6.3 Optische Spektrometrie Grundlagen (K. Grützmacher)

Größe: px
Ab Seite anzeigen:

Download "6.3 Optische Spektrometrie. 6.3.1 Grundlagen (K. Grützmacher)"

Transkript

1 6.3.1 Grundlagen 241 V. Angerer, E.; Eberl, H. (1966): Technische Kunstgriffe bei physikalischen Untersuchungen. Braunschweig: Vieweg Varpula, T.; Seppä, H.; Saari, J.-M. (1989): Optical Power Calibrator Based on a Stabilized Green He-Ne Laser and a Cryogenic Radiometer. IEEE-Trans. Instrum. Measur. 38, Vieth, G. (1974): Meßverfahren der Photographie. München: Oldenbourg; London: Focal Press de Vos, J. C. (1954): A new determination of the emissivity of tungsten ribbon. Physica 20, Wada, Y.; Hayakawa, R. (1976): Piezoelectricity and Pyroelectricity of Polymers. Jpn. J. Appl. Phys Walsh, J. W.T. (1958): Photometry. New York: Dover Watt, B. E. (1973): Calorimeter for Picosecond Laser Pulses. Appl. Opt. 12, Weber, H.; Herziger, G. (1972): Laser-Grundlagen und Anwendungen. Weinheim: Physik-Verlag Weidner, V. R.; Hsia, J. J. (1981): Reflection properties of pressed polytetrafluoroethylene powder. J. Opt. Soc. Am. 71, Wende, B. (1979): A Proposal for a Radiometric Program at an Electron Storage Ring. PTB-Ber. PTB-JB-7, Berlin Wende, B, (1992): Photonenmetrologie mit BESSY, Physikalische Blätter Westerwald, W. B.; McPherson, A.; Risley, J. S. (1983): Synchrotron Radiation Intensity for 50-MeV to 50-GeV Electrons. Atomic Data and Nuclear Data Tables 28, Willson, R.C. (1979): Active Cavity Radiometer TypeIV. Appl. Opt. 18, Winick, H.; Doniach, S. (eds.) (1980): Synchrotron Radiation Research. New York: Plenum Witt, K.; Döring, G. (1987): NCS-Farbatlas - Meter-Konvention für Farbe? Farbe ^ Design 39/40, S Woltersdorff, W. (1934): Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot. 2. Physik 54, Wright, W.D. (1969): The Measurement of Colour. 4th Ed. London: Hilger Wyszecki, G. (1960): Farbssysteme. Göttingen: Musterschmidt Wyszecki, G. (1970): Development of New CIE Standard Sources for Colorimetry. Die Farbe 19, Wyszecki, G. (1972): Color Matching and Color-Difference Matching. J, Opt. Soc. Amer. 62, Wyszecki, G. (1978): Colorimetry. In: Handbook of Optics, Sect. 9. New York: McGraw-Hill Wyszecki, G.; Fielder, G. H. (1971): New Color-Matching Ellipses. J. Opt. Soc. Amer. 61, ; und: Color-Difference Matches. J. Opt. Soc. Amer. 61, Wyszecki, G.; Stiles, W. S. (1982): Color Science: Cencepts and Methods, Quantitative Data and Formulae. 2nd. Ed. New York: Wiley Zander, K. (1977): Gerät zur Messung des gerichteten spektralen Reflexionsgrades ebener Flächen bei senkrechtem Strahlungseinfall. Feinwerktech. u. Meßtech. 54, Optische Spektrometrie Grundlagen (K. Grützmacher) Spektrometer dienen der spektralen Zerlegung und Messung von Strahlung mit dem Ziel, aus den Spektren Informationen über Emissions- und Absorptionsvermögen von Materie (vom Festkörper bis Plasma) zu gewinnen, Anzahldichten ausgesuchter Spezies oder Anregungszustände zu bestimmen, Wechselwirkungen in der Materie zu untersuchen, die zu Änderungen der Spektren führen usw. Spektrometrische Untersuchungsmethoden finden Anwendung in vielen Bereichen der Physik sowie unter anderem in Chemie, Biologie und Industrie. Unter Verzicht auf die Anwendung spektrometrischer Techniken werden in diesem Abschnitt nur prinzipielle Methoden und Grenzen der spektralen Zerlegung behandelt; auf die Registrierung der Strahlung und spektrometrische Hilfsmittel wird nur knapp eingegangen. Schwerpunkte sind die Spektralbereiche IR, sichtbare Strahlung und UV; fernes IR und Vakuum-UV werden nur beiläufig angesprochen.

2 Optische Spektrometrie Ausführlichere Erläuterungen zu Grundlagen sind zu finden bei Demtröder (1991). Hinsichtlich der Bauart von Spektrometern wird verwiesen auf Sawyer (1963), für das VUV (einschueßlich Lichtquellen) auf Samson (1967). Zum Überblick über aktuelle atom-spektrometrische Techniken wird verwiesen auf Hanle u. Kleinpoppen (1978). Spektrometrische Methoden in der Chemie sind behandelt bei Kortüm (1962). Konkrete Anwendungen spektrometrischer Methoden sind in und zu finden, Besonderheiten der VUV-Spektrometrie in Allgemeine Spektrometrieeigenschaften und zugehörige Abbildungssysteme Hier werden zunächst einige allgemeine Begriffe angesprochen, die für alle in den folgenden Abschnitten behandelten Spektrometertypen von Bedeutung sind. Den schematischen Aufbau eines Spektrometers zeigt Fig Durch Abildung einer Strahlungsquelle Q auf die Eintrittsblende EB fällt die zu untersuchende Strahlung ins Spektrometer. Der Kollimator K (Brennweite/i) erzeugt parallele Strahlung, die auf bzw. in das dispergierende Element D (Prisma, Gitter, Interferometer) fällt. Strahlung verschiedener Fig Schematischer Aufbau eines Spektrometers mit Abbildung der Lichtquelle Q auf die Eintrittsblende EB Wellenlängen X und A + AA tritt in unterschiedlichen Richtungen Q und 0 + A0 aus. Die Größe dö/da heißt Winkeldispersion. Eine fokussierende Optik F (Brennweite fi) entwirft das Spektrum Sp, in dem benachbarte Wellenlängen entsprechend der linearen Dispersion da da (6.172) getrennt sind. Häufig wird bei Spektrometern die reziproke lineare Dispersion da/dx in nm/mm angegeben. Ursache der Dispersion ist die konstruktive Interferenz von Teilstrahlen (die vom dispergierenden Element ausgehen) mit ganzzahligem Gangunterschied m A, die abhängig von der Wellenlänge A für bestimmte Winkel B auftritt; m kennzeichnet die Ordnung der Interferenz und die Ordnung des zugehörigen Spektrums. Dies gilt auch für Prismenspektrometer, wenn man die Dispersion im Prisma als Interferenz nullter Ordnung {m = 0) betrachtet. Konstruktive Interferenz unterschiedlicher Ordnungen m,m± \ usw. tritt für Wellenlängen A, A + ) usw. unter der Bedingung A -m = A ii'(mt 1) in derselben Richtung 6 auf und führt zur Überlagerung von Spektren unterschiedlicher Ordnungen. Der freie Spektralbereich A A eines Spektrometers kennzeichnet das Wellenlängenintervall, in dem keine Überlagerung von Spektren unterschiedlicher Ordnung auftritt. AA ist etwas kleiner als der Wellenlängenabstand zweier benachbarter Ordnungen, d. h. mit AA=»A -A^ + i A -m = A + i-(w+1). (6.173)

3 6.3.1 Grundlagen 243 Bei Spektrometern mit sehr hohen Ordnungen ( ) ist A^ sehr klein, Spektrometer mit niedrigen Ordnungen (Gitterspektrometer) haben einen großen freien Spektralbereich (z. B. für = 800 nm ergibt sich 1^=2 = 400 nm und Ai etwas kleiner als 400 nm). Die Unterdrückung der Spektren mit anderer als der gewünschten Ordnung muß durch geeignete Vorzerlegung oder durch Filter ( ) sichergestellt werden. Wegen m = 0 zeigen Prismenspektrometer nur das Spektrum nullter Ordnung. Die Apparatefunktion ist die Verteilung des Strahlungsflusses am Ort des Spektrums, die bei monochromatischer Einstrahlung (Wellenlänge A) beobachtet wird. Bei vielen quantitativen spektrometrischen Untersuchungen ist die Apparatefunktion ein wesentliches Eignungskriterium. So sollte z. B. bei der Messung von Linienprofilen die Halbwertsbreite Ax der Apparatefunktion höchstens ein Zehntel der Halbwertsbreite des zu messenden Profils betragen. Das spektrale Auflösungsvermögen R eines Spektrometers ist definiert als /?= A/SA, (6.174) dabei ist der kleinste Wellenlängenabstand zweier monochromatischer Strahlungen mit Wellenlängen X und /1 + 5A, die noch getrennt (aufgelöst) werden können. Je nach Spektrometertyp ist R prinzipiell durch Beugung an der begrenzenden Apertur A (gilt streng für Prismenspektrometer) und/oder durch das Auflösungsvermögen des dispergierenden Elements begrenzt. Die tatsächlich erreichbare Auflösung hängt darüber hinaus von der Qualität der optischen Komponenten sowie von Ausleuchtung und Justierung des Spektrometers ab. Sie kann in guter Näherung aus der Halbwertsbreite Ax der Apparatefunktion {hx^ax-dk/dx) bestimmt werden. Zur Bestimmung des Auflösungsvermögens und zur Wellenlängenkahbrierung können geeignete Linien von Spektrallampen (s. Tab. T 6.22 in Band 3) und Lasern (s. Tab. T 1.01 in Band 3) verwendet werden. Der geometrische Leitwert und der Transmissionsgrad r eines Spektrometers bestimmen die am Ort des Spektrums mit der linearen Dispersion da/dx über die Breite bi des Austrittsspalters meßbaren Strahlungsleistung 0. Bei homogener und isotroper spektraler Strahldichte L^ in der Fläche F\ der Eintrittsblende ist die meßbare Strahlungsleistung 0 = LrFxQ-t{X)-b2dX/dx (6.175) Der geometrische Leitwert ist das Produkt Fj Q, dabei ist Q = BH/f\ der akzeptierende Raumwinkel des Kollimators, der durch den begrenzenden Aperturquerschnitt B-H (Breite X Höhe) und die Kollimatorbrennweite bestimmt ist. Häufig wird bei Prismen und Gitterspektrometern statt des geometrischen Leitwertes nur das für die spektrale Auflösung wesentliche horizontale Öffnungsverhältnis \/{fjb) angegeben. Der Transmissionsgrad T(A) ist das Produkt der Transmissions- bzw. Reflexionsgrade aller optischen Komponenten und dipergierenden Elemente im Strahlengang. Der Einsatzbereich von Gitterspektrometern mit Spiegeloptik reicht prinzipiell vom fernen IR(=»50nm) bis ins extreme Vakuum-UV (=»5nm), während Prismenspektrometer und Fabry-Perot-Spektrometer selbst mit Quarzoptik nur zwischen etwa S^m und 170 nm einen brauchbaren Transmissionsgrad aufweisen. Abbildungssysteme Bei spektrometrischen Messungen soll häufig nur Strahlung aus einem bestimmten Bereich (Flächenelement, Volumenelement) der Lichtquelle untersucht werden. Dazu wird die Lichtquelle auf die Eintrittsblende abgebildet (Fig. 6.78).

4 Optische Spektrometrie Durch Abbildungsverhältnis, Apertur A und Eintrittsblendenfläche sind die Bereiche definiert, aus denen Strahlung in das Spektrometer fällt. Maximalen Strahlungsfluß und optimale Auflösung erreicht man bei Prismen- und Gitterspektrometern durch verkleinerte Abbildung des zu untersuchenden Bereichs auf die Größe der Spaltfläche bei voller Ausleuchtung der Spektrometerapertur. Nahezu zylindrische Bereiche entlang der Beobachtungsachse lassen sich abbilden, wenn der Durchmesser a der Apertur A und die Ausdehnung 4 der Lichtquelle klein sind gegen den Abstand z (z. B. 1:100, lz<z). Absorptionszellen, Interferenzfilter, Polarisatoren werden im parallelen Strahlengang zwischen Lichtquelle und Spektrometer angeordnet. Linsensysteme haben den Vorzug, daß sie auf einer geometrischen Achse angeordnet werden, bringen jedoch (auch bei Achromaten) chormatische Fehler ein. Spiegeloptiken erfordern zwischen ein- und ausfallendem Strahlengang gewisse Winkel, die zur Reduzierung von Abbildungsfehlern minimal sein sollten (z.b. <10 ). Bei schwachen Lichtquellen (z.b. bei Lumineszenz- Messungen) eignen sich als sehr lichtstarke Sammeloptiken sogenannte Cassegrain- Systeme (Bergmann-Schaefer (1974)), die kommerziell erhältlich sind Prismen- und Gitterspektrometer Den schematischen Aufbau eines Prismenspektrometers (mit Linsenoptik) und eines Gitterspektrometers (mit Spiegeloptik) zeigt Fig Die Strahlungsquelle Q wird auf den Eintrittspalt ES abgebildet. Vom Kollimator KL bzw. KM fällt parallele Strahlung auf Prisma P bzw. Gitter G, an denen Strahlung verschiedener Wellenlängen unterschiedlich abgelenkt bzw. gebeugt wird. Die fokussierende Optik FL bzw. EM entwirft ein Spektrum Sp, bei dem Bilder des Eintrittspaltes für verschiedene Wellenlängen entsprechend der linearen Dispersion dx/da an verschiedenen Orten erzeugt werden. FC Fig a) Prismenspektrometer mit Linsenoptik und photographischer Registrierung des Spektrums b) Gitterspektrometer mit Spiegeloptik und photoelektrischer Registrierung hinter dem Austrittspalt AS Registrierung der Spektren Bei photographischer Registrierung des Spektrums (Fig. 6.79a, Prismenspektrometer mit Photoplatte Ph) spricht man von Spektrographen, bei photoelektrischer Messung des Strahlungsflusses mittels Empfänger E hinter dem Austrittspalt AS (Fig. 6.79b, Gitterspektrometer) von Monochromatoren. Diese Klassifizierung verliert an Bedeutung, da viele Spektrometer beide Arten der Registrierung gestatten und heute auch eine vielkanalige photoelektrische Registrierung von Spektren mit Photodiodenzeilen, CCD-Zeilen oder CCD-Kameras möglich ist (s ). Der erfaßte Wellenlängenbereich wird bei photographischer bzw. vielkanaliger photoelektrischer Registrierung durch Einstellung eines bestimmten Winkels von Prisma bzw. Gitter

5 6.3.1 Grundlagen 245 zur Einfallsrichtung festgelegt. Bei photoelektrischer Registrierung hinter dem Austrittspalt kann das Spektrum durch Drehen von Prisma oder Gitter über den Austrittspalt verfahren werden. Eine zuverlässigere Abtastung des Spektrums, wie sie in hochauflösenden Spektrometern erforderlich ist, erreicht man, indem Austrittspalt und Empfänger mittels eines schrittmotorgetriebenen Verschiebetisches das Spektrum abfahren. Zunächst werden Spektrometereigenschaften diskutiert, die von optisch-geometrischen Größen abhängen. Dabei bezeichnen /i und /2 Brennweiten von Kollimator und fokussierender Optik, B und H Breite und Höhe der begrenzenden Apertur und Ax den geometrischen Abstand in Dispersionsrichtung im Spektrum. Es wird vorausgesetzt, daß der Austrittspalt (Breite bi) gerade so breit ist wie das Bild des Eintrittspaltes (Eintrittsbreite A,), d. h. = Auflösungsvermögen und sinnvolle Spaltbreiten Bei monochromatischer Bestrahlung (Wellenlänge X) eines sehr engen Eintrittspaltes erhält man, bedingt durch Beugung an der begrenzenden Apertur der abbildenden Optik, am Ort des Spektrums ein Beugungsbild, welches das spektrale Auflösungsvermögen des Spektrometers begrenzt. Das zentrale Beugungsbild hat eine Fußpunktsbreite (Abstand der beiden ersten Minima) von AxB = 2-f2'X/B, und die Spaltbilder zweier um SA verschiedener Wellenlängen können nur dann getrennt werden, wenn 8 A ^ 0,5 Ax^ d A/dx ist. Daraus ergibt sich für das beugungsbegrenzte Auflösungsvermögen: R = X SA <8 da\ de f i (6-176) dx da Beliebig enge Spalte sind jedoch praxisfremd. Aus der Forderung, daß die beugungsbedingte Aufweitung der einfallenden Strahlung am Eintrittspalt nur zu mäßiger Uberstrahlung der Apertur führen soll, läßt sich eine kleinste sinnvolle Spaltbreite öl A-/i/Ä ableiten. Für überwiegend inkohärente Eintrittspaltbeleuchtung ist 1, für kohärente Beleuchtung gilt k'^l, (van Gittert (1930)). Mit größeren Spaltbreiten sinkt die Auflösung, und für große Spaltbreiten gilt /? = (A/Z>2)'dx/dA. Wegen der für hohe Auflösung erforderlichen engen Spalte bei Prismen- und Gitterspektrometern ist der geometrische Leitwert (nach Gl. (6.175)) nicht groß. Deshalb ist es wichtig, durch angepaßte Abbildung (s ) einen möglichst großen Strahlungsfluß zu erfassen. Bei Gitterspektrometern gibt es eine weitere Begrenzung der Auflösung durch das Gitter (s ). Ein Gitterspektrometer arbeitet daher beugungsbegrenzt und/oder gitterbegrenzt. Streustrahlung in Spektrometern stammt von Inhomogenitäten in Prismen, der Mikrorauhigkeit von Reflexionsgittern, Staub auf Linsen und Spiegeln sowie von unnützer Überstrahlung der Apertur und aus Bereichen des Spektrums, die nicht von der Messung erfaßt werden sollen. Streustrahlung, die in den Bereich des gemessenen Spektrums (Austrittspalt) fällt, führt entsprechend der spektralen Empfängerempfindlichkeit zu einem Falschsignal. Zur Streustrahlungsanalyse kann z. B. ein weiteres Spektrometer nachgeschaltet werden. Eine ungefähre Vorstellung über die Streustrahlung erhält man bei Einstrahlung von Laserlicht (auf Ausleuchtung ist zu achten), durch Messen des Streustrahlungsflusses <t>s für Spektrometereinstellungen A^^ALascr- Dabei sollte 10 ''0L sein (0^ Strahlungsfluß für A = ALascr)- Bei gegebener Bauart und angepaßter Ausleuchtung des Spektrometers kann die Streustrahlung reduziert werden durch Filter (z. B. vor dem Empfänger), Empfänger mit geeigneter spektraler Empfindlichkeit und

6 Optische Spektrometrie breitbandige Vorzerlegung. Sehr starke Streuhchtreduzierung wird in Doppelspektrometern (in einem Gerät zwei hintereinander geschaltete Spektrometer mit gleichen Gittern und gemeinsamem Zwischenspalt) erreicht, die allerdings justierempfindlich sind. Die Unterdrückung höherer Ordnungen muß bei Gitterspektrometern (s ) sichergestellt werden, z. B. durch geeignete Kantenfilter, Interferenzfilter oder durch die spektrale Empfindlichkeit des Empfängers. Echelle-Gitterspektrometer erfordern eine angepaßte Vorzerlegung mittels eines Spektrometers geringer Auflösung. Abbildungsfehler (s ) in Spektrometern führen zur Verschlechterung des Auflösungsvermögens. Sie nehmen mit dem geometrischen Leitwert (s ) zu, und zwar mit der Höhe der Spalte (Koma) und mit dem akzeptierten Raumwinkel (Aberration und Astigmatismus). Darüber hinaus zeigen Linsenoptiken chromatische Fehler. Durch asymmetrische Anordnungen (Shafer u.a. (1964)) lassen sich die geometrischen Abbildungsfehler minimieren Prismen und Gitter Fig Strahlengang durch ein Prisma 0,1 1 r-71 r Flinlglas üuarz (Fused Silica) "1 r Lilhiumfluorid (ÜF) FluOspol (CQF;) Prismen Für Spektrometer ist der symmetrische Strahlengang (a = ß) durch ein Prisma (Fig. 6.80) am besten geeignet, weil der Ablenkwinkel minimal ist, und es gilt die Beziehung. B + e I. e ms n = sin - /siny {o.ill) -zr- Sleinsalz (Na CD 1 r kaliumbromid I I I 0,1 0,2 0,5 1 2, X/ im- KBr) -1 r ,3 3 X/^m- 30 Fig a) Transmissionsbereiche verschiedener Materialien b) Dispersion dn/da verschiedener Prismenmaterialien

7 6.3.1 Grundlagen 247 mit Brechzahl rt = n(a), Prismenwinkel e und Ablenkwinkel 9. Für die Winkeldispersion ergibt sich daraus do ^. E = 2 sm dx 2 l-n^- sm' 2,'1/2 dn d/l (6.178) Nach Gl.(6.176) ist das Auflösungsvermögen B-d9/dA durch die Größe des Prismas (Breite B der nutzbaren Apertur) und die Winkeldispersion bestimmt. Üblich sind Prismenwinkel e= 60 (günstige Kombination von bzw. dbjdx und B). Fig zeigt Transmissionsbereiche und Dispersionskurven für gebräuchliche Materialien, Transmissionsgrade s. Fig Größte Dispersion tritt nahe der kurzwelligen Absorptionskante auf. Reflexionsgitter Die reflektierende Beschichtung der Gitter ist mit äquidistanten parallelen Furchen (Größenordnung 10^ pro mm) versehen. Die parallel einfallende Strahlung wird an den Furchen reflektiert und gebeugt, und die Teilstrahlen interferieren miteinander (Fig. 6.82a). Bei einem Einfallswinkel a ergibt sich konstruktive Interferenz für den Ausfallswinkel ß, wenn der Gangunterschied der reflektierten Anteile für benachbarte Furchen ein ganzzahliges Vielfaches der Wellenlänge A ist: «/(sin a ± sin y5) = ffj A (6.179) d ist der Furchenabstand, m die Ordnung (0. Ordnung entspricht der gemeinen Reflexion). Für a und ß auf der entgegengesetzten (gleichen) Seite der Gitternormalen GN ist das Vorzeichen in Gl. (6.179) negativ (positiv) zu nehmen, die zugehörigen Spektren werden als äußeres (inneres) Spektrum bezeichnet. Obere und untere Grenzwellenlänge der jeweiligen Spektren (Ordnung m) eines Gitterspektrometers sind durch Bauart (Bereiche für a und ß) und verwendetes Gitter (Furchenabstand) gegeben und lassen sich aus Gl. (6.179) bestimmen. 6'a*ß reflektierende Beschichtung Fig a) Reflexionsgitter; b) Blazewinkel ^ beim Reflexionsgitter; c) Echelle-Gitter Für den Einfallswinkel erhält man durch Differentiation von Gl. (6.179) für die Winkeldispersion de _dß _ m dx' d-cos ß sin a + sin X- cos ß (6.180) Die Winkeldispersion ist proportional zur Ordnung und hängt nur von Ein- und Ausfallswinkel ab. Aus Berechnungen der Verteilung des Strahlungsflusses am Ort des Spektrums bei monochromatischer Einstrahlung folgt, daß das theoretische Auflösungsvermögen eines

8 Optische Spektrometrie Gitters durch R = m-n gegeben ist {N Gesamtzahl der Furchen). Häufig wird die Gitterkonstante G=\/d benutzt, dann ist N=G-B mit B als Breite der gefurchten Gitterfläche. Der Wirkungsgrad fv {A) (auch Efficiency) eines Gitters gibt an, welcher Bruchteil der insgesamt reflektierten Strahlung in eine bestimmte Ordnung m abgestrahlt wird. Den größten Wirkungsgrad für eine bestimmte Ordnung m und Wellenlänge A erhält man, wenn ein- und ausfallende Strahlung auf der Furchenfläche dem Reflexionsgesetz genügen (Fig. 6.82b). Der Winkel <t> heißt Blazewinkel und ist durch 0 = {a + ß)/2 bestimmt (Vorzeichen wie zu Gl. (6.179)ff.). Ist ein Gitter z. B. für die 1. Ordnung und 600 nm geblazed, so ist es auch für alle höheren Ordnungen m und entsprechende Wellenlängen {m = 2, 300 nm;ot = 3, 200 nm usw.) geblazed. Echelle-Gitter (Fig c) haben große Blazewinkel, kleine Gitterkonstante und arbeiten in hohen Ordnungen (z. B. m= 100). Das gitterbedingte Auflösungsvermögen ist sehr groß, so daß ihr Auflösungsvermögen meist beugungsbegrenzt ist (Gl. (6.176)). Für unterschiedliche Ordnungen liegen viele Wellenlängen in der Nähe von Blazewellenlängen Aß, so daß mit einem Gitter ein großer Wellenlängenbereich sehr effektiv erfaßt werden kann. Allerdings ist der freie Spektralbereich klein (Gl.(6.173)); so ist z.b. AA = 8 nm für,00 = 800 nm. Konkavgitter haben parallele Furchen auf einer sphärischen Fläche, so daß Dispersion und Abbildung mit einem einzigen optischen Element erreicht werden. Konkavgitter werden vor allem im VUV (A < 200 nm) eingesetzt, um die Transmission im VUV durch Reduzierung der optischen Komponenten - Konkavgitter statt zwei Spiegeln plus Plangitter - zu verbessern. Eintrittspalt ES, Spektrum (Austrittspalt AS, Photoplatte P) und der Scheitelpunkt des Konkavgitters (Radius r) liegen auf dem sogenannten Rowland-Kreis mit dem Durchmesser D = r (Fig. 6.83). Gl. (6.179) und (6.180) gelten auch für Konkavgitter. Mit dx = r-dß ergibt sich für die lineare Dispersion aus Gl.(6.180): dx/dx = m-r/{dcosß). normal incidence gracing incidence ES, Konkavgitter Ir'DI Rolandkreis Fig Konkavgitter-Spektrometer für annähernd senkrechten Einfall (Index 1) und streifenden Einfall (Index 2) Bei annähernd senkrechtem Einfall (normal incidence) sind die Abbildungsfehler klein und beeinträchtigen das Auflösungsvermögen nur unwesentlich. Für A < 30 nm geht man wegen sonst sehr geringer Reflexionsgrade zu streifendem Einfall (grazing incidence) und damit zur Totalreflexion über. Bei sphärischen Konkavgittern führt dies zu großen Abbildungsfehlern, die das Auflösungsvermögen stark beeinträchtigen. Herstellung von Gittern Zur Bestückung von Gitterspektrometern stehen normalerweise geritzte Replica-Gitter oder holographische Gitter zur Auswahl. Geritzte Gitter zeigen durch definierte Furchenform einen höheren Gitterwirkungsgrad für den Blazewinkel, durch periodische Teilungs-

9 6.3.1 Grundlagen 249 fehler können jedoch Gittergeister" auftreten. Holographische Gitter werden durch das parallele Interferenzstreifensystem zweier kohärenter monochromatischer ebener Wellenfronten auf Photosubstrat erzeugt, entwickelt und verspiegelt. Sie sind frei von Gittergeistern", ihr Gitterwirkungsgrad kann für vorgegebenes X optimiert werden. Die Mikrorauhigkeit und damit das Streulicht sind bei holographischen Gittern geringer als bei geritzten Gittern Interferenz-Spektrometer hoher Ordnung Durch Verstimmen des optischen Weges in Interferometern mit großem Gangunterschied lassen sich sehr hochauflösende Interferenzspektrometer realisieren (Auflösungsvermögen über 10'). Ebenes Fabry-Perot-Spektrometer (FP). Den Aufbau eines FP zeigt Fig Ein Kollimator erzeugt parallele Strahlung, die - abhängig vom Ort des Flächenelements der Lichtquelle Q - das FP in unterschiedlichen Richtungen durchsetzt. Die teildurchlässig verspiegelten, planparallelen Innenseiten (Transmissionsgrad t==0,1, Reflexionsgrad fj = 0,9) des FP erzeugen durch Vielflachreflexion eine Reihe von austretenden Teilstrahlen mit großen Gangunterschied. Ihre Überlagerung in der Ebene E ergibt ein konzentrisches Interferenzstreifensystem, das durch die Airy-Formeln (s , Gl. (6.262)) beschrieben wird. Fig Ebenes Fabry-Perot-Spektrometer in einem druckdichten Gehäuse. Unterer Strahlengang für nahezu punktförmige Lichtquelle und Druck-Durchstimmung des Spektrums. Ganz rechts das Ringsystem in der Ebene E, wie es bei ausgedehnten Lichtquellen (Q) - oberer Strahlengang - auftritt Bei senkrechter Durchstrahlung (unterer Strahlengang in Fig. 6.84) sind Ordnung m und durchgelassene Wellenlänge X durch m-l-n- d/x verknüpft («ist der Brechungsindex des Gases im FP). Der freie Spektralbereich A A ergibt sich nach Gl. (6.173) mit m > 1 zu ^X = X/m = X^/{2nd). Mit n=l gilt z.b. m = 2-W und AA = 2,5pm für d=50mm, A = 500nm. Das Verhältnis von freiem Spektralbereich AX zur Halbwertsbreite 5/1 der Transmissionskurven nennt man Finesse F*. Diese kann für ein ideales FP bei vernachlässigbarer Absorption in den teilverspiegelten Flächen durch den Reflexionsgrad g ausgedrückt werden: F* = ^XßX = n^/e/(\ -p) (6.181) Das reflexionsbegrenzte Auflösungsvermögen ist damit R = Ä/8X = F* X/AÄ = F* 2nd/X. Das tatsächlich erreichte Auflösungsvermögen wird jedoch durch Oberflächenunebenheiten und Dejustierung stark und in geringem Maße durch Beugung begrenzt (Bousquet (1971)). Bei Untersuchung von Lichtquellen kleiner Fläche ist das Ringsystem wenig ausgeprägt. Das Spektrum wird dann über Variation des optischen Weges s = 2nd durchgestimmt, indem entweder der Plattenabstand d mechanisch oder piezoelektrisch geändert wird (A^ ~ A (/), oder der Brechungsindex n über den Druck des Füllgases (z. B. Luft oder Gase mit größerem Brechungsindex, z. B. Methan, Frigen usw.) variiert wird (As~ An- Ap).

10 Optische Spektrometrie Das durchlaufende Spektrum wird dabei hinter einer Lochblende F2 auf der Achse des FP mit einem Empfänger aufgenommen (unterer Strahlengang in Fig. 6.84). Bei Lichtquellen größerer Ausdehnung kann mit divergenter Strahlung gearbeitet werden. Für monochromatische Strahlung (A), die das FP unter dem Winkel 0 (bezogen auf die Achse des FP) durchsetzt (oberer Strahlengang in Fig. 6.84) ergibt sich maximale Transmission bei Winkeln 9p und Ordnungen mp = mo p, für die X-mp = 2n-d-cosOp, p = 0,1,2,... (6.182) gilt. 00 ist der kleinste Winkel 6p, Wq die zugehörige Ordnung. Für n = «mn ist 9 gleich dem äußeren Ein- und Ausfallwinkel a. Mit Xo für 9o = 0 ergibt sich aus Gl. (6.182) die Winkeldispersion zu J0/dA = - 2nd sin 0 ' =( Ao'sinö) '. Sie wird für kleine 9 mo sehr groß und ist unabhängig von den Abmessungen des FP. Die Abbildung mit der Brennweite / in die Ebene E erzeugt konzentrische Interferenzstreifen mit Durchmessern Dp, und für die radiale Dispersion gilt dr/da = -^//(Ao-sin0). Für kleine 9p gilt cos 6p = 1 Z)p/(8/^). Ist eine Wellenlänge A bis auf einen freien Spektralbereich bekannt, so kann A aus der Messung der Ringdurchmesser genau bestimmt werden: X = ep<\ (6.183) Unterscheiden sich zwei Wellenlängen Ai, X2 um weniger als den freien Spektralbereich AA = A//7?(A = Ai'=A2), so kann ihre Differenz 5A12 aus der Differenz 5Z) 2 der zu Ai und A2 zugehörigen Ringdurchmesser (für gleiche Ordnung nip) nach 5A 2 =-AA 5Z)i2/A ) (6.184) bestimmt werden mit AD als Differenz der Ringdurchmesser AD = Dp-Dp,] bzw. A2. zu Ai Sollen mehrere Linien gleichzeitig vermessen werden, die sich über mehr als den freien Spektralbereich A A erstrecken, so ist die Vor- oder Nachschaltung eines zweiten Spektrometers erforderlich, dessen Bandbreite eine saubere Trennung der Linien ermöglicht. Steht ein Spektrometer mit guten Abbildungseigenschaften zur Verfügung, so kann mittels CCD-Kamera bzw. bei photographischer Registrierung ein großer Wellenlängenbereich mit der Auflösung des FP auf einmal erfaßt werden. Dazu wird das Ringsystem auf den Eintrittspalt ES des zweiten Spektrometers abgebildet (Fig ganz rechts). Die Zerlegung dieses Ausschnittes ergibt dann am Ort des Spektrums eine Trennung der Linien entsprechend der Spektrometerdispersion und senkrecht dazu für jede Linie den Ausschnitt des Ringstreifensystems des FP. Beim FP ist die Winkeldispersion (s.o. nach Gl.(6.182)) bei festem Brechungsindex n unabhängig vom Plattenabstand. Dadurch ist es möglich, durch Hintereinanderschalten zweier angepaßter FP (z. B. Plattenabstand dx = 10^2) den freien Spektralbereich zu di mit der Auflösung von di zu kombinieren. Der geometrische Leitwert (s ) (auch Etendu genannt) ist wegen der großen nutzbaren Ein- und Austrittsöffnungen beim FP sehr viel größer als bei Prismen- und Gitterspektrometern. Dieser Vorteil geht jedoch verloren, wenn eine Vorzerlegung mit Prismen- oder Gitterspektrometer erforderlich ist.

11 6.3.1 Grundlagen 251 Konfokales Fabry-Perot-Spektrometer Noch größere Auflösung und geometrischer Leitwert (s ) als beim ebenen FP lassen sich mit einer konfokalen Anordnung erreichen. Ein konfokales Fabry-Perot (KFP) besteht aus zwei gleichen sphärischen Spiegeln, deren Scheitelpunkabstand d gleich dem Krümmungsradius r ist (Fig. 6.85). Die sphärische Aberration bewirkt zwischen den direkt durchgehenden Strahlen und den durch vier Reflexionen verzögerten Strahlen einen geringen Strahlversatz. Diese Strahlen schneiden sich aber alle in der dadurch ausgezeichneten Mittelebene P des KFP. Durch Abbildung (1:1 in Fig. 6.85) von P mittels einer Linse L erzeugt man das Interferenzringsystem (Durchmesser Dp) des KFP in der Ebene E. Maximale Transmission für achsennahe Strahlen {a < 1, ergibt sich für Ordnungen Durchmesser Dp, Wellenlänge X und Brechungsindex n des Gases im KFP für (6.185) Aus Gl. (6.185) lassen sich ähnlich wie beim FP die Durchmesser der Interferenzringe und die radiale Dispersion in der Ebene E bestimmen. E Fig Konfokales Fabry-Perot-Spektrometer Ein vereinfachter Vergleich zwischen FP (Gl. (6.182) mit cos = 1) und KFP (Gl. (6.185) nur mit dem ersten Term in der Klammer) zeigt, daß bei gleichem d und n die Ordnung beim KFP doppelt so groß ist wie beim FP. Bei zusätzlich gleicher Verspiegelung ergibt sich für ein KFP damit ein mehr als doppelt so großes Auflösungsvermögen wie beim FP, weil sich beim KFP Dejustierungen deutlich schwächer auswirken als beim FP und somit die reflexionsbegrenzte Finesse nach Gl. (6.181) in etwa erreichbar ist. Außerdem nimmt das Auflösungsvermögen des KFP mit dem geometrischen Leitwert zu, während es beim FP kleiner wird. Etalons sind Fest-Fabry-Perots aus planparallelen Glas-, Quarzplatten usw., deren Flächen wie beim FP verspiegelt sind. Mit a als Einfallswinkel für eine ebene Welle erhält man Transmission für Die Dicke d und der Brechungsindex n des Materials müssen bekannt sein Spektrometrische Hilfsmittel (6.186) Abschließend wird noch kurz auf optische Filter, Empfänger und Methoden zeitaufgelöster Spektrometrie eingegangen; zu Abbildungsoptiken s Zur Orientierung über den Markt spektrometrischer Hilfsmittel ist der jährlich erscheinende Laser Focus Buyers Guide, 1001 Watertown St., Newton, MA 02165, USA sowie das Produktverzeichnis in den Physikalischen Blättern der Deutschen Physikalischen Gesellschaft zu empfehlen. Optische Filter dienen zur Selektion von Spektral- oder Laserlinien sowie ausgesuchter Bereiche aus kontinuierlichen Spektren, zur Unterdrückung von höheren Ordnungen und Streulicht in

12 Optische Spektrometrie Spektrometern usw. Auf der Basis geeignet absorbierender Substrate (Farbgläser bzw. im IR Halbleiter) in Verbindung mit hochentwickelter Dünnfilmtechnologie (Interferenzfilter) werden Filter in großer Auswahl für Wellenlängen zwischen 200 nm und 20 )im hergestellt. Transmissionskurven einiger Filtertypen sind in Fig dargestellt. 1- O.'i- 0,1- f 0,01,- p 0,01-0,001, - 0G530 4G11 0, , ^/nm ^ b) A ü) V (, ^/nm' Fig Beispiele von Transmissionskurven x(x) verschiedener Filter: Farbglas UGIl, Kantenfilter OG 530. Breitbandinterferenzfilter a) und Mehrkavitätenfilter b) Die wichtigsten Kenngrößen von Filtern sind: a) der maximale Transmissionsgrad; b) das Sperrverhältnis: maximaler Transmissionsgrad zu minimalem Transmissionsgrad; c) der Sperrbereich zu kürzeren und oder längeren Wellenlängen; d) die Wellenlänge der Flanken und deren Steilheit bei Kurz- und Langpaßfiltern; e) die Zentralwellenlänge Aq, Bandbreite (gewöhnlich in % von Xo angegeben) und Flankensteilheit bei Bandfiltern. Wegen der normalerweise geringen optischen Qualität der Filter (beachtliche Keilfehler und Oberflächengüte schlechter als A), führt ein Filterwechsel im Strahlengang zu Änderungen der Strahlrichtung (optischen Achse) und zu Störungen der Wellenfront. Filter sollten deswegen nur hinter dem Austrittsspalt der Spektrometer und direkt vor dem Empfänger eingesetzt werden. Farbgläser (Hersteller z. B. Schott & Gen., Mainz) dienen als Breitbandfilter und Langpaßfilter (Kanten zwischen 250 nm und 800 nm) mit Sperrverhältnis >10^ zum Kurzwelligen. Halbleiterfilter dienen als Langpaßfilter für das IR (Kanten zwischen 0,5 um und 12 um). Zu Gelantinefiltern und Farbstofflösungen als Filter s. Kortüm (1962). Interferenzfilter sind im wesentlichen Fabry-Perot-Etalons (s ), ausgelegt für niedrigste Ordnungen m (typisch m = 1 oder 2), d. h. mit kleinem optischem Weg n d. Bei senkrechtem Einfall wird nur Strahlung aus schmalen Wellenlängenbereichen um Xo = 2- n - d/m durchgelassen. Im Verbund mit zusätzlichen Absorptionsschichten wird die Blockung unerwünschter Wellenlängen sowie ein besseres Sperrverhältnis erreicht. Flankensteilheit, Bandbreite (zwischen 10% und 1 %c) und maximaler Transmissionsgrad (ca. 10% bis 80%) ergeben sich aus Reflexion und Absorption der Reflexionsschichten des Etalons (Metall oder nichtabsorbierende dielektrische Vielfachschichten). Durch aufeinanderfolgendes Aufdampfen mehrerer gleicher Etalons (Mehrkavitätenfilter) werden Flankensteilheit und Sperrverhältnis wesentlich verbessert. Interferenzfilter sind für senkrechten Einfall in parallelem Strahlengang vorgesehen. Neigen der Filter um üblicherweise kleine Winkel führt zu kürzeren Durchlaßwellenlängen (Gl. (6.186) für festes m), und bei divergenter Strahlung verschlechtert sich die Bandbreite zu kürzeren Wellenlängen. Polarisationsfilter (Lyot-Filter s. z. B. Evans (1949)) beruhen auf den Interferenzerscheinungen, die bei Anordnung eines doppelbrechenden Kristalls zwischen zwei parallel gestellten Linearpolarisatoren auftreten. Je nach Differenz der Brechungsindizes An = no-«a erfährt die Polarisation im Kristall (Länge d) eine Drehung um y = nan-d/x. Bedingt durch den zweiten Linearpolarisator ergibt sich ein Transmissionsgrad T(/l) = ToCos^y. Aus der Anordnung mehrerer

13 6.3.1 Grundlagen 253 Filter abgestufter Länge (z.b. d, 3d, 9d) resultiert eine Ausdehnung des Sperrbereichs (freier Spektralbereich) und eine Einengung der Bandbreite. Lyot-Filter zeichnen sich durch hohen Transmissionsgrad und enge Bandbreite aus. Bei Verwendung elektrooptischer Kristalle läßt sich die Transmissionswellenlänge durch Anlegen äußerer elektrischer Felder verstimmen. Durch Totalreflexion kann scharfe Trennung von Strahlung in kurz-und langwelligen Bereichen (A>Ao und A<Ao) erreicht werden. Für den Grenzwinkel «o bei Übergang aus einem dichteren Medium mit n(a) in ein dünneres (z.b. Luft, mit «l) gilt sinao = ni_/n(a). Da Prozentanteile der langwelligen Strahlung ebenfalls in Richtung der totalreflektierten kurzwelligen Strahlung fallen, erfordert ein besseres Sperren der langwelligen Strahlung mehrfache Totalreflexion. Da die Herstellung vondielektrischenreflexionsschichtenfür übliche Laserwellenlängen im UV immer noch besser beherrscht wird als die Filterherstellung, können durch Mehrfachreflexionen an Spiegeln für Laserstrahlung UV-Filter mit sehr guter Transmission bei ca. 20 nm Bandbreite realisiert werden. Empfänger Vom IR bis ins extreme VUV können Strahlungsempfänger eingesetzt werden, in denen durch Absorption von Photonen Elektronen in oder aus einem Material freigesetzt werden: Innerer Photoeffekt (Halbleiterphotodioden) oder äußerer Photoeffekt (Vakuumdioden und Photomultiplier). Durch geeignete elektrische Beschaltung werden die freigesetzten Ladungsträger zu einer Anode abgezogen, der Anodenstrom ist ein Maß für den einfallenden Strahlungsfluß. Auf thermische Empfänger (z. B. Bolometer, pyroelektrische Empfänger) wird nicht eingegangen. Ein Strahlungsempfänger ist charakterisiert durch: - absolute spektrale Empfindlichkeit oder Quantenausbeute (s ) - Signal-Rauschverhältnis (üblicherweise angegeben als Strahlungsfluß, der einen dem Rauschen entsprechenden Strom erzeugt) - Linearitätsbereich, in dem der Photostrom linear zum Strahlungsfluß ist, und maximaler Photostrom (Strahlungsfluß) - Stabilität der genannten Eigenschaften - Zeitverhalten (minimale Anstiegszeit) bei Beaufschlagung mit Strahlungspulsen. Halbleiterphotodioden können durch geeignete Dotierung mit sehr kleinen Energielücken zum Leitungsband erstellt werden, so daß ihre Empfindlichkeit bis ins ferne IR reicht. Im Photoamperic-Betrieb ohne Vorspannung und niederohmige Photostrommessung mit einem Operationsverstärker erreicht man gute Linearität und geringes Rauschen bei langsamem Zeitverhalten. Durch Vorspannung erreicht man schnelles Zeitverhalten bei guter Linearität, jedoch ein durch Leckstrom bedingtes höheres Rauschen. Bei Vakuumdioden und Photomultiplern ist die langwellige Grenze der Empfindlichkeit (bestenfalls 1,1 um) durch die Austrittsarbeit des Photokathodenmaterials bestimmt. Durch eine angelegte Spannung werden die freigesetzten Elektronen abgezogen (Vakuumdioden) und in Photomultiplern durch vielstufige Dynodensysteme mittels Sekundärelektronenerzeugung verstärkt (bis zu lo""). Rauschen der Empfänger (Dunkelstrom) wird durch thermisch freigesetzte Elektronen sowie bei langwellig empfindlichen Empfängern durch thermische Strahlung der Umgebung (Maximum bei Raumtepmperatur bei etwa 10 um) erzeugt. Das Rauschen läßt sich durch Kühlung (thermoelektrisch, Trockeneis, Flüssigstickstoff - je langwelliger die Strahlung, um so niedriger die erforderliche Temperatur) sowie in der nachgeschalteten Elektronik durch phasenempfindliche Verstärkung (Lock-in-Technik) beachtlich reduzieren. Durch Photonenzählung ist höchste Rauschunterdrückung mit Photomultipliern möglich, die so beschaltet sind, daß einzelne Strompulse, die durch Auflösung eines Photoelektrons erzeugt werden, in einer Diskriminatorelektronik erkannt und gezählt werden können (maximale Zählraten lo'/s bei einigen Fehlpulsen pro Sekunde). Speziell für Photonenzählung sind Kanalvervielfacher (Channeltrons) und Photomultiplier mit Mikrokanalplatten als Verstärker geeignet.

14 Optische Spektrometrie Das Zeitverhalten der Empfänger ist wesenthch durch Vorspannung (Halbleiterphotodioden) bzw. Beschleunigungsspannung (Photodioden, Photomultiplier), Kapazität der Anode und niederohmigen Anschluß bestimmt. Es lassen sich Anstiegszeiten im ns-bereich und darunter erreichen. Ausführliche Informationen über Eigenschaften und Beschaltungen von photoelektrischen Empfängern sind bei den Herstellern erhältlich (z. B. EMI, Ruislip, England, Hamamatsu Photonics). Vielkanalige spektrale photoelektrische Erfassung ist mit Photodioden- und CCD-Zeilen möglich, Resistive Anoden-Systeme können wegen der CCD-Zeilen als überholt betrachtet werden. Photodioden- bzw. CCD-Zeilen bestehen aus einer Linear-Anordnung von kleinen Strahlungsempfängern (Detektorelementen) und integrierter Schaltelektronik auf einer Fläche, bei einer zweidimensionalen Anordnung spricht man z. B. von einer CCD-Kamera. Mit ihnen kann die Strahlungsverteilung in der Ebene des Spektrums mit einer Ortsauflösung entsprechend der Größe der Detektorelemente gemessen werden, typische Abmessungen sind 10 um bis 25 um im Quadrat und bei linearen Zeilen auch bis 3 mm Höhe bei 10 ^m bis 25 um Breite. Auf die unterschiedlichen Funktionsweisen der Photodioden- und CCD-Zeilen wird hier nicht weiter eingegangen, wohl aber auf ihre Einsatzmöglichkeiten. Silizium-Photodioden-Zeilen sind besonders geeignet für den Spektralbereich zwischen 300 nm und 1 (im und haben eine typische untere Nachweisempfindlichkeit von etwa 5000 (gekühlt bis 2000) Photonen pro Sekunde und Detektorelement. In Verbindung mit vorgeschaltetem Bildverstärker kann der Einsatzbereich von Photodioden-Zeilen wesentlich erweitert werden, möglich sind dann: die Registrierung schwacher Spektren, die Ausdehnung der spektralen Empfindlichkeit von 110 nm bis 1 um und die Kurzzeitmessung von Spektren mit Zeitauflösung bis zu 5 Nanosekunden bei Repetitionsraten bis khz. Bildverstärker sind Systeme, in denen Photoelektronen nach Durchlaufen einer Abbildungsoptik und Beschleunigungsspannung auf einen Leuchtschirm treffen und zu Sekundär-Emission von Licht führen. Bei Nahfokus-Systemen beträgt der Abstand zwischen planer Photokathode und Leuchtschirm nur 2 bis 3 mm bei einer Spannung von 10 bis 20 kv. Die hohe Spannung führt zu einer verbesserten Kathodenempfindlichkeit bis etwa 1 um (Feldeffektverstärkung des Photoeffektes) und jedes Photoelektron wird von der Photokathode geradlinig auf den Phosphor hin beschleunigt. Die Intensitätsverteilung der Sekundär-Emission auf der Ausgangsseite (bei üblichen Phosphormaterialien im Bereich um 500 nm) entspricht somit einer verstärkten Intensitätsverteilung auf der Photokathode bzw. Eingangsseite. Typisch sind Lichtverstärkungen um den Faktor 100. Mit einer Mikrokanalplatte zwischen Photokathode und Leuchtschirm können bereits Verstärkungen bis lo"* erreicht werden. Durch schnelles Schalten der Kathodenspannung kann ein Bildverstärker kurzzeitig aktiviert werden, 5 ns sind erreichbar. Mit Photokathoden auf MgFj- Eintrittsfenstern reicht die spektrale Empfindlichkeit der Bildverstärker von llonm bis 1 ^im. Aufwendigere Bildverstärkertechniken werden hier nicht diskutiert. Glasfaseroptiken sind besonders zur Kopplung von Bildverstärkern und Photodioden-Zeilen geeignet wenn diese auf der Aus- bzw. Eintrittsseite mit Glasfaserfenstern versehen sind. Galsfaserblöcke aus parallel laufenden Glasfasern von etwa 10 jjm Durchmesser, ermöglichen eine Lichtführung von der Eintrittsseite zur Austrittsseite und somit die Weitergabe örtlicher Lichtverteilungen. Zwecks Vermeidung von Verlusten werden Lichtleiterblöcke zur Brechungsindexanpassung z. B. mit Silikonöl kontaktiert, dabei sollte der Abstand zwischen den Stirnflächen der Glasfaserblöcke nicht mehr als zwei um betragen. Komplette Systeme aus Bildverstärkern, Glasfaseroptik, Photodioden-Zeile und nachgeschalteter Elektronik erreichen durchaus eine Ortsauflösung von etwa zwei Detektorelementen, d. h. eine punktförmige Beleuchtung der Photokathode erzeugt ein Bild mit einer Halbwertsbreite von zwei Detektorelementen. CCD-Zeilen/Kameras (Charge-Coupled Devices) zeichnen sich aus durch eine hohe Quantenausbeute und gute Vakuum-UV- und UV-Empfindlichkeit, viele Typen sind durchgehend von 0,1 nm bis 1 ^m verwendbar. Wegen ihres geringen Dunkelstroms, der durch Kühlung fast gänzlich eliminiert werden kann, zeigen CCDs ein exzellentes Signal-Rausch-Verhältnis und der Dynamik-

15 6.3.2 Fourier-Spektrometrie 255 bereich geht über mehr als 5 Größenordnungen. Die Ausnutzung all dieser Qualitäten setzt aber den Einsatz bester Ausleseelektroniken und Analog-Digitalwandler voraus. Mit Photoplatten bzw. Filmen ist eine einfache Registrierung von Spektren bis maximal 700 nm möglich. Durch die integrierende Funktion der photoempfindlichen Schicht können bei langen Meßzeiten auch schwache Spektren erfaßt werden. Die quantitative Auswertung der Platten (Photometrie) ist aufwendig, da die Schwärzungskurve (Schwärzung der Platte als Funktion des eingefallenen spektralen Strahlungsflusses) bekannt sein und eingerechnet werden muß. Wegen der Schwärzungskurven lassen sich Variationen des spektralen Strahlungsflusses nur über etwa 2 Dekaden mit Prozent-Genauigkeit messen. Zur Übersicht über Eigenschaften von Platten und Filmen (Spektralbereich, Empfindlichkeit, Auflösung usw.) siehe Informationen der Fa. Kodak. Die Kurzzeitregistrierung von Spektren ist außer mit vielkanaliger photoelektrischer Erfassung (s. o.) und photographischer Registrierung auch mit Spektrometern möglich, die es gestatten, einen Bereich des Spektrums in kurzer Zeit über den Austrittspalt zu fahren und photoelektrisch zu registrieren. Ziel solch schnell registrierender Spektrometer ist es, Spektren von Kurzzeitlichtquellen in solchen Zeiträumen aufzunehmen, in denen sich die Emission der Lichtquelle nur schwach ändert. Bei sich wiederholender Kurzzeitregistrierung kann die zeitliche Entwicklung der Emission einer Lichtquelle gemessen werden. Mit rotierenden Gittern und Prismen ist es möglich, große Spektralbereiche schnell über den Austrittspalt zu fahren. Bei z.b Umdrehungen pro Minute und einem 1-m-Gitter- Spektrometer mit einer linearen Dispersion von 1 mm/nm kann schon ein Spektralbereich von ca. 310 nm in einer ms (bzw. 0,3 nm in einer ^s) mit einer Repetitionsrate von 50 Hz erfaßt werden. Mit einem 60 -Prisma anstelle eines Gitters verdreifacht sich die Repetitionsrate. Repetitionsraten bis zu MHz bei Beschränkung auf kleine Spektralereiche (AA<lnm in is) lassen sich mit piezoelektrisch getriebenen Fabry-Perot-Spektrometern (Greig u. a. (1968)) erreichen Fourier-Spektrometrie (W. Richter) Die Fourier-Spektrometrie (FS) ist eine auf der Zweistrahlinterferometrie beruhende spektrometrische Methode, die besonders für die Breitband-Spektralanalyse von Strahlung geringer Leistung mit hoher spektraler Auflösung im Infrarotbereich (IR) geeignet ist. Das Spektrum wird indirekt durch Fourier-Transformation des Interferogramms der zu analysierenden Strahlung erhalten. Das Meßverfahren ist bezüglich Signal/Rausch-Verhältnis (und damit auch bezüglich Meßzeit) den dispersiven Einkanalmeßmethoden (Monochromatoren) wegen des Multiplexprinzips überlegen (Fellgett(1958)): Bei der Messung des Interferogramms werden alle spektralen Komponenten während der gesamten Meßzeit gleichzeitig beobachtet. Damit erhöht sich das Signal/Rausch-Verhältnis (S/R) im Idealfall um den Faktor \/N gegenüber der sequentiellen Messung von N spektralen Komponenten (oder die Meßzeit verringert sich auf l/a^ bei gleichem S/R). Dieser Vorteil ist nur im IR reahsierbar, wo das Rauschen hauptsächlich vom Detektor bestimmt wird. Der um den Faktor 2nf/l höhere geometrische Leitwert ist ein unabhängig vom Spektralbereich auch gegenüber dispersiven Vielkanal-Spektrometern vorhandener Vorteil (/ Spaltlänge, / Kollimatorbrennweite eines dispersiven Spektrometers mit gleichem spektralen Auflösungsvermögen und gleichem Kollimatordurchmesser). Der hieraus resultierende S/R-Vorteil ist wegen des in der Regel höheren Transmissionsgrades dispersiver Spektrometer allerdings geringer. Der für die Messung des Interferogramms notwendige monomodige Laser (meist He-Ne) sichert eine hohe Wellenlängen-(Wellenzahl, Frequenz)-Genauigkeit im gesamten Spektralbereich.

16 Optische Spektrometrie Die FS wurde ursprünglich für spezielle Meßaufgaben wie z. B. die Messung von Spektren lichtschwacher astronomischer Objekte entwickelt. Heute wird sie außerdem in großem Umfang in chemisch-analytischen Laboratorien eingesetzt und hat dort die analytischen Möglichkeiten erheblich erweitert. Diese Verwendung hat auch für die große Verbreitung der FS gesorgt (Markt für kommerzielle Geräte). Hochauflösende IR- Spektrometrie in der Festkörperphysik und Molekülphysik sowie IR-Reflexionsspektrometrie mit integrierenden Kugeln sind weitere Beispiele für Anwendungsgebiete, in denen die Überlegenheit der FS zur Geltung kommt. In zunehmendem Maße wird die FS auch im sichtbaren und ultravioletten Spektralbereich eingesetzt. Hier geht der Multiplexvorteil verloren (Lichtquellenrauschen dominiert wegen höherer Detektorempfindlichkeit); der Leitwertvorteil bleibt jedoch erhalten. Literatur zu den Grundlagen der FS: Gebbie u. Vanasse (1956); Jacquinot (1960); Genzel (1968); Connes (1969); Möller u. Rothschild (1971); Bell (1972); Griffiths u. de Haseth (1986) Meßprinzip Fig zeigt den prinzipiellen Meßaufbau eines (auf Streifenlosigkeit justierten) Michelson-Interferometers, des am häufigsten in der FS verwendeten Interftrometertyps. Bei Verschiebung des beweglichen Spiegels in Richtung seiner Normalen wird am Interferometerausgang (Pfeil nach unten) ein mit der Spiegelstellung variierendes 1 ^ (xj Fig Michelson-Interferometer, schematisch. 1 feststehender, justierbarer Planspiegel; 2 beweglicher Planspiegel; 3 Strahlteiler, s Spiegelweg; X optischer Gangunterschied (= 2j) Interferenzmuster, das Interferogramm, beobachtet. Das Interferogramm einer IR- Breitbandquelle hat beispielsweise die in Fig gezeigte Form und läßt sich mathematisch beschreiben durch 0'ix) = 2 J f{a) [1 + cos {2nax + ^((T))]d(7 0 oo F{x) = 2 J /(ff) cos {2nax <p{(y))aa = I /(ff) exp (/Xff)) exp (i27t(tx)d(t (6.187) (6.188) (6.189)

17 6.3.2 Fourier-Spektrometrie 257 Darin bedeuten: x optischer Gangunterschied zwischen den Interferometerarmen; <T Wellenzahl;/(ff) = (Pa(fT) G((t) apparaturbedingtes Spektrum bestehend aus ^'aic^)'- Spektrum der Strahlungsquelle, G(cr): gerätspezifische Funktion (spektrale Eigenschaften der Apparatur); F(x) modulierter Anteil des Interferogrammes; <p(a) die hauptsächlich vom Strahlteiler verursachte Phasenverschiebung, die das Interferogramm unsymmetrisch bezüglich x = 0 macht. Die zur einfacheren mathematischen Handhabung verwendete komplexe Schreibweise, Gl. (6.189), enthält die (physikalisch irrelevanten) Festlegungen f{o)=f{-o) und (p{a) = <p(^-a). -0,1 0,1 mm 0,2 S'SOO cm"'0 Fig Interferogramm F(x) einer Infrarot-Strahlungsquelle (willkürliche Einheit), modifiziert durch eine Kunststoffolie im Strahlengang sowie die spektralen Eigenschaften des Interferometers und des Detektionssystems; rechts daneben das durch Fourier-Transformation daraus erhaltene Spektrum (willkürliche Einheit) tr Unter der Annahme, daß das Interferogramm beidseitig unbegrenzt ist, erhält man daraus das (wegen der Phasenverschiebung <p{a) komplexe) Spektrum f 00 /(ff)=/((t)exp(i9>((t))= I /"(x)exp(-i2jtö-jc)dx^ft(/='(x)) (6.190) Gl. (6.189) und Gl. (6.190) bilden ein Fourier-Transformierten-Paar./(a) ergibt sich durch Betragsbildung (Verlust der Phaseninformation, Leistungs-FS): m = \ m \ = [(Re/(a))2 + (Im/(a))2]'/2 (6.191) Die bei der praktischen Durchführung notwendige Begrenzung des Interferogramms auf beiden Seiten, im folgenden durch die Begrenzungsfunktion A{x) beschrieben, führt zu f{a)*ä(a) = FT(F(x) ^(x)) (6.192) d. h., das komplexe Spektrum ist mit ä{a), der (häufig ebenfalls komplexen) FT der Begrenzungsfunktion A(x) gefaltet [ä((t)= FT(y4(x))]. Die Ermittlung von f(a) aus Gl. (6.192) ist das zentrale Problem der FS. Es ist nur näherungsweise lösbar. Die Funktion A (x) spielt dabei eine wichtige Rolle, da sie die spektrale Auflösung bestimmt. Ist beispielsweise A{x)=l für x und A{x) = 0 außerhalb dieses Bereiches

18 Optische Spektrometrie (symmetrischer Abbruch des Interferogramms), so kann man Gl. (6.192) reduzieren auf F{O)=\f{G)*a{G)\ = /(a) *a{a)=f{a)*a{a) (6.193) {A{x) gerade, FT(/^(x)) reell; Nachteil der Betragsbildung: das Rauschen erscheint nur positiv). a(ff)hat in diesem Fall die in Fig dargestellte Form, a(o-) = 2xn,axSinc(27t(TXn,ax). In dieser Form werden schmale Spektrallinien, 5((t), wiedergegeben {5{a)*a{a) = a(a)y, a(a) hat die Eigenschaft eines instrumentellen Linienprofils. Die Halbwertsbreite des Hauptmaximums von a(a) in Fig ist Ac«l,21/(2xn,ax) und ist ein Maß für die spektrale Auflösung (den auflösbaren Wellenzahlabstand R' = a/r-, R spektrales Auflösungsvermögen). Gl. (6.193) enthält die (praktisch immer erfüllte) Voraussetzung, daß (p{a) konstant ist innerhalb des Auflösungsintervalls Act. 3 cm-' 5 Fig Instrumentelles Linienprofil eines Fourier-Spektrometers bei symmetrischem Abbruch des Interferogramms bei x ax= -*maxl =5mm. a ist hier der Wellenzahlabstand von der Mitte des Profils Die störenden Seitenmaxima von a{a) können weitgehend vermieden werden, wenn statt des Abbruchs des Interferogramms {A (x) Rechteckfunktion) eine gedämpfte Begrenzung gewählt wird (Apodisation), z. B. durch Verwendung einer Dreieckfunktion für A{x). Weitere Vorschläge für Apodisationsfunktionen: Norton u. Beer (1976); Happ u. Genzel (1961). Die Eliminierung der Seitenmaxima geht auf Kosten der spektralen Auflösung. Für den in der Praxis häufig vorkommenden Fall der unsymmetrischen Interferogrammbegrenzung (im wesentlichen nur einseitige Messung des Interferogramms zur Erreichung höchster Auflösung durch größtmögliches x^ax) ist der Betrag von f(a)*ä{a). Gl. (6.192), keine gute Näherung für das Spektrum, da schmale spektrale Strukturen verzerrt wiedergegeben werden. Gute Näherungen erhält man in diesem Fall entweder mit dem multiplikativen Phasenkorrekturverfahren nach Mertz (1965) oder dem konvolutiven Phasenkorrekturverfahren nach Forman u.a. (1966) Praktische Durchführung Für die Ermittlung spektraler Materialeigenschaften (Transmissionsgrad T(CT), Reflexionsgrad»(CT)) werden die Quotienten zweier Spektren /(CT) gebildet, eines ohne und eines mit Probe (an geeigneter Stelle im Strahlengang). Für radiometrische Zwecke sind zusätzlich Kalibrierungen mit schwarzen Strahlern notwendig. Die spektralen Eigenschaften der Apparatur kürzen sich bei der Quotientbildung heraus (Voraussetzung: deren Konstanz über den gesamten Meßvorgang). In der Leistungs-FS wird die Probe außerhalb des Interferometers angeordnet. Aufstellung der Probe in einem der beiden

19 6.3.2 Fourier-Spektrometrie 259 Interferometerarme erlaubt (mit modifizierter mathematischer Auswertung, Birch u. Parker (1979)) die Ermittlung beider optischer Konstanten, n und k, in einem Arbeitsgang (asymmetrische oder dispersive" FS). Der spektrale Meßbereich wird durch die Kombination aus Strahlungsquelle, Strahlteiler und Detektor bestimmt. Beispiel für T- oder p-messung im Mittelinfrarotbereich (400 cm ' bis 4000 cm '): Keramik-Glühkörper, Ge-Schicht auf KBr-Substrat, Triglycinsulfat-Detektor (pyroelektrischer Detektor, nicht gekühlt). Der optische Gangunterschied X wird in der Regel interferentiell gemessen (mit Hilfe eines starr an das Hauptinterferogramm gekoppelten Interferogramms eines He-Ne-Lasers). Dabei wird das Detektorsignal an diskreten Stellen Xi im Abstand eines Bruchteils oder Vielfachen der He-Ne-Laserwellenlänge gemäß Ax^ l/(2o'niax) registriert (Cniax höchste Wellenzahl im Spektrum). Der Öffnungswinkel Q des Interferometers muß gemäß Q^ln/ ( 'CmaxO'max) durch eine Aperturblende begrenzt werden, damit die durch x^ax gegebene spektrale Auflösung auch bei (Tmax noch erreicht wird. Die endliche Öffnung verschiebt die Wellenzahl gegenüber ihrem wahren Wert aq:a = ao(l - Q/(4n)). Der Korrektionsfaktor kann mit einer bekannten Gas-Absorptionslinie bestimmt werden. Die Interferogrammregistrierung kann im wesentlichen auf zwei Arten erfolgen: (a) konstante Vorschubgeschwindigkeit des beweglichen Spiegels (Eigenmodulation des Meßsignals), (b) schrittweiser Vorschub um Ax und Meßaufenthalte an den Stellen Xj (Fremdmodulation erforderlich). Die Variante (a) wird heute überwiegend angewandt. Zur Verbesserung des S/R werden meist mehrere Interferogramme gemittelt. (b) hat Vorteile bei bestimmten Meßaufgaben. Die Fourier-Transformation wird mit dem sog. Fast-FT-Algorithmus (Cooley u. Tukey (1965), Press u. a. (1989)) an 2" Meßpunkte enthaltenden Datensätzen durchgeführt. Meist werden spezielle FT-Prozessoren verwendet. Damit läßt sich auch bei Verwendung von Arbeitsplatzrechnern (PC) die Rechenzeit gering halten (einige s bis einige min) Apparative Anforderungen Die Güte des Ergebnisses (S/R und Meßempfindlichkeit, Genauigkeit einer r- oder p- Messung, Wellenzahlgenauigkeit) hängt entscheidend von der mechanischen Stabilität des Interferometers, besonders von der Präzision der Spiegelführung, sowie der Genauigkeit der Messung des optischen Gangunterschiedes ab. Forderungen im IR sind: maximale Spiegelkippung 5 irad, Unsicherheit der Gangunterschiedsmessung 0,1.im. Durch Verwendung von Würfelecken-Retroreflektoren oder sog. Katzenaugen anstelle von Planspiegeln oder durch automatische dynamische Justierung während der Messung können die Stabilitäts- und Präzisionsanforderungen gemildert werden. Hohe Präzision der Spiegelführung wird bei Linearvorschub durch kontaktfreie Lager (Luftlager, Magnetschwebelager) erreicht. Der optische Gangunterschied kann auch durch Rotationsbewegungen erzeugt werden, die geringere Anforderungen an die Lagerung stellen. Weitere Forderungen sind hohe Stabilität der Strahlungsquelle und der gesamten Signalelektronik sowie Linearität des Detektors. Ein besonderes Problem der FS ist die bei Breitbandmessungen extrem hohe Intensität des Zentralmaximums relativ zum weiter außen liegenden Verlauf des Interferogramms F{x), die eine Meßdynamik von bis zu 2^" (10^) erfordert. Diese kann z. B. mit einem 16-Bit-A/D-Wandler in Verbindung mit einer dynamischen Verstärkungsumschaltung, die die Umgebung des Zentralmaximums relativ abschwächt, realisiert werden.

20 Optische Spektrometrie Der Stand der Technik der FS für den Routineeinsatz läßt sich durch folgende Leistungsdaten charakterisieren (Voraussetzung: optimale Justierung; Korrektion bekannter systematischer Abweichungen, Meßprobe ohne Einfluß auf den Strahlengang): -Unsicherheit von Transmissionsgradmessungen im Bereich (J = 800cm ' und 3500 cm ':0,002; - Unsicherheit der Wellenzahlmessung: 0,01 cm '; - Signal/Rausch-Verhältnis bei 2000cm ' (Meßparameter: i?'=lcm ', Meßzeit 60s, (j-bereich 400 cm ' bis 4000 cm nicht gekühlter Detektor): 4-10\ Mittelwert im Bereich 800 cm ' bis 3500 cm ': 2-10'; - Spektrale Auflösung:/?' = 0,1 cm Mit speziellen Hochauflösungsgeräten lassen sich bei der spektralen Auflösung und bei der Wellenzahlgenauigkeit noch erheblich bessere Werte erreichen Laserspektrometrie (W. Demtröder) Der Einsatz von Lasern in der optischen Spektrometrie hat eine Reihe neuer Techniken zur Messung von Spektrallinien ermöglicht, die gegenüber herkömmlichen Methoden der klassischen Spektrometrie mit inkohärenten Lichtquellen große Fortschritte hinsichtlich spektralem Auflösungsvermögen, Nachweisempfindlichkeit und Genauigkeit der Wellenlängenmessung gebracht haben. In diesem Abschnitt sollen die für die Laserspektrometrie wichtigsten kohärenten Strahlungsquellen und die grundlegenden Verfahren der Laserspektrometrie mit ihren bisher erreichten Grenzen kurz erläutert werden. Eine ausführliche Darstellung findet man z.b. bei Hollas (1981) und Demtröder (1993). Dieser Überblick über neue Techniken der Laserspektrometrie kann wegen des beschränkten Umfangs nicht vollständig sein. Er soll dem Leser einen Eindruck geben von den neuen Möglichkeiten, die der Laser dem Spektroskopiker bei der Messung von Atom- und Molekülspektren gibt hinsichtlich der Empfindlichkeit, des spektralen Auflösungsvermögens und der Genauigkeit der Wellenlängenmessungen. Es gibt zwar immer noch spezielle Probleme der Spektrometrie, die ohne Laser gelöst werden können. Die rasche Entwicklung neuer Lasertypen auch in Spektralbereichen, in denen bisher ein Mangel an geeigneten Lasern bestand, wird jedoch den Laser mehr und mehr zu einem unentbehrlichen und vielseitig anwendbaren Hilfsmittel für die moderne Spektrometrie machen Kohärente Strahlungsquellen für die Spektrometie Die für Anwendungen in der Spektrometrie besonders wichtigen kontinuierlichen (cw) und gepulsten Lasertypen sind mit ihren charakteristischen Eigenschaften, wie spektrale Bandbreite, Ausgangsleistung, Pulsdauer, Wiederholfrequenz und spektraler Durchstimmbereich in Tab. T 6.21 in Band 3 zusammengestellt. Im sichtbaren Spektralbereich ist der Farbstofflaser in seinen verschiedenen Modifikationen (Schäfer (1978)) der für die Spektrometrie wichtigste Lasertyp. Als cw-laser wird er optisch gepumpt durch Argon- oder Kryptonlaser, seltener durch frequenzverdoppelte cw-yag-laser. Gepulste Farbstofflaser können mit Blitzlampen (Jethawa u.a. (1978)), mit Stickstofflasern (Wallenstein u. Hänsch (1975)), Excimerlasern (Uchimo u.a. (1979)) oder auch mit gepulsten Nd-YAG-Lasern (Eesley u.a. (1980)) gepumpt werden. Zur Erzeugung extrem kurzer Pulse im Subpikosekundenbereich sind

2 Die wesentlichen Teile der in der optischen Spektroskopie benutzten Apparaturen

2 Die wesentlichen Teile der in der optischen Spektroskopie benutzten Apparaturen 2 Die wesentlichen Teile der in der optischen Spektroskopie benutzten Apparaturen 2.1 Lichtquellen In Abb. 2.1 sind die Spektren einiger Lichtquellen dargestellt, die in spektroskopischen Apparaturen verwendet

Mehr

Die LINOS Gitter. Gitter

Die LINOS Gitter. Gitter Die LINOS Linsen, Mikrolinsen Machine Vision Zoom- und Arrays, Flüssiglinsen Achromate Laseroptik Objektive Mikroskopoptik Planoptik Polarisationsoptik Spiegel Die LINOS Qioptiq bietet eine breite Auswahl

Mehr

UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick

UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick PHYSIKALISCH-CHEMISCHES PRAKTIKUM (Teil Ic) (Spektroskopie) Versuch E2 Spektrale Zerlegung von Licht (Monochromatoren,

Mehr

Raman-Spektroskopie (Kurzanleitung)

Raman-Spektroskopie (Kurzanleitung) Raman-Spektroskopie (Kurzanleitung) UNIVERSITÄT REGENSBURG Institut für Physikalische und Theoretische Chemie Prof. Dr. B. Dick VERTIEFUNGS-PRAKTIKUM PHYSIKALISCHE CHEMIE Inhaltsverzeichnis 1 Grundlagen

Mehr

Standard Optics Information

Standard Optics Information INFRASIL 301, 302 1. ALLGEMEINE PRODUKTBESCHREIBUNG INFRASIL 301 und 302 sind aus natürlichem, kristallinem Rohstoff elektrisch erschmolzene Quarzgläser. Sie vereinen exzellente physikalische Eigenschaften

Mehr

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Photovoltaik:Direkte Umwandlung von Strahlungsenergie in elektrische Energie Anregung

Mehr

Kohärente Anti-Stokes Raman-Streuung

Kohärente Anti-Stokes Raman-Streuung Kohärente Anti-Stokes Raman-Streuung von Gesine Steudle 1 Betreuer: Dr. Cynthia Aku-Leh Max-Born-Institut, Gebäude C, Z 1.5, Tel: (030)6392-1474 Max-Born-Str. 2a, 12489 Berlin email: akuley@mbi-berlin.de

Mehr

Raman- Spektroskopie. Natalia Gneiding. 5. Juni 2007

Raman- Spektroskopie. Natalia Gneiding. 5. Juni 2007 Raman- Spektroskopie Natalia Gneiding 5. Juni 2007 Inhalt Einleitung Theoretische Grundlagen Raman-Effekt Experimentelle Aspekte Raman-Spektroskopie Zusammenfassung Nobelpreis für Physik 1930 Sir Chandrasekhara

Mehr

Mikrooptik für die Schule: Das Educational Kit des EU-Verbundes NEMO

Mikrooptik für die Schule: Das Educational Kit des EU-Verbundes NEMO Mikrooptik für die Schule: Das Educational Kit des EU-Verbundes NEMO Norbert Lindlein Institut für Optik, Information und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr.

Mehr

Atom- und Quantenoptik (WS 2009) Dr. Robert Löw, Dr. Sven M. Ulrich, Jochen Kunath. Beugungsphänomene

Atom- und Quantenoptik (WS 2009) Dr. Robert Löw, Dr. Sven M. Ulrich, Jochen Kunath. Beugungsphänomene Praktikumsversuch zur Wahlpflicht-Vorlesung Atom- und Quantenoptik (WS 009) Dr. Robert Löw, Dr. Sven M. Ulrich, Jochen Kunath Beugungsphänomene In dieser Versuchsreihe sollen verschiedene Experimente zum

Mehr

Autofokus und Tracking in optischen Pickups

Autofokus und Tracking in optischen Pickups Autofokus und Tracking in optischen Pickups Matthias Lang im Seminar elektrische und optische Sensoren am 8. Juli 2003 Autofokus und Tracking in optischen Pickups p. 1/24 Übersicht Einführung in die optische

Mehr

Passiver optischer Komponententest je per Tunable LASER und OSA ASE Quelle und OSA. Yokogawa MT GmbH September 2009 Jörg Latzel

Passiver optischer Komponententest je per Tunable LASER und OSA ASE Quelle und OSA. Yokogawa MT GmbH September 2009 Jörg Latzel Passiver optischer Komponententest je per Tunable LASER und OSA ASE Quelle und OSA Yokogawa MT GmbH September 2009 Jörg Latzel Überblick: Das Seminar gibt einen Überblick über Möglichen Wege zur Beurteilung

Mehr

Bank für Schallversuche Best.- Nr. 2004611. Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit.

Bank für Schallversuche Best.- Nr. 2004611. Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit. Bank für Schallversuche Best.- Nr. 2004611 Für Versuche zum Schall, Wellenausbreitung, Wellenlänge, Schallgeschwindigkeit. Dieses Gerät besteht aus 1 Lautsprecher (Ø 50 mm, Leistung 2 W, Impedanz 8 Ω)

Mehr

Schwingungsspektroskopie (IR, Raman)

Schwingungsspektroskopie (IR, Raman) Schwingungsspektroskopie Schwingungsspektroskopie (IR, Raman) Die Schwingungsspektroskopie ist eine energiesensitive Methode. Sie beruht auf den durch Molekülschwingungen hervorgerufenen periodischen Änderungen

Mehr

Mikroskopie (MIK) Praktikumsskript

Mikroskopie (MIK) Praktikumsskript Mikroskopie (MIK) Praktikumsskript Grundpraktikum Berlin, 15. Dezember 2011 Freie Universität Berlin Fachbereich Physik Ziel dieses Versuchs ist die Einführung in den Umgang mit optischen Komponenten an

Mehr

Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5 Operationsverstärker Versuchsdatum: 22.11.2005 Teilnehmer: 1. Vorbereitung 1.1. Geräte zum Versuchsaufbau 1.1.1 Lawinendiode 1.1.2 Photomultiplier

Mehr

Laser-Raman-Spektroskopie

Laser-Raman-Spektroskopie Laser-Raman-Spektroskopie Versuch im F2-Praktikum, durchgeführt am 16.06.04 Meßpartner: Sascha Rambeaud und Joachim Kalden 30. Juni 2004 Einleitung In diesem Versuch sollte man sich mit dem Verfahren der

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE RAMAN-EFFEKT

PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE RAMAN-EFFEKT Physikalisches Institut der Universität Bayreuth PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE RAMAN-EFFEKT Inhalt Seite 1. Einleitung und Aufgabenstellung 2 2. Versuchsanordnung 3 3. Versuchsdurchführung

Mehr

Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung

Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung Dispersion DADOS Problemstellung Für ie Auswertung von Spektren ist es notwenig, ie Nichtlinearität er Wellenlängenskala auf em CCD Chip zu berücksichtigen. Dies wir hier am Beispiel es DADOS urchgerechnet,

Mehr

Diffraktive Optische Elemente (DOE)

Diffraktive Optische Elemente (DOE) Diffraktive Optische Elemente (DOE) Inhalt: Einführung Optische Systeme Einführung Diffraktive Optische Elemente Anwendungen Vorteile von Diffraktive Optische Elemente Typen von DOE s Mathematische und

Mehr

Telezentrische Meßtechnik

Telezentrische Meßtechnik Telezentrische Meßtechnik Beidseitige Telezentrie - eine Voraussetzung für hochgenaue optische Meßtechnik Autor : Dr. Rolf Wartmann, Bad Kreuznach In den letzten Jahren erlebten die Techniken der berührungslosen,

Mehr

DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V.

DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V. DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG E.V. ZfP-Sonderpreis der DGZfP beim Landeswettbewerb Jugend forscht SCHÜEX BAYERN Lichtspektren von verschiedenen Lichtquellen Tobias Harand Schule: Albert-Schweizer-Gymnasium

Mehr

Versuch 42: Photovoltaik

Versuch 42: Photovoltaik Martin-Luther-Universität Halle-Wittenberg Institut für Physik Fortgeschrittenen- Praktikum Versuch 42: Photovoltaik An einer Silizium-Solarzelle sind folgende Messungen durchzuführen: 1) Messen Sie die

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

Einführung in die Robotik Sensoren. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 30. 10.

Einführung in die Robotik Sensoren. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 30. 10. Einführung in die Robotik Sensoren Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 30. 10. 2012 Sensoren Was ist ein Sensor? Ein Sensor empfängt ein physikalisches

Mehr

Computer Graphik I (3D) Dateneingabe

Computer Graphik I (3D) Dateneingabe Computer Graphik I (3D) Dateneingabe 1 3D Graphik- Pipeline Anwendung 3D Dateneingabe Repräsenta

Mehr

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht

Seite 1 von 2. Teil Theorie Praxis S Punkte 80+25 120+73 200+98 erreicht Seite 1 von 2 Ostfalia Hochschule Fakultät Elektrotechnik Wolfenbüttel Prof. Dr.-Ing. T. Harriehausen Bearbeitungszeit: Theoretischer Teil: 60 Minuten Praktischer Teil: 60 Minuten Klausur FEM für elektromagnetische

Mehr

Vorbereitung zum Versuch. Absorption von Betaund Gammastrahlung. 0 Grundlagen

Vorbereitung zum Versuch. Absorption von Betaund Gammastrahlung. 0 Grundlagen Vorbereitung zum Versuch Absorption von Betaund Gammastrahlung Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 9. Juni 2008 0 Grundlagen 0.1 Radioaktive Strahlung In diesem Versuch wollen

Mehr

Laserspektroskopie. Grundlagen und Techniken. von Wolfgang Demtröder. erweitert, überarbeitet

Laserspektroskopie. Grundlagen und Techniken. von Wolfgang Demtröder. erweitert, überarbeitet Laserspektroskopie Grundlagen und Techniken von Wolfgang Demtröder erweitert, überarbeitet Laserspektroskopie Demtröder schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Thematische

Mehr

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen 1 Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II xperimente mit lektronen 1 1.1 U dient zum rwärmen der Glühkathode in der Vakuumröhre. Durch den glühelektrischen

Mehr

3 Elektrische Leitung

3 Elektrische Leitung 3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung

Mehr

Labor für Technische Physik

Labor für Technische Physik Hochschule Bremen City University of Applied Sciences Fakultät Elektrotechnik und Informatik Labor für Technische Physik Prof. Dr.-Ing. Dieter Kraus, Dipl.-Ing. W.Pieper 1. Versuchsziele Durch die Verwendung

Mehr

Polarisiertes Licht. 1 Einleitung. 1.1 Polarisation. 1.2 Linear polarisiertes Licht

Polarisiertes Licht. 1 Einleitung. 1.1 Polarisation. 1.2 Linear polarisiertes Licht 1 Polarisiertes Licht Dieser Bereich der Optik ist besonders interessant, weil die Entdeckung der Polarisation historisch die Vorstellung des Lichtes als elektromagnetische Welle etabliert hat. Vorbereitung:

Mehr

Physik Prof. Dr. H.-Ch. Mertins, FB Physikalische Technik

Physik Prof. Dr. H.-Ch. Mertins, FB Physikalische Technik Physik Prof. Dr. H.-Ch. Mertins, FB Physikalische Technik Richtung 1. Wirtschaftsingenieurwesen Physikalische Technologien 2. Chemieingenieurwesen & 3. Wirtschaftsingenieurwesen Chemietechnik 4. Technische

Mehr

Wir bringen Qualität ans Licht. MAS 40 Mini-Array-Spektrometer. light measurement

Wir bringen Qualität ans Licht. MAS 40 Mini-Array-Spektrometer. light measurement MAS 40 Mini-Array-Spektrometer light measurement Die Merkmale auf einen Blick Kostengünstige und robuste CCD-Spektrometer- Technologie Standard USB-Schnittstelle Alle Instrument Systems Messadapter anschließbar

Mehr

Frequenzminderung des Lichtes nach der Beugung. Dimishing of Frequency of Light after Diffraction

Frequenzminderung des Lichtes nach der Beugung. Dimishing of Frequency of Light after Diffraction Frequenzminderung des Lichtes nach der Beugung Helmut Nieke Newtons Beugungsexperimente und ihre Weiterführung Arbeit 6 Zusammenfassung Laserlicht fiel auf einen engen Spalt und trat dann in eine Lummer-Gehrcke

Mehr

Einzelmolekülfluoreszenzspektroskopie (EFS)

Einzelmolekülfluoreszenzspektroskopie (EFS) Fortgeschrittenen Praktikum TU Dresden 29. Mai 2009 Einzelmolekülfluoreszenzspektroskopie (EFS) Klaus Steiniger, Alexander Wagner, Gruppe 850 klaus.steiniger@physik.tu-dresden.de, alexander.wagner@physik.tu-dresden.de

Mehr

Spektroskopie. im IR- und UV/VIS-Bereich. Raman-Spektroskopie. http://www.analytik.ethz.ch

Spektroskopie. im IR- und UV/VIS-Bereich. Raman-Spektroskopie. http://www.analytik.ethz.ch Spektroskopie im IR- und UV/VIS-Bereich Raman-Spektroskopie Dr. Thomas Schmid HCI D323 schmid@org.chem.ethz.ch http://www.analytik.ethz.ch Raman-Spektroskopie Chandrasekhara Venkata Raman Entdeckung des

Mehr

Offenlegungsschrift 24 59 989

Offenlegungsschrift 24 59 989 < ), IntCl. 2-, BUNDESREPUBLIK DEUTSCHLAND DEUTSCHES PATENTAMT B Ol D 59/34 (T> 00 m ^tfn H Q Offenlegungsschrift 24 59 989 Aktenzeichen: Anmeldetag: Offenlegungstag: P 24 59 989.1 18.12.74 1.

Mehr

Typische Eigenschaften von Metallen

Typische Eigenschaften von Metallen Typische Eigenschaften von Metallen hohe elektrische Leitfähigkeit (nimmt mit steigender Temperatur ab) hohe Wärmeleitfähigkeit leichte Verformbarkeit metallischer Glanz Elektronengas-Modell eines Metalls

Mehr

Optische Systeme (15. Vorlesung)

Optische Systeme (15. Vorlesung) Optische Systeme (15. Vorlesung) Martina Gerken 12.02.2007 Universität Karlsruhe (TH) Inhalte der Vorlesung 15.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 3. Optische Messtechnik 4.

Mehr

Elektrischer Widerstand als Funktion der Temperatur

Elektrischer Widerstand als Funktion der Temperatur V10 Elektrischer Widerstand als Funktion der Temperatur 1. Aufgabenstellung 1.1 Messung Sie den elektrischen Widerstand vorgegebener Materialien als Funktion der Temperatur bei tiefen Temperaturen. 1.2

Mehr

Festkörperoptik: Optische Konstanten und Bandparamter

Festkörperoptik: Optische Konstanten und Bandparamter F-Praktikum Festkörperoptik: Optische Konstanten und Bandparamter Moritz Lenz and Stefan Uebelacker (Dated: 4. April 26) Ziel des Vesuchs war es anhand von Messungen der Reflexions- und Transmissionsspektren

Mehr

Lichtgeschwindigkeit nach Phasenverschiebung

Lichtgeschwindigkeit nach Phasenverschiebung Michelson Interferometer Einleitung Apparatur Auswertung Fehlerbetrachtung Verbesserung des Experiments 5 5 6 10 12 Newtonsche Ringe Vorbereitung Versuchsaufbau Grundlagen Auswertung Fazit Zusatzmaterial

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

Raman-Spektroskopie. Susanne Dammers Martin Doedt 06. Juni 2005

Raman-Spektroskopie. Susanne Dammers Martin Doedt 06. Juni 2005 Raman-Spektroskopie Susanne Dammers Martin Doedt 06. Juni 2005 Übersicht Geschichte Theorie Grundlagen Klassische Beschreibung Quantenmechanische Beschreibung Praktische Aspekte Aufbau des Spektrometers

Mehr

Schichtdickenmessung mit radioaktiven Präparaten (SchiRad)

Schichtdickenmessung mit radioaktiven Präparaten (SchiRad) TU Ilmenau Ausgabe: September 2015 Fakultät für Elektrotechnik und Informationstechnik Dr. Ho, Prof. Sp, Dr. Ku Institut für Werkstofftechnik 1 Versuchsziel Schichtdickenmessung mit radioaktiven Präparaten

Mehr

Funktionsmuster RAMAN-OTDR: Prinzip, Anwendung und erste Ergebnisse

Funktionsmuster RAMAN-OTDR: Prinzip, Anwendung und erste Ergebnisse Funktionsmuster RAMAN-OTDR: Prinzip, Anwendung und erste Ergebnisse Fibotec Fiberoptics GmbH I Herpfer Straße 40 I 98617 Meiningen I Germany Fon: +49 (0) 3693 8813-200 I Fax: +49 (0) 3693 8813-201 I Mail:

Mehr

VOM RÖNTGENBILD ZUM COMPUTERTOMOGRAMM

VOM RÖNTGENBILD ZUM COMPUTERTOMOGRAMM VOM RÖNTGENBILD ZUM COMPUTERTOMOGRAMM REFERAT IM RAHMEN DES FACHSEMINARS WS2009/10 AUSARBEITUNG BEI PROF. KARL-OTTO LINN BJÖRN SAßMANNSHAUSEN 1 0. INHALT 1. Vorwort... 3 2. Geschichte Der Computertomogrphie...

Mehr

Versuch 21. Der Transistor

Versuch 21. Der Transistor Physikalisches Praktikum Versuch 21 Der Transistor Name: Christian Köhler Datum der Durchführung: 07.02.2007 Gruppe Mitarbeiter: Henning Hansen Assistent: Jakob Walowski testiert: 3 1 Einleitung Der Transistor

Mehr

Bildgebende Verfahren in der Medizin Thermographie

Bildgebende Verfahren in der Medizin Thermographie Bildgebende Verfahren in der Medizin Thermographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Stadt Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT

Mehr

Bulletin. Gebrochener Stab. Martin Lieberherr Mathematisch Naturwissenschaftliches Gymnasium Rämibühl, 8001 Zürich

Bulletin. Gebrochener Stab. Martin Lieberherr Mathematisch Naturwissenschaftliches Gymnasium Rämibühl, 8001 Zürich ulletin DPK Gebrochener Stab Martin Lieberherr Mathematisch Naturwissenschaftliches Gymnasium Rämibühl, 8001 Zürich Einleitung Hält man einen geraden Wanderstab in einen spiegelglatten, klaren ergsee,

Mehr

Kunststoffoptiken für CPV Anwendungen

Kunststoffoptiken für CPV Anwendungen Kunststoffoptiken für CPV Anwendungen Thomas Luce Eschenbach Optik GmbH thomas.luce@eschenbach optik.de Spectaris Forum München, Intersolar 2011 Einleitung Optik Spritzguß Primäroptiken Thermoplastische

Mehr

Spektroskopie im sichtbaren und UV-Bereich

Spektroskopie im sichtbaren und UV-Bereich Spektroskopie im sichtbaren und UV-Bereich Theoretische Grundlagen Manche Verbindungen (z.b. Chlorophyll oder Indigo) sind farbig. Dies bedeutet, dass ihre Moleküle sichtbares Licht absorbieren. Durch

Mehr

Messsystemanalyse (MSA)

Messsystemanalyse (MSA) Messsystemanalyse (MSA) Inhaltsverzeichnis Ursachen & Auswirkungen von Messabweichungen Qualifikations- und Fähigkeitsnachweise Vorteile einer Fähigkeitsuntersuchung Anforderungen an das Messsystem Genauigkeit

Mehr

Von UV bis IR Kompetenz im ganzen Spektrum

Von UV bis IR Kompetenz im ganzen Spektrum Von UV bis IR Kompetenz im ganzen Spektrum Produkte Mikrostrukturen Mikrostrukturen: Technologie Mikrostrukturen: Strukturen in metallischen Schichten I Anwendungen Industrielle Bildverarbeitung Medizintechnik

Mehr

I. DAS LICHT: Wiederholung der 9. Klasse.. S3

I. DAS LICHT: Wiederholung der 9. Klasse.. S3 STRAHLENOPTIK Strahlenoptik 13GE 013/14 S Inhaltsverzeichnis I. DAS LICHT: Wiederholung der 9. Klasse.. S3 II. DIE REFLEXION.. S3 a. Allgemeine Betrachtungen.. S3 b. Gesetzmäßige Reflexion am ebenen Spiegel..

Mehr

E X A K T M E S S GmbH

E X A K T M E S S GmbH Messmethoden in der dimensionellen Masskontrolle Um eine Messaufgabe zu erfüllen, können unterschiedliche Messmethoden angewandt werden. Standardmäßig teilt sich das Messen in Messvorrichtungen und Messmaschinen

Mehr

Dieter Bäuerle. Laser. Grundlagen und Anwendungen in Photonik, Technik, Medizin und Kunst WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Dieter Bäuerle. Laser. Grundlagen und Anwendungen in Photonik, Technik, Medizin und Kunst WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Dieter Bäuerle Laser Grundlagen und Anwendungen in Photonik, Technik, Medizin und Kunst WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA VII Inhaltsverzeichnis Vorwort V I Grundlagen 1 1 Die Natur des Lichts

Mehr

Auswertung des Versuches Lebensdauer von Positronen in Materie

Auswertung des Versuches Lebensdauer von Positronen in Materie Auswertung des Versuches Lebensdauer von Positronen in Materie Andreas Buhr, Matrikelnummer 122993 23. Mai 26 Inhaltsverzeichnis Lebensdauer von Positronen in Materie 1 Formales 3 2 Überblick über den

Mehr

Zählstatistik. Peter Appel. 31. Januar 2005

Zählstatistik. Peter Appel. 31. Januar 2005 Zählstatistik Peter Appel 31. Januar 2005 1 Einleitung Bei der quantitativen Analyse im Bereich von Neben- und Spurenelementkonzentrationen ist es von Bedeutung, Kenntnis über die möglichen Fehler und

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Optische Messmethoden

Optische Messmethoden Optische Messmethoden 1 1. Absorption 2. Photolumineszenz 3. PLE - Photolumineszenzanregungspektroskopie 4. Aufnahme verschiedener Spektren 5. Anwendungen von Photolumineszenz 2 Absorption eines Photons

Mehr

Aufbau der Röntgenapperatur

Aufbau der Röntgenapperatur Physikalische Grundlagen der Röntgentechnik und Sonographie Aufbau der Röntgenapperatur PD Dr. Frank Zöllner Computer Assisted Clinical Medicine Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer

Mehr

GIUM ein unkonventionelles Verfahren der Mikrostrukturabbildung mit Ultraschallanregung und laservibrometrischer Abtastung

GIUM ein unkonventionelles Verfahren der Mikrostrukturabbildung mit Ultraschallanregung und laservibrometrischer Abtastung Seminar des Fachausschusses Ultraschallprüfung Vortrag 9 GIUM ein unkonventionelles Verfahren der Mikrostrukturabbildung mit Ultraschallanregung und laservibrometrischer Abtastung Bernd KÖHLER *, Martin

Mehr

3.8 Wärmeausbreitung. Es gibt drei Möglichkeiten der Energieausbreitung:

3.8 Wärmeausbreitung. Es gibt drei Möglichkeiten der Energieausbreitung: 3.8 Wärmeausbreitung Es gibt drei Möglichkeiten der Energieausbreitung: ➊ Konvektion: Strömung des erwärmten Mediums, z.b. in Flüssigkeiten oder Gasen. ➋ Wärmeleitung: Ausbreitung von Wärmeenergie innerhalb

Mehr

Mündliche Prüfungen: Übersicht der Bewertungsformulare

Mündliche Prüfungen: Übersicht der Bewertungsformulare Mündliche Prüfungen: Übersicht der Bewertungsformulare QV Augenoptiker/in EFZ Position 1: Einstärkenbrillen RZ V1 V2 V3 V4 V5 V6 V7 V8 01 1. Das Auge / Vorderer Augenabschnitt 2.4 01 02 2. Schutzorgane

Mehr

Klassenstufe 7. Überblick,Physik im Alltag. 1. Einführung in die Physik. 2.Optik 2.1. Ausbreitung des Lichtes

Klassenstufe 7. Überblick,Physik im Alltag. 1. Einführung in die Physik. 2.Optik 2.1. Ausbreitung des Lichtes Schulinterner Lehrplan der DS Las Palmas im Fach Physik Klassenstufe 7 Lerninhalte 1. Einführung in die Physik Überblick,Physik im Alltag 2.Optik 2.1. Ausbreitung des Lichtes Eigenschaften des Lichtes,Lichtquellen,Beleuchtete

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg PROTOKOLL Modul: Versuch: Physikalische Eigenschaften I. VERSUCHSZIEL Die

Mehr

2 Head-up-Display-Technologie

2 Head-up-Display-Technologie 2 Head-up-Display-Technologie Basis für die Entwicklung eines kontaktanalogen Head-up-Displays stellt die Technologie der herkömmlichen Head-up-Displays dar. Technische Grundlagen, der Aufbau aktueller

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Kapitel 7 Optische Rechner (optical computing)

Kapitel 7 Optische Rechner (optical computing) Kapitel 7 - Optische Rechner Seite 134 Kapitel 7 Optische Rechner (optical computing) 7.1. Licht als Medium der DV 7.1.1. Eigenschaften von Licht - Elektromagnetische Strahlung in einem weiten Bereich

Mehr

Infrarot Thermometer. Mit 12 Punkt Laserzielstrahl Art.-Nr. E220

Infrarot Thermometer. Mit 12 Punkt Laserzielstrahl Art.-Nr. E220 Infrarot Thermometer Mit 12 Punkt Laserzielstrahl Art.-Nr. E220 Achtung Mit dem Laser nicht auf Augen zielen. Auch nicht indirekt über reflektierende Flächen. Bei einem Temperaturwechsel, z.b. wenn Sie

Mehr

Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität

Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität Sebastian Pfitzner 13. Mai 013 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (55077) Arbeitsplatz: Platz Betreuer: Michael Große Versuchsdatum:

Mehr

Die Solarzelle. Passivated Emitter and Rear Locally diffused solar cell. 25% c-si Zelle erhältlich bei der University of New South Wales: ~1000EUR/W p

Die Solarzelle. Passivated Emitter and Rear Locally diffused solar cell. 25% c-si Zelle erhältlich bei der University of New South Wales: ~1000EUR/W p Die Passivated Emitter and Rear Locally diffused solar cell 25% c-si Zelle erhältlich bei der University of New South Wales: ~1000EUR/W p Übersicht Definition des Problems Zellaufbau Absorber Emitter Oberflächenpassivierung

Mehr

Schulcurriculum des Faches Physik. für die Klassenstufen 7 10

Schulcurriculum des Faches Physik. für die Klassenstufen 7 10 Geschwister-Scholl-Gymnasium Schulcurriculum Schulcurriculum des Faches Physik für die Klassenstufen 7 10 Gesamt Physik 7-10 09.09.09 Physik - Klasse 7 Akustik Schallentstehung und -ausbreitung Echolot

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Konstruktion eines günstigen Michelson-Interferometers für den Schuleinsatz

Konstruktion eines günstigen Michelson-Interferometers für den Schuleinsatz Konstruktion eines günstigen Michelson-Interferometers für den Schuleinsatz Benjamin Hütz Sebastian Wallkötter Martin Heizenreder Hohenstaufen-Gymnasium Kaiserslautern 13.09.2011 2 1 Vorbemerkungen Im

Mehr

8. Versuch: Elektromagnetische Wellen Licht

8. Versuch: Elektromagnetische Wellen Licht Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 8. Versuch: Elektromagnetische Wellen Licht In diesem Versuch sollen die Eigenschaften elektromagnetischer Strahlung in ihren verschiedenen

Mehr

Broadband EMI Noise Measurement in Time Domain

Broadband EMI Noise Measurement in Time Domain Broadband EMI Noise Measurement in Time Domain Florian Krug, Peter Russer Institute for High-Frequency Engineering Technische Universität München fkrug@ieee.org 1 Inhalt Einführung Time-Domain Electromagnetic

Mehr

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 1.1 analoge Messgeräte Fließt durch einen Leiter, welcher sich in einem Magnetfeld B befindet ein Strom I, so wirkt auf diesen eine

Mehr

4 Ortsaufgelöste Messung durch Nutzung der Ramanstreuung

4 Ortsaufgelöste Messung durch Nutzung der Ramanstreuung 4 Ortsaufgelöste Messung durch Nutzung der Ramanstreuung 4.1 Physikalische Grundlagen Es ist nicht nur möglich, entlang des Lichtwellenleiters ortsaufgelöst Dämpfungen und Reflexionen (vergleiche Fachbroschüre

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Aufbau eines chromatisch-konfokalen Mikroskops mit Mehrfach-Punktabbildung

Aufbau eines chromatisch-konfokalen Mikroskops mit Mehrfach-Punktabbildung Aufbau eines chromatisch-konfokalen Mikroskops mit Mehrfach-Punktabbildung Setup of a chromatic confocal microscope with multi spot imaging Bachelor-Thesis von Maximilian Schilder April 2013 Fachbereich

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

MOEMS-basiertes optisches Fokussiersystem

MOEMS-basiertes optisches Fokussiersystem MOEMS-basiertes optisches Fokussiersystem Ulrich Mescheder Hochschule Furtwangen Institut für Angewandte Forschung (IAF) Fakultät Computer&Electrical Engineering 1 Ulrich Mescheder Clusterkonferenz MicroTEC

Mehr

6. Schwingungsspektroskopie

6. Schwingungsspektroskopie 6. Schwingungsspektroskopie 6.1. Infrarot (IR)-Spektroskopie Beispiele: Moleküle mit -CH 2 -Gruppen Asymmetrische Streckschwingung Symmetrische Streckschw. Pendelschwingung (Rocking) Deformationsschwingung

Mehr

VERDAMPFUNGSGLEICHGEWICHTE: SIEDEDIAGRAMM EINER BINÄREN MISCHUNG

VERDAMPFUNGSGLEICHGEWICHTE: SIEDEDIAGRAMM EINER BINÄREN MISCHUNG VERDAMPFUNGSGLEICHGEWICHTE: RAMM EINER BINÄREN MISCHUNG 1. Lernziel Ziel des Versuchs ist es, ein zu bestimmen, um ein besseres Verständnis für Verdampfungsgleichgewichte und Mischeigenschaften flüssiger

Mehr

Zoom-Mikroskop ZM. Das universell einsetzbare Zoom-Mikroskop

Zoom-Mikroskop ZM. Das universell einsetzbare Zoom-Mikroskop Zoom-Mikroskop ZM Das universell einsetzbare Zoom-Mikroskop Die Vorteile im Überblick Zoom-Mikroskop ZM Mikroskopkörper Kernstück des ZM ist ein Mikroskopkörper mit dem Zoom-Faktor 5 : 1 bei einem Abbildungsmaßstab

Mehr

2 Grundlagen der Rasterkraftmikroskopie

2 Grundlagen der Rasterkraftmikroskopie 7 1 Einleitung Mit der Entwicklung des Rastertunnelmikroskops im Jahr 1982 durch Binnig und Rohrer [1], die 1986 mit dem Physik-Nobelpreis ausgezeichnet wurde, wurde eine neue Klasse von Mikroskopen zur

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

1 Verbindungsleitungen

1 Verbindungsleitungen 1 Verbinungsleitungen Für ie Funktion aller elektronischen Schaltungen sin Verbinungsleitungen zischen en Bauelementen unverzichtbar. Ihre Aufgabe ist es, Signale von einem Baustein zum nächsten zu transportieren.

Mehr

Laserschutz Grundlagen

Laserschutz Grundlagen Laserschutz Grundlagen Wirkung der Laserstrahlung Wellenlängenbereich Wirkung auf das Auge Wirkung auf die Haut 100-315 nm Bindehaut-/Hornhautentzündung Sonnenbrand, beschleunigte Alterung,Karzinome UV

Mehr

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle Sonnenenergie: Photovoltaik Physik und Technologie der Solarzelle Von Prof. Dr. rer. nat. Adolf Goetzberger Dipl.-Phys. Bernhard Voß und Dr. rer. nat. Joachim Knobloch Fraunhofer-Institut für Solare Energiesysteme

Mehr

Inhaltsverzeichnis. Vorwort Vorwort zur 8. Auflage. 1 Grundlagen der Lichtwellenleiter-Technik... 13 Dieter Eberlein

Inhaltsverzeichnis. Vorwort Vorwort zur 8. Auflage. 1 Grundlagen der Lichtwellenleiter-Technik... 13 Dieter Eberlein Inhaltsverzeichnis Vorwort Vorwort zur 8. Auflage 1 Grundlagen der Lichtwellenleiter-Technik... 13 1.1 Physikalische Grundlagen der Lichtwellenleiter-Technik... 13 1.1.1 Prinzip der optischen Informationsübertragung...

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Konzepte der anorganischen und analytischen Chemie II II

Konzepte der anorganischen und analytischen Chemie II II Konzepte der anorganischen und analytischen Chemie II II Marc H. Prosenc Inst. für Anorganische und Angewandte Chemie Tel: 42838-3102 prosenc@chemie.uni-hamburg.de Outline Einführung in die Chemie fester

Mehr

9. Arbeit, Energie und Leistung

9. Arbeit, Energie und Leistung 9.1 Einleitung Beispiel 1: Gilles und Daniel fertigen beide ein U-Stück in der gleichen Qualität und Präzision. Daniel benötigt dazu 40 Stunden, Gilles dagegen nur 32 Stunden. a) er von den beiden hat

Mehr

1 Digital Oszilloskop

1 Digital Oszilloskop 1 Digital Oszilloskop Beim digitalen Oszilloskop wird das Signal im Erfassungssystem durch den Analog-Digital- Umsetzer an zeitdiskreten Punkten abgetastet und wandelt die Signalspannung an diesen Punkten

Mehr