Hier existiert nur eine endliche Anzahl unterscheidbarer Werte. Daher muss zuvor eine Konvertierung der analogen Größe in die endliche Anzahl unterscheidbarer Werte der digitalen Größe erfolgen. Im Beispiel der elektrischen Spannung wird ihr möglicher Wertebereich in eine endliche Anzahl nicht überlappender Teilbereiche unterteilt (Abb. 1.3). Jedem dieser Teilbereiche wird ein Wert aus einer endlichen Anzahl von Werten zugewiesen. Dieser Wert stellt die digitale Größe, die der anlogen Spannung zugeordnet ist, E C E J = A H 9 A H J A > A H A E? D E? D A ) = D K J A H I? D A > = H A H 9 A H J A $ # 8 6 A E > A H A E? D = = C A H 9 A H J A > A H A E? D K J 9 A H = = E C E J = Abbildung 1.3 Digitale Darstellung analoger Größen am Beispiel einer elektrischen Spannung Hier wird deutlich, dass obwohl die Ablesegenauigkeit besser ist als bei analog anzeigenden Geräten, das angezeigte Ergebnis allgemein ungenauer den analogen Wert repräsentiert. Die Ursache liegt in der Abbildung aller Werte eines Teilbereiches auf einen Wert aus der endlichen Anzahl von möglichen Werten. Das digitale Gegenstück zum Rechenschieber ist der Taschenrechner. Ein Taschenrechner hat nur eine endliche Anzahl von Stellen zur Darstellung einer Zahl innerhalb seines endlichen Wertebereiches. Bereits die Division zweier ganzer Zahlen kann zu einem Ergebnis mit unendlich vielen Nachkommastellen führen und überschreitet damit sowohl den Anzeigebereich als auch die rechnerinterne Zahlendarstellung des Taschenrechners bzw. des Digitalrechners. Das zeigt bereits die einfache Division 10 durch 3 mit dem Ergebnis 3,3 1. Das Ergebnis weist eine unendliche Anzahl von Nachkommastellen auf. 1 0,3 bedeutet periodisch, also 0,

4 4 1 Einführung Fatal kann die Weiterverwendung des fehlerhaften Ergebnisses durch eine Fehlerfortpflanzung werden. Wenn die 'analogen' Rechenoperationen nach Gl. 1.1 exakt ausgeführt werden, führen sie auf das Ergebnis ' 3,3 ; 3 ' 10 (1.1) In digital durchgeführten Rechenoperationen folgt das fehlerbehaftete Ergebnis nach Gl. 1.2 als 10 3 ' 3, ; 3 ' 9, (1.2) Wie groß der Fehler letztlich ist, hängt von den im Rechner verwendeten Stellen zur Darstellung der Zahlen und den verwendeten Stellen zur Durchführung der Rechenoperationen ab. In dem Beispiel in Gl. 1.2 sind 8 Stellen nach dem Komma berücksichtigt worden. Falls dieses Beispiel mit einem Taschenrechner nachvollzogen wird und zum Ergebnis 10 führt, wird zumindest für die Anzeige eine Rundung verwendet. Wird von dem erhaltenen Ergebnis als nächste Rechenoperation 10 subtrahiert und ergibt sich als Fehler gleich 0, dann finden auch in der internen digitalen Verarbeitung Rundungsoperationen statt Prinzip der Analog-Digital-Wandlung Um aus analogen Werten digitale Werte zu erzeugen, ist eine Analog-Digital- Wandlung notwendig. Das Prinzip einer Analog-Digital-Wandlung ist in der Abb. 1.4 angegeben. Jedem kontinuierlichem Wert X innerhalb eines Teilbereiches wird der gleiche Wert aus einer endlichen Anzahl K unterscheidbarer Werte Y k, k = 1,2,..., K zugewiesen. Der Teilbereich, dem der Rekonstruktionswert Y k zugeordnet ist, wird als Entscheidungsintervall I k, k = 1,2,..., K bezeichnet. Die Rekonstruktionswerte Y k werden als digitale Größen in einer codierten Form als Datenwörter dargestellt. Sie bilden damit die Codewörter, die den analogen Werten X innerhalb der Teilbereiche zugewiesen worden sind.

5 1.2 Begriffsdefinitionen E C E J = A I 9 H J; 4 A I J H K J E ; I M A H J N = N = = C A I 5 E C = : J A E E A N - J I? D A K C = I N E J A H L = 1 : 9 A B A D A H : 3 ; : E C E J = A I 5 E C = ; : ),,,, * 5 O > A E A I ) = C, E C E J = 9 A H I E J * * E J Abbildung 1.4 Kennlinie eines Analog-Digital-Wandlers und Schaltsymbol Die Differenz zu den analogen Werten X und ihren Rekonstruktionswerten Y k ist der Wandelfehler Q k, der auch als Quantisierungsfehler bezeichnet wird. Er ist in den Entscheidungsintervallen I k definiert als Q k ' X & Y k X 0 I k. ; k ' 1,2,..., K. (1.3) Die Größe der Wandelfehler Q k in den Entscheidungsintervallen I k ist abhängig von der Kennlinie des Analog-Digital-Wandlers und kann nicht rückgängig gemacht werden. Bei einem linearen Quantisierer mit B-Bit und den Entscheidungsintervallen ) X ' ) ' 2x max 2 B (1.4) mit den Rekonstruktionswertintervallen ) = y k+1 - y k wird die Leistung F Q 2 des Wandelfehlers bei optimaler Aussteuerung zu F 2 Q ' 1 12 )2. (1.5) 1.2 Begriffsdefinitionen In der DIN und der DIN finden sich die Begriffe und die Definitionen, die auch hier angewendet werden. Dazu gehören zunächst das digitale Signal und der Zeichenvorrat, die für die Elektrotechnik wichtige digitale elektrische Größe und das Binärzeichen sowie weitere notwendige Definitionen.

6 6 1 Einführung Digitales Signal Signal, dessen Signalparameter eine Nachricht oder Daten darstellt, die nur aus Zeichen besteht bzw. bestehen. Zeichen Ein Element aus einer zur Darstellung von Informationen vereinbarten endlichen Menge von verschiedenen Elementen. Die Menge heißt Zeichenvorrat. Digitale elektrische Größe Eine elektrische Größe (Spannung, Strom, Impedanz) mit einer endlichen Anzahl nicht überlappender Wertebereiche. Binärzeichen Jedes Zeichen aus einem Zeichenvorrat von zwei Zeichen. Das Zeichen wird als Bit bezeichnet. Binäre elektrische Größe Digitale elektrische Größe mit genau nur zwei möglichen Wertebereichen, oft als L (LOW)-Bereich und H (HIGH)-Bereich bezeichnet. LOW-Bereich Derjenige von den beiden Wertebereichen (Pegelbereich) einer binären elektrischen Größe, der näher bei minus unendlich liegt. HIGH-Bereich Derjenige von den beiden Wertebereichen (Pegelbereich) einer binären elektrischen Größe, der näher bei plus unendlich liegt. 1.3 Binäre Darstellung Zur binären Darstellung eines digitalen Signals werden Zeichen verwendet, die aus einem Zeichenvorrat stammen, der nur zwei unterschiedliche Zeichen beinhaltet. Beispiele solcher Zeichenvorräte sind in Tab. 1.1 angegeben. Tabelle 1.1 Binäre Zeichenvorräte Zeichen Zeichenvorräte 0 L LOW false aus kein Strom 1 H HIGH true ein Strom Jedes dieser Zeichen heißt Binärzeichen. Ein solches Zeichen läßt sich über ein Bit (binary digit), die kleinste unterscheidbare Nachrichtenmenge darstellen. Je nach der Zielsetzung in der Behandlung des digitalen Systems oder nach dem Abstraktionsgrad werden die Zeichen aus einem Zeichenvorrat eingesetzt.

7 1.4 Zahlensysteme 7 Bei der logischen Verknüpfung von Signalen werden überwiegend in der funktionalen Beschreibung Y = f (A,B) zur binären Darstellung der Signale die (logische) 0 und 1 angewendet (Abb. 1.5 links). Die Zeichen LOW und HIGH für die Zuordnung von binären Größen zu einer elektrischen Größe sind eher in der technischen Realisierung einer Logikfunktion zu finden (Abb. 1.5 rechts). C E > A I? D H A E > K C = I. K J E ; B ) * C E > A I? D H A E > K C = I J A? D E I? D A 4 A = E I E A H K ) * C E ; ) 9 * 0 1 / 0 4 ; 9 Abbildung 1.5 Bevorzugte Anwendungsbereiche von Binärzeichen 1.4 Zahlensysteme Das dezimale Zahlensystem (Dezimalsystem) ist mit seinen zehn Zeichen (0... 9) in einer Anwendung in digitalen Systemen, die nur zwei Zeichen kennen, nicht geeignet. In Digital- bzw. Rechneranwendungen werden Zahlensysteme bevorzugt, deren Basis B eine Potenz von 2 ist. Diese Zahlensysteme werden als Dualsystem, Oktalsystem und Hexadezimalsystem bezeichnet. Im Dualsystem mit der Basis B = 2 stammen die Zeichen aus dem Zeichenvorrat Z 0 {0,1}. Das Oktalsystem mit der Basis B = 8 benutzt die Zeichen des Zeichenvorrates Z 0 {0,1,..., 7}. Im Hexadezimalsystem mit der Basis B = 16 reichen die einstelligen Zeichen des Dezimalsystems nicht aus, um die 16 möglichen Zeichen darzustellen. So wird der Zeichenvorrat des Dezimalsystems Z 0 {0,1,..., 9} um die ersten 6 Zeichen des Alphabetes A,..., F erweitert und ergibt dann den Zeichenvorrat Z 0 {0,1,..., 9, A,B,..., F} des Hexadezimalsystems. In der Tab. 1.2 sind die Zahlen des Dezimalsystems den in das jeweilige Zahlensystem konvertierten Zahlen gegenübergestellt.

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5 Personal Computer in Betrieb nehmen 1/6 Weltweit setzen die Menschen alltäglich das Zehnersystem für Zählen und Rechnen ein. Die ursprüngliche Orientierung stammt vom Zählen mit unseren 10 Fingern. Für

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

1. Stellenwerte im Dualsystem

1. Stellenwerte im Dualsystem 1. a) Definitionen Stellenwertsystem Ein Zahlensystem bei dem der Wert einer Ziffer innerhalb einer Ziffernfolge von ihrer Stelle abhängt, wird Stellenwertsystem genannt. Die Stellenwerte sind also ganzzahlige

Mehr

Black Box erklärt Zahlensysteme.

Black Box erklärt Zahlensysteme. Black Box erklärt Zahlensysteme. Jeder von uns benutzt aktiv mindestens zwei Zahlenssysteme, oftmals aber so selbstverständlich, dass viele aus dem Stegreif keines mit Namen nennen können. Im europäischen

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Informationsdarstellung im Rechner

Informationsdarstellung im Rechner Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Digitale Grundbegriffe

Digitale Grundbegriffe 1 Digitale Grundbegriffe Um den Begriff»digital«leichter verstehen zu können, ist es hilfreich, sich zuerst mit dem Gegenstück auseinanderzusetzen, der Analogtechnik, denn unser natürliches Umfeld verhält

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4. Kapitel 4: Schaltungen mit Delays Seite 1

Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4. Kapitel 4: Schaltungen mit Delays Seite 1 Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4 Kapitel 4: Schaltungen mit Delays Seite 1 Schaltungen mit Delays Inhaltsverzeichnis 4.1 Einführung 4.2 Addierwerke

Mehr

Aufbau eines Digitalzählers

Aufbau eines Digitalzählers INTITUT FÜ NGWNDT PHYIK Physikalisches Praktikum für tudierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße ufbau eines Digitalzählers inleitung Jede beliebige Information kann zerlegt

Mehr

A-196 PLL. 1. Einführung VCO. LPF Frequ. doepfer System A - 100 PLL A-196

A-196 PLL. 1. Einführung VCO. LPF Frequ. doepfer System A - 100 PLL A-196 doepfer System A - 100 PLL A-196 1. Einführung A-196 PLL VCO CV In Offset Das Modul A-196 enthält eine sogenannte Phase Locked Loop (PLL) - im deutschen mit Nachlaufsynchronisation bezeichnet, die aus

Mehr

Grundlagen der Informatik I Informationsdarstellung

Grundlagen der Informatik I Informationsdarstellung Grundlagen der Informatik I Informationsdarstellung Einführung in die Informatik, Gumm, H.-P./Sommer, M. Themen der heutigen Veranstaltung. ASCIi Code 2. Zeichenketten 3. Logische Operationen 4. Zahlendarstellung

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Skalierung des Ausgangssignals

Skalierung des Ausgangssignals Skalierung des Ausgangssignals Definition der Messkette Zur Bestimmung einer unbekannten Messgröße, wie z.b. Kraft, Drehmoment oder Beschleunigung, werden Sensoren eingesetzt. Sensoren stehen am Anfang

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

Didaktik der Physik Demonstrationsexperimente WS 2006/07

Didaktik der Physik Demonstrationsexperimente WS 2006/07 Didaktik der Physik Demonstrationsexperimente WS 2006/07 Messung von Widerständen und ihre Fehler Anwendung: Körperwiderstand Hand-Hand Fröhlich Klaus 22. Dezember 2006 1. Allgemeines zu Widerständen 1.1

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

Zahlensysteme und Kodes. Prof. Metzler

Zahlensysteme und Kodes. Prof. Metzler Zahlensysteme und Kodes 1 Zahlensysteme und Kodes Alle üblichen Zahlensysteme sind sogenannte Stellenwert-Systeme, bei denen jede Stelle innerhalb einer Zahl ein besonderer Vervielfachungsfaktor in Form

Mehr

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1 1 1 Vorbetrachtungen Wie könnte eine Codierung von Zeichen im Computer realisiert werden? Der Computer arbeitet mit elektrischem Strom, d. h. er kann lediglich zwischen den beiden Zuständen Strom an und

Mehr

Kapitel 1: Schaltfunktionen und ihre Darstellung

Kapitel 1: Schaltfunktionen und ihre Darstellung Kapitel 1: Schaltfunktionen und ihre Darstellung Kapitel 1 Schaltfunktionen und ihre Darstellung Literatur: Oberschelp/Vossen, Kapitel 1 Kapitel 1: Schaltfunktionen und ihre Darstellung Seite 1 Motivation

Mehr

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 1.1 analoge Messgeräte Fließt durch einen Leiter, welcher sich in einem Magnetfeld B befindet ein Strom I, so wirkt auf diesen eine

Mehr

Klausur "Informationstechnische Grundlagen" WS 2012/2013

Klausur Informationstechnische Grundlagen WS 2012/2013 PD Dr. J. Reischer 11.02.2013 Klausur "Informationstechnische Grundlagen" WS 2012/2013 Nachname, Vorname Abschluss (BA, MA, FKN etc.) Matrikelnummer, Semester Versuch (1/2/3) Bitte füllen Sie zuerst den

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

Information in einem Computer ist ein

Information in einem Computer ist ein 4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.

Mehr

4 Binäres Zahlensystem

4 Binäres Zahlensystem Netzwerktechnik achen, den 08.05.03 Stephan Zielinski Dipl.Ing Elektrotechnik Horbacher Str. 116c 52072 achen Tel.: 0241 / 174173 zielinski@fh-aachen.de zielinski.isdrin.de 4 inäres Zahlensystem 4.1 Codieren

Mehr

Diana Lange. Generative Gestaltung Operatoren

Diana Lange. Generative Gestaltung Operatoren Diana Lange Generative Gestaltung Operatoren Begriffserklärung Verknüpfungsvorschrift im Rahmen logischer Kalküle. Quelle: google Operatoren sind Zeichen, die mit einer bestimmten Bedeutung versehen sind.

Mehr

Zahlensysteme Das 10er-System

Zahlensysteme Das 10er-System Zahlensysteme Übungsblatt für die entfallende Stunde am 22.10.2010. Das 10er-System... 1 Umrechnung in das 10er-System... 2 2er-System... 2 8er-System... 2 16er-System... 3 Umrechnung in andere Zahlensysteme...

Mehr

LTAM-T2EE-ASSER FELJC/GOERI 3. P-Regler

LTAM-T2EE-ASSER FELJC/GOERI 3. P-Regler 3. P-Regler 3.1. Einleitung 3.1.1. Allgemeines Der Regler muss im Regelkreis dafür sorgen, dass der Istwert der Regelgröße X möglichst wenig vom Sollwert W abweicht. Das Verhalten der Regelstrecke ist

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil II Speicherung und Interpretation von Information Seite 1 Speicherung und Interpretation von Information Beginn der Datenverarbeitung => Erfindung von Zahlensystemen Quantifizierung

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de

Mehr

9 Multiplexer und Code-Umsetzer

9 Multiplexer und Code-Umsetzer 9 9 Multiplexer und Code-Umsetzer In diesem Kapitel werden zwei Standard-Bauelemente, nämlich Multiplexer und Code- Umsetzer, vorgestellt. Diese Bausteine sind für eine Reihe von Anwendungen, wie zum Beispiel

Mehr

Computer rechnen nur mit Nullen und Einsen

Computer rechnen nur mit Nullen und Einsen Computer rechnen nur mit Nullen und Einsen Name: Unser bekanntes Dezimalsystem mit 10 Ziffern Ein wesentliches Merkmal eines Zahlensystems ist die verwendete Anzahl der Ziffern. Im Dezimalsystem gibt es

Mehr

Informatik II SS Überlick. Polyadische Zahlensysteme (1/2) Polyadische Zahlensysteme (2/2)

Informatik II SS Überlick. Polyadische Zahlensysteme (1/2) Polyadische Zahlensysteme (2/2) Überlick Informatik II SS 2 Information und Informationsdarstellung Zahlensysteme Rechnerarithmetik Logische Schaltungen oolesche Algebra Kombinierte logische Schaltungen Dipl.-Inform. Michael Ebner Lehrstuhl

Mehr

Konfiguration der Messkanäle. Konfiguration der Zeitachse. Abb. 3: Konfigurationsmenü des Sensoreingangs A. Abb. 4: Messparameter Konfigurationsmenü

Konfiguration der Messkanäle. Konfiguration der Zeitachse. Abb. 3: Konfigurationsmenü des Sensoreingangs A. Abb. 4: Messparameter Konfigurationsmenü Anleitung zum Programm CASSY Lab für den Versuch E12 Starten Sie das Programm CASSY Lab durch Doppelklick auf das Icon auf dem Windows- Desktop. Es erscheint ein Fenster mit Lizensierungsinformationen,

Mehr

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft.

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft. Vorlesung 1 Einführung 1.1 Praktisches Zeiten: 10:00-12:00 Uhr Vorlesung 12:00-13:00 Uhr Mittagspause 13:00-14:30 Uhr Präsenzübung 14:30-16:00 Uhr Übungsgruppen Material: Papier und Stift wacher Verstand

Mehr

Skript Zahlensysteme

Skript Zahlensysteme Skript Zahlensysteme Dieses Skript enthält die Themen meiner Unterrichtseinheit Zahlensysteme. Hier sollen die Grundlagen für das Verständnis der darauf folgenden Inhalte zu den Abläufen innerhalb des

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Digitaltechnik FHDW 1.Q 2007

Digitaltechnik FHDW 1.Q 2007 Digitaltechnik FHDW 1.Q 2007 1 Übersicht 1-3 1 Einführung 1.1 Begriffsdefinition: Analog / Digital 2 Zahlensysteme 2.1 Grundlagen 2.2 Darstellung und Umwandlung 3 Logische Verknüpfungen 3.1 Grundfunktionen

Mehr

2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen

2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen 2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen Ziele dieses Kapitels Kennenlernen wesentlicher Zahlensysteme und die Konvertierung von Zahlen zwischen unterschiedlichen

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Klaus Knopper 26.10.2004 Repräsentation von Zahlen Zahlen können auf unterschiedliche Arten dargestellt werden Aufgabe: Zahlen aus der realen Welt müssen im Computer abgebildet

Mehr

1. Stellenwerte im Dualsystem

1. Stellenwerte im Dualsystem 1. a) Definitionen Stellenwertsystem Ein Zahlensystem bei dem der Wert einer Ziffer innerhalb einer Ziffernfolge von ihrer Stelle abhängt, wird Stellenwertsystem genannt. Die Stellenwerte sind also ganzzahlige

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Strom-Spannungs-Kennlinie und Leistung eines Windrades

Strom-Spannungs-Kennlinie und Leistung eines Windrades Strom-Spannungs-Kennlinie und ENT Schlüsselworte Windenergie, Kennlinie, Spannung, Stromstärke, Leistung, Widerstand, Innenwiderstand, Anpassung Prinzip Die Strom-Spannungs-Kennlinie eines Windgenerators

Mehr

3 Kodierung von Informationen

3 Kodierung von Informationen 43 3 Kodierung von Informationen Bevor ich Ihnen im nächsten Kapitel die einzelnen Bausteine einer Computeranlage vorstelle, möchte ich Ihnen noch kurz zeigen, wie Daten kodiert sein müssen, damit der

Mehr

Aufgaben zu Stellenwertsystemen

Aufgaben zu Stellenwertsystemen Aufgaben zu Stellenwertsystemen Aufgabe 1 a) Zähle im Dualsystem von 1 bis 16! b) Die Zahl 32 wird durch (100000) 2 dargestellt. Zähle im Dualsystem von 33 bis 48! Zähle schriftlich! Aufgabe 2 Wandle die

Mehr

Repräsentation von Daten Binärcodierung ganzer Zahlen

Repräsentation von Daten Binärcodierung ganzer Zahlen Kapitel 3: Repräsentation von Daten Binärcodierung ganzer Zahlen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Repräsentation von Daten im Computer (dieses und nächstes

Mehr

Taschenbuch Versuchsplanung Produkte und Prozesse optimieren

Taschenbuch Versuchsplanung Produkte und Prozesse optimieren Wilhelm Kleppmann Taschenbuch Versuchsplanung Produkte und Prozesse optimieren ISBN-10: 3-446-41595-5 ISBN-13: 978-3-446-41595-9 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41595-9

Mehr

Messung elektrischer Größen Bestimmung von ohmschen Widerständen

Messung elektrischer Größen Bestimmung von ohmschen Widerständen Messtechnik-Praktikum 22.04.08 Messung elektrischer Größen Bestimmung von ohmschen Widerständen Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. Bestimmen Sie die Größen von zwei ohmschen Widerständen

Mehr

Codierung. H.-G. Hopf

Codierung. H.-G. Hopf Codierung H.-G. Hopf Inhalt Informationsübermittlung Codierung von Zeichen GDI: Codierung / 2 Inhalt Informationsübermittlung Codierung von Zeichen GDI: Codierung / 3 Ideale Kommunikation Übertragungskanal

Mehr

Einführung in die Informatik Inf, SAT

Einführung in die Informatik Inf, SAT Einführung in die Informatik Inf, SAT Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659

Mehr

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10

FH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Binäre Rechenoperationen WS 09/10 FB ET/IT Binäre Rechenoperationen WS 9/ Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbst erstellte Formelsammlung Wichtige Hinweise: Ausführungen, Notizen und Lösungen

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

There are only 10 types of people in the world: those who understand binary, and those who don't

There are only 10 types of people in the world: those who understand binary, and those who don't Modul Zahlensysteme In der Digitaltechnik haben wir es mit Signalen zu tun, die zwei Zustände annehmen können: Spannung / keine Spannung oder 1/ oder 5V / V oder beliebige andere Zustände. In diesem Modul

Mehr

Einführung in die Informatik Inf, SAT

Einführung in die Informatik Inf, SAT Einführung in die Informatik Inf, SAT Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB Automatisierung

Mehr

Inhaltsverzeichnis. Inhalt. 1 Einleitung

Inhaltsverzeichnis. Inhalt. 1 Einleitung Inhalt 3 Inhaltsverzeichnis 1 Einleitung 1.1 Digitale und analoge Signale... 9 1.2 Digitale Darstellung... 12 1.3 Datenübertragung... 14 1.4 Aufgaben digitaler Schaltungen... 17 1.5 Geschichte der Digitalrechner...

Mehr

2. Zahlendarstellung und Rechenregeln in Digitalrechnern

2. Zahlendarstellung und Rechenregeln in Digitalrechnern Zahlendarstellung und Rechenregeln in Digitalrechnern Folie. Zahlendarstellung und Rechenregeln in Digitalrechnern. Zahlensysteme Dezimales Zahlensystem: Darstellung der Zahlen durch Ziffern 0,,,..., 9.

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Zahlen- und Buchstabencodierung. Zahlendarstellung

Zahlen- und Buchstabencodierung. Zahlendarstellung Dezimalsystem: Zahlen- und Buchstabencodierung Zahlendarstellung 123 = 1 10 2 + 2 10 1 + 3 10 0 1,23 = 1 10 0 + 2 10-1 + 3 10-2 10 Zeichen im Dezimalsystem: 0,1,...9 10 ist die Basis des Dezimalsystems

Mehr

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS 2008. Messtechnikpraktikum

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS 2008. Messtechnikpraktikum Friedrich-Schiller-Universität Jena Physikalisch-Astronomische Fakultät SS 2008 Protokollbuch Messtechnikpraktikum Erstellt von: Christian Vetter (89114) Helena Kämmer (92376) Christian.Vetter@Uni-Jena.de

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD Elektrizitätslehre GV: Gleichstrom Durchgeführt am 14.06.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Philip Baumans Marius Schirmer E3-463 Inhaltsverzeichnis

Mehr

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten.

Allerdings ist die Bearbeitung von Standardobjekten vorerst eingeschränkt. Wir wollen uns dies im folgenden Beispiel genauer betrachten. 7. KURVEN UND KNOTEN INFORMATION: Sämtliche Objekte bestehen in CorelDRAW aus Linien oder Kurven. So ist ein Rechteck ein Gebilde aus einem Linienzug, ein Kreis hingegen besteht aus einer Kurve. Zum Bearbeiten

Mehr

Vorkurs Mathematik für Informatiker 3 Logarithmen

Vorkurs Mathematik für Informatiker 3 Logarithmen 3 Logarithmen Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 3: Logarithmen 1 Logarithmen: Definition Definition: Zu x > 0 und b > 0, b 1 sei der Logarithmus von x zur Basis b folgende

Mehr

Zahlensysteme. Formale Methoden der Informatik WiSe 2010/2011 Folie 1 (von 71)

Zahlensysteme. Formale Methoden der Informatik WiSe 2010/2011 Folie 1 (von 71) Zahlensysteme Formale Methoden der Informatik WiSe / Folie (von 7) Teil I: Zahlensysteme. Einführung und Zahlensysteme. Zahlensysteme / Algorithmik. Zahlendarstellung im Rechner. Gleitkommazahlen / Fließpunktzahlen

Mehr

Elementare mathematische Begriffe und Operationen (aus Dozentensicht)

Elementare mathematische Begriffe und Operationen (aus Dozentensicht) 6.04.015 Elementare mathematische Begriffe und Operationen (aus Dozentensicht) 0 Elementare mathematische Begriffe und Operationen (aus Studentensicht) 6.04.015 0 1 6.04.015 Geschichtliches Zählen ist

Mehr

Umstellung von Inlandssammelaufträgen in SEPA-Sammelaufträge

Umstellung von Inlandssammelaufträgen in SEPA-Sammelaufträge Umstellung von Inlandssammelaufträgen in SEPA-Sammelaufträge Die neue Funktion "Auf SEPA konvertieren" wird standardmäßig im Hauptnavigationspunkt [Banking] unter dem Navigationspunkt [Sammler-Vorlagen]

Mehr

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8

Rückblick. Zahlendarstellung zu einer beliebigen Basis b. Umwandlung zwischen Zahlendarstellung (214) 5 = (278) 10 =(?) 8 Rückblick Zahlendarstellung zu einer beliebigen Basis b (214) 5 = Umwandlung zwischen Zahlendarstellung (278) 10 =(?) 8 25 Rückblick Schnellere Umwandlung zwischen Binärdarstellung und Hexadezimaldarstellung

Mehr

Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung

Übung zur Wirtschaftsinformatik I. Zahlensysteme / Codierung WS 06/07 Thema 4: Zahlensysteme / Codierung 1 Übung zur Winfo I - Themenplan - Informationsverarbeitung in Unternehmen Tabellenkalkulation Anwendungen PC-Komponenten Zahlensysteme / Codierung Boole sche

Mehr

Wir übertragen Daten mit Licht

Wir übertragen Daten mit Licht Wir übertragen Daten mit Licht Durch das Internet werden täglich Unmengen von Daten von einem Ort an den anderen transportiert. Häufig geschieht dies über Glasfasern (Abb. 1). An dem einen Ende werden

Mehr

Zahlensysteme: Oktal- und Hexadezimalsystem

Zahlensysteme: Oktal- und Hexadezimalsystem 20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Grundlagen der Informatik I. Übung

Grundlagen der Informatik I. Übung Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz

Mehr

Technische Fachhochschule Berlin Fachbereich VIII

Technische Fachhochschule Berlin Fachbereich VIII Technische Fachhochschule Berlin Fachbereich VIII Ergänzungen Seite von LOGIKPEGEL Logik-Familien sind elektronische Schaltkreise, die binäre Zustände verarbeiten und als logische Verknüpfungen aufgebaut

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Einführung in das Arbeiten mit MS Excel. 1. Bearbeitungs

Einführung in das Arbeiten mit MS Excel. 1. Bearbeitungs Einführung in das Arbeiten mit MS Excel 1. Bildschirmaufbau Die Tabellenkalkulation Excel basiert auf einem Rechenblatt, das aus Spalten und Zeilen besteht. Das Rechenblatt setzt sich somit aus einzelnen

Mehr

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Rechengesetze 1. Rechengesetze für natürliche Zahlen Es geht um

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

SimpliMed Formulardesigner Anleitung für die SEPA-Umstellung

SimpliMed Formulardesigner Anleitung für die SEPA-Umstellung SimpliMed Formulardesigner Anleitung für die SEPA-Umstellung www.simplimed.de Dieses Dokument erhebt keinen Anspruch auf Vollständigkeit oder Korrektheit. Seite: 2 1. Der Formulardesigner Der in SimpliMed23

Mehr

Grundlagen der Computertechnik

Grundlagen der Computertechnik Grundlagen der Computertechnik Aufbau von Computersystemen und Grundlagen des Rechnens Walter Haas PROLOG WS23 Automation Systems Group E83- Institute of Computer Aided Automation Vienna University of

Mehr

Lösung 1. Übungsblatt

Lösung 1. Übungsblatt Fakultät Informatik, Technische Informatik, Lehrstuhl für Eingebettete Systeme Lösung 1. Übungsblatt Konvertierung von Zahlendarstellungen verschiedener Alphabete und Darstellung negativer Zahlen Stoffverteilung

Mehr