Verteilungsfunktion und dquantile

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Verteilungsfunktion und dquantile"

Transkript

1 Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal skaliert sein! Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung: Wie groß ist der Anteil aller Merkmalsträger mit einem Merkmalswert größer (bzw. kleiner) als ein bestimmter Wert x? Hierzu summiert man die Häufigkeitstabelle schrittweise auf. 2 Statistik 1 - Verteilungsfunktion und Quantile 1

2 Kumulierte Häufigkeiten bei diskreten Merkmalen Beispiel: "Produktives Denken" i x i n i N i h i h i in % H i H i in % ,00 000% 0,00% 000 0,00 000% 0,00% ,00 0,00% 0,00 0,00% ,00 0,00% 0,00 0,00% ,06 5,83% 0,06 5,83% ,10 10,00% 0,16 15,83% ,32 31,67% 0,48 47,50% ,24 24,17% 0,72 71,67% ,23 22,50% 0,94 94,17% ,05 5,00% 0,99 99,17% ,01 0,83% 1,00 100,00% Gesamt 120 1,00 100,00% 3 Statistik 1 - Verteilungsfunktion und Quantile Kumulierte Häufigkeiten Die absoluten kumulierten Häufigkeiten geben die Anzahl der Beobachtungen an, die einen bestimmten Wert x nicht übertreffen. N(X x) z.b. 19 Personen haben einen Score-Wert kleiner gleich 4 Die entsprechenden relativen kumulierten Häufigkeiten bezeichnen wir mit H(X x) = N(X x)/n z.b. 15,8% der Personen haben einen Score-Wert kleiner gleich 4 Sie geben uns den Anteil der Beobachtungen mit einem Wert kleiner gleich x an. Die empirische Verteilungsfunktion F(x) ist definiert durch F(x) = H(X x) 4 Statistik 1 - Verteilungsfunktion und Quantile 2

3 Empirische Verteilungsfunktion F(x) 72% aller Testteilnehmer haben einen Wert kleiner gleich 6 erzielt 5 Statistik 1 - Verteilungsfunktion und Quantile Interpolation macht keinen Sinn Beachte: Bei diskreten Merkmalen ist eine Interpolation nicht zulässig! 6 Statistik 1 - Verteilungsfunktion und Quantile 3

4 Falls ein Linienzug gewünscht wird, gibt nur eine Treppenkurve ein korrektes Bild der Verteilung 7 Statistik 1 - Verteilungsfunktion und Quantile Kumulierte Häufigkeiten (Einzeldaten) Größe Häufigkeit rel. Häufigkeit kumul. Rel. Häufigkeit ,00 0, ,00 0, ,00 0, ,01 0, ,01 0, ,01, 0,03, ,00 0, ,01 0, ,00 0, ,00 0, ,03 0, ,01 0, ,02 0, ,01 0, ,03 0, ,03 0, ,04 0, ,03 0, ,02 0, ,02 0, ,05 0, ,03 0, ,04 0, ,07 0, ,05 0, ,04 0,56 Größe Häufigkeit rel. Häufigkeit kumul. Rel. Häufigkeit ,04 0, ,05 0, ,03 0, ,03 0, ,05 0, ,01 0, ,04 0, ,02 0, ,02 0, ,02 0, ,02 0, ,04 0, ,03 0, ,00 0, ,01 0, ,00 0, ,00 0, ,00 0, ,00 0, ,01 0, ,01 0, ,01 1, ,00 1, ,00 1, ,00 1,00 Kumulierte relative Häufigkeiten ~ Empirische Verteilungsfunktion 8 Statistik 1 - Verteilungsfunktion und Quantile 4

5 Empirische Verteilungsfunktion 1,00 0,80 0,60 0,40 0,20 Graphische Darstellung ~ Treppenfunktion 0, Statistik 1 - Verteilungsfunktion und Quantile Empirische Verteilungsfunktion (Leseprobe) % der Studenten sind 60% < 176 kleiner gleich 176 cm Statistik 1 - Verteilungsfunktion und Quantile 5

6 Eigenschaften der empirischen Verteilungsfunktion Treppenfunktion Bei jedem beobachteten Wert findet sich ein vertikaler Anstieg Die Höhe des Anstiegs beim Wert x i ist n(x=x i )/n = h(x i ) gleich der relativen Häufigkeit dieses Wertes Hohe Sprünge ~ häufiger Wert Steiler Verlauf ~ hohe Wertedichte Treten in einem Wertebereich keine Werte auf, so verläuft die empirische Verteilungsfunktion in diesem Bereich horizontal 11 Statistik 1 - Verteilungsfunktion und Quantile Unterschiedliche Sprunghöhen 1,00 0,80 0,60 0,40 h(x=174)=0.05 0,20 h(x=163)= , Statistik 1 - Verteilungsfunktion und Quantile 6

7 Konstante Bereiche ~ keine Werte Empirische Verteilungsfunktion keine Werte 158 bzw kg 13 Statistik 1 - Verteilungsfunktion und Quantile Eigenschaften der emp. Verteilungsfunktion Treppenfunktion Bei jedem beobachteten Wert findet sich ein vertikaler Anstieg Die Höhe des Anstiegs beim Wert x i ist n(x=x i )/n = h(x i ) Hohe Sprünge ~ häufiger Wert Steiler Verlauf ~ hohe Wertedichte Treten in einem Wertebereich keine Werte auf, so verläuft die emp. Verteilungsfunktion in diesem Bereich horizontal Die emp. Verteilungsfunktion ist monoton steigend Die Funktionswerte liegen zwischen 0 und 1 14 Statistik 1 - Verteilungsfunktion und Quantile 7

8 Kumulierte Häufigkeiten (klassierte Daten) Bereich n i h i N i H i 150+ bis ,03 3 0, bis ,04 7 0, bis , , bis , , bis , , bis , , bis , , bis , , bis , , bis , Gesamt Statistik 1 - Verteilungsfunktion und Quantile Verteilungsfunktion bei klassierten Daten 1 0,9 0,8 0,7 Beachte: Bei klassierten Merkmalen ist eine Interpolation als Approximation an die Treppenfunktion zulässig! 0,6 0,5 0,4 H(175)=0,56 0,3 0,2 0,1 H(170)=0,33 Klassenobergrenzen Statistik 1 - Verteilungsfunktion und Quantile 8

9 Verteilungsfunktion bei klassierten Daten Bei klassierten Daten können exakte Werte nur an den oberen Klassengrenzen bestimmt werden Ein näherungsweise Bestimmung der Werte der Verteilungsfunktion kann unter der Annahme der Gleichverteilung innerhalb der Klassen, mittels linearer Interpolation erfolgen In der Graphik bedeutet dies, dass wir die Punkte durch Geradenstücke zu einer durchgezogenen Linie verbinden Die Steigung dieser Geradenstücke entspricht der Dichte in der Klasse Man nennt diese Approximation der empirischen Verteilungsfunktion bei klassierten Daten auch die Summenkurve 17 Statistik 1 - Verteilungsfunktion und Quantile Summenkurve 1 0,9 0,8 0,7 0,6 0,5 0,4 H(175)=0,56 0,3 0,2 H(170)=0,33 0, Statistik 1 - Verteilungsfunktion und Quantile 9

10 Verteilungsfunktion bei klassierten Daten (Beispiel) Aus der Tabelle könne wir folgende Informationen ablesen 56% der Studenten sind kleiner gleich 175 cm 33% der Studenten sind kleiner gleich 170 cm Frage: Wieviel % der Studenten sind kleiner gleich 172 cm? Exakte Antwort aus klassierten Daten nicht mehr möglich Näherungsweise Lösung: Lineare Interpolation 19 Statistik 1 - Verteilungsfunktion und Quantile Interpolation Gesucht ist der Funktionswert der Summenkurve an der Stelle x: F(x)=F(u F(u i )+y F(o i ) F(u i ) x y=? F(u i ) u i oi 20 Statistik 1 - Verteilungsfunktion und Quantile 10

11 Anwendung des Strahlensatzes y : {F(o i )-F(u i )} = (x-u i ) : (o i -u i ) y : h i = (x-u i ) : b i F(x) =F(u i ) + (x-u i )/ b i *h i y=? x F(o i ) h i = F(o i )-F(u i ) F(u i ) b i = (o i -u i ) u i oi 21 Statistik 1 - Verteilungsfunktion und Quantile Im Beispiel F(x) =F(u i ) + (x-u i )/ b i *h i F(172) = 0,33 + 2/5*0,23 23 = 0,33+0,092=0,422 y=? F(u i )=0,33 x=172 F(o i )=0,56 h i = F(o i ) - F(u i )=0,23 b i = (o i -u i ) =5 u i =170 o i = Statistik 1 - Verteilungsfunktion und Quantile 11

12 Summary Die Interpolation auf der Basis der Summenkurve (klassierte Daten) hat ergeben, dass 42,2% der Studenten kleiner gleich 1,72m sind. Auf Basis der Einzeldaten (siehe Folie 8) ergab sich jedoch ein Wert von 40%. Die Abweichung begründet sich aus dem Informationsverlust, der sich durch die Klassierung ergeben hat. Solche Techniken sind für die Analyse von Sekundärdaten bedeutsam. Beachte aber dabei immer, die implizite Unschärfe. 23 Statistik 1 - Verteilungsfunktion und Quantile Konzept der Quantile Das Teilen eines geordneten Datensatz in q gleich große Teilmengen ist die Motivation für Quantile Die Quantile markieren die Grenzen zwischen aufeinanderfolgende f d Til Teilmengen Quartiles of a Distribution q(75%)=182,4 q(50%)=136,8 q(25%)=103,5 3rd Quartile (Upper Quartile) 2nd Quartile (Median) 1st Quartile (Lower Quartile) Statistik 1 - Verteilungsfunktion und Quantile 12

13 Empirisches Quantil Ausgehend von einem Anteilswert p (y-achse) wird der zugehörige Wert bestimmt, für den F(x) zum ersten mal größer als oder zumindest gleich groß wie p ist. Das bedeutet ein p-quantil ist jener möglichst kleine Merkmalswert für den gerade noch gilt, dass p-prozent der Beobachtungen kleiner gleich als eben dieser Merkmalswert sind. 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, Statistik 1 - Verteilungsfunktion und Quantile Empirisches Quantil 0 < p < 1 Datensatz: x 1,..., x n Das Empirische p-quantil x p ist dann der kleinste Wert x für den F(x) p gilt. Seien x (1),... x (n) die geordneten Werte: x p =x (k), ist also der k-te Wert in der geordneten Stichprobe, wobei k wie folgt gegeben ist: (k-1)/n < p k/n 26 Statistik 1 - Verteilungsfunktion und Quantile 13

14 Beispiele zu empirischen Quantilen Gesucht ist ein Wert, so dass 95% der Studenten kleiner gleich diesem Wert sind Datensatz Körpergröße n=100 p=0,95 x 0,95 =? (k-1)/n < p k/n (k-1) < np k (k-1) < 95 k ==> k=95 x 0,95 = 188 Datensatz produktives Denken n=120 x 0,50 =? p=0,5 (k-1) < 120*0,5 k ==> k=60 x 0,50 = 7 27 Statistik 1 - Verteilungsfunktion und Quantile Bestimmung des Quantils 1,00 0,80 0,60 F(X=188)=0,96 0,40 0,20 0, Statistik 1 - Verteilungsfunktion und Quantile 14

15 Wichtige Quantile Einige wichtige Quantile, die häufig kommuniziert werden tragen einen eigenen Namen: Terzile x 033 0,33 x 066 0,66 Quartile x 0,25 x 0,5 x 0,75 Dezile x 0,1... x 0,9 Perzentile x 0,01, x 0,02... x 0,99 Für kleine Stichproben sind Quantile nicht eindeutig definiert Beachte: Unterschiedliche Softwaresysteme verwenden leicht unterschiedliche Definitionen von Quantilen 29 Statistik 1 - Verteilungsfunktion und Quantile Anwendung von Quantilen in Einkommensstatistik Vertikale und intra-industrielle Lohn- und Gehaltsstreuung in Österreich M. Mesch, Materialien zur Wirtschaft, 2004 AK 30 Statistik 1 - Verteilungsfunktion und Quantile 15

16 Anwendung von Dezilen Quelle: Statistik Austria 31 Statistik 1 - Verteilungsfunktion und Quantile Empirische Quantile bei klassierten Daten Bei klassierten Daten ergibt sich das p-quantil durch Interpolation Ausgangspunkt ist jene Klasse, in der die kumulierten Häufigkeiten den p-wert übersteigen 32 Statistik 1 - Verteilungsfunktion und Quantile 16

17 Bestimmung des 0,5 Quantils Bereich n i h i N i H i 150+ bis ,03 3 0, bis ,04 7 0, bis , , bis , , bis , , bis , , bis , , bis , , bis , , bis , Gesamt Statistik 1 - Verteilungsfunktion und Quantile Empirische Quantile bei klassierten Daten y : b i = (p-f(u i )) : h i F(o i ) x p = u i + (p-f(u i ))/ h i *b i p y h i = F(o i )-F(u i ) F(u i ) b i = (o i -u i ) u i oi 34 Statistik 1 - Verteilungsfunktion und Quantile 17

18 Empirische Quantile bei klassierten Daten y : 5= (0,5-0,33): 0,23 F(o i )=0,56 X 0,5 = ,17/0,23*5=173,7 p=0,5 h i = F(o i )-F(u i ) =0,23 F(u i )=0,33 y b i = ( ) = Statistik 1 - Verteilungsfunktion und Quantile Empirische Quantile Beispiel: Körpergröße (Originalwerte) 1.Quartil = x Quartil = x Quartil = x 0.75 Five Digits Summary Min. 1st Qu. 2nd Qu. 3rd Qu. Max x (1) x (25) x (50) x (75) x (100) 36 Statistik 1 - Verteilungsfunktion und Quantile 18

19 Box-Plots Basierend auf den 5 zusammenfassenden Werten einer Verteilung: Minimum, 1.Quartil, 2.Quartil, 3.Quartil und Maximum lassen sich instruktive Graphiken zur Darstellung einer Verteilung entwickeln, die insbesondere zum Vergleich mehrerer Gruppen gut geeignet sind. Häufig werden die horizontal begrenzenden Linien nicht bis zum Minimum und Maximum der Daten gezogen. Die Balkenlänge wird mit der 1,5-fachen Boxhöhe begrenzt und extreme Datenwerte werden extra markiert. 37 Statistik 1 - Verteilungsfunktion und Quantile Boxplot (Box-Whisker-Plot) Maximum bzw. Obergrenze maximal 1,5-fache Boxlänge 75% Quantil Median 25% Quantil Minimum bzw. Untergrenze 38 Statistik 1 - Verteilungsfunktion und Quantile 19

20 Zur Interpretation von Boxplots 39 Statistik 1 - Verteilungsfunktion und Quantile Beispiel einer rechtsschiefen Verteilung x.r 40 Statistik 1 - Verteilungsfunktion und Quantile 20

21 Beispiel einer linksschiefen Verteilung x.l 41 Statistik 1 - Verteilungsfunktion und Quantile Vergleich von Verteilungen g g g Density Density Density

22 Vergleich von Verteilungen Pisa Studie 2000 Darstellung von E. Neuwirth 44 Statistik 1 - Verteilungsfunktion und Quantile 22

23 Pisa Studie 2000 Darstellung von E. Neuwirth 45 Statistik 1 - Verteilungsfunktion und Quantile 4 alternative Darstellungen eines Datensatzes Histogram Boxplot Fre equency Kernel Estimate Distribution Function Statistik 1 - Verteilungsfunktion und Quantile 23

24 4 alternative Darstellungen eines Datensatzes Histogram Boxplot Fre equency Kernel Estimate Distribution Function Statistik 1 - Verteilungsfunktion und Quantile Kombination von Darstellungsvarianten Die kombinierte unterschiedlicher Darstellungstypen ist durchaus empfehlenswert, um die Form der Verteilung besser zu verstehen bzw. zu kommunizieren 48 Statistik 1 - Verteilungsfunktion und Quantile 24

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Bestimmen von Quantilen

Bestimmen von Quantilen Workshop im Rahmen der VIV-Begabtenförderung Bestimmen von Quantilen Wie Rückwärtsdenken in der Stochastik hilft Leitung: Tobias Wiernicki-Krips Samstag, 10. Januar 2015 1 / 29 Motivation Wie bestimmt

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

Wahrscheinlichkeits - rechnung und Statistik

Wahrscheinlichkeits - rechnung und Statistik Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

4. Auswertung eindimensionaler Daten

4. Auswertung eindimensionaler Daten 4. Auswertung eindimensionaler Daten Ziel dieses Kapitels: Präsentation von Methoden zur statistischen Auswertung eines einzelnen Merkmals 64 Bezeichnungen (Wiederholung): Merkmalsträger: e 1,..., e n

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter)

Beispiel 2 (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) Beispiel (Einige Aufgaben zu Lageparametern) Aufgabe 1 (Lageparameter) 1 Ein Statistiker ist zu früh zu einer Verabredung gekommen und vertreibt sich nun die Zeit damit, daß er die Anzahl X der Stockwerke

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

3 Häufigkeitsverteilungen

3 Häufigkeitsverteilungen 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Häufigkeiten und ihre Verteilung, oder: Zusammenfassende Darstellungen einzelner Variablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen

Mehr

Verteilungen und ihre Darstellungen

Verteilungen und ihre Darstellungen Verteilungen und ihre Darstellungen Übung: Stamm-Blatt-Diagramme Wie sind die gekennzeichneten Beobachtungswerte eweils zu lesen? Tragen Sie in beiden Diagrammen den Wert 0.452 an der richtigen Stelle

Mehr

2. Eindimensionale (univariate) Datenanalyse

2. Eindimensionale (univariate) Datenanalyse 2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten

Mehr

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung

Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52 2 Häufigkeitsverteilungen 2.0 Grundbegriffe Ziel: Darstellung bzw. Beschreibung (Exploration) einer Variablen. Ausgangssituation: An n Einheiten ω 1,..., ω n sei das Merkmal X beobachtet worden. x 1 =

Mehr

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - -

N 1 0 50 0.5 50 0.5 2 1 20 0.2 70 0.7 3 2 15 0.15 85 0.85 4 3 10 0.1 95 0.95 5 4+ 5 0.05 100 1-100 1.00 - - 2 Deskriptive Statistik 1 Kapitel 2: Deskriptive Statistik A: Beispiele Beispiel 1: Im Rahmen einer Totalerhebung der Familien eines Dorfes (N = 100) wurde u.a. das diskrete Merkmal Kinderanzahl (X) registriert.

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike persike@uni-mainz.de

Mehr

Fachrechnen für Tierpfleger

Fachrechnen für Tierpfleger Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:

Mehr

Statistik 1 für SoziologInnen. Univariate Häufigkeitstabellen Tabellarische und graphische Aufbereitung von Daten

Statistik 1 für SoziologInnen. Univariate Häufigkeitstabellen Tabellarische und graphische Aufbereitung von Daten Statistik 1 für SoziologInnen Univariate Häufigkeitstabellen Tabellarische und graphische Aufbereitung von Daten Univ.Prof. Dr. Marcus Hudec Absolute Häufigkeiten diskreter Merkmale X sei ein diskretes

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 07052013 Mittelwerte und Lagemaße II 1 Anwendung und Berechnung

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 16. April 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 2 1 ii) empirische

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe

Mehr

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg

Lagemaße Übung. Zentrale Methodenlehre, Europa Universität - Flensburg Lagemaße Übung M O D U S, M E D I A N, M I T T E L W E R T, M O D A L K L A S S E, M E D I A N, K L A S S E, I N T E R P O L A T I O N D E R M E D I A N, K L A S S E M I T T E Zentrale Methodenlehre, Europa

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

3 Lage- und Streuungsmaße

3 Lage- und Streuungsmaße 3 Lage- und Streuungsmaße Grafische Darstellungen geben einen allgemeinen Eindruck der Verteilung eines Merkmals, u.a. von Lage und Zentrum der Daten, Streuung der Daten um dieses Zentrum, Schiefe / Symmetrie

Mehr

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen.

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen. 4. Analyse univariater Daten: Übersicht Mathematik ist die Wissenschaft der reinen Zahl, Statistik die der empirischen Zahl Von univariaten Daten spricht man, wenn bei der Datenerhebung nur ein Merkmal

Mehr

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n

Lösung Aufgabe 19. ( ) = [Mio Euro]. Empirische Varianz s 2 = 1 n Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 4 Gerhard Tutz, Jan Ulbricht, Jan Gertheiss WS 07/08 Lösung Aufgabe 9 (a) Lage und Streuung: Arithmetisches Mittel x = n i=

Mehr

Statistik - Übungsaufgaben

Statistik - Übungsaufgaben Statistik - Übungsaufgaben 1) Eine vor mehreren Jahren durchgeführte Befragung von 30 Arbeitern eines Großbetriebes ergab für die Stundenlöhne folgende Liste: 16,35 16,80 15,75 16,95 16,20 17,10 16,64

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Kapitel 2. Univariate Analyse. 2.1 Darstellung univariater Datensätze Darstellung qualitativer Merkmale

Kapitel 2. Univariate Analyse. 2.1 Darstellung univariater Datensätze Darstellung qualitativer Merkmale Kapitel 2 Univariate Analyse Wir wollen nun Strukturen in Datensätzen finden. Dabei betrachten wir zunächst jeweils nur ein Merkmal. Man spricht auch von univariater Datenanalyse. Jede Analyse beginnt

Mehr

4 Statistische Maßzahlen

4 Statistische Maßzahlen 4 Statistische Maßzahlen 4.1 Maßzahlen der mittleren Lage 4.2 Weitere Maßzahlen der Lage 4.3 Maßzahlen der Streuung 4.4 Lineare Transformationen, Schiefemaße 4.5 Der Box Plot Ziel: Charakterisierung einer

Mehr

Methoden der Datenanalyse

Methoden der Datenanalyse Methoden der Datenanalyse Andreas Handl Torben Kuhlenkasper 8. Januar 2016 1 Grundlage des vorliegenden Skripts sind Aufzeichnungen von Andreas Handl, die er bis zum Jahr 2007 an der Universität Bielefeld

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Kapitel 3: Eindimensionale Häufigkeitsverteilungen

Kapitel 3: Eindimensionale Häufigkeitsverteilungen Kapitel 3: Eindimensionale Häufigkeitsverteilungen. Unklassierte Daten...29 a) Häufigkeitsverteilung...29 b) Tabellen und Graphiken...3 c) Summenhäufigkeiten...34 2. Klassierte Daten...38 a) Größenklassen...38

Mehr

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1 1 Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 1 (a) Es sollen die mathematischen Vorkenntnisse der Studenten, die die Vorlesung Statistik I für Statistiker,

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

3. Übung Deskription und Diagnose Wer oder was ist normal?

3. Übung Deskription und Diagnose Wer oder was ist normal? Querschnittsbereich 1: Epidemiologie, Medizinische Biometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 3. Übung Deskription und Diagnose Wer

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

Assoziation & Korrelation

Assoziation & Korrelation Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den

Mehr

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung

1.8 Kolmogorov-Smirnov-Test auf Normalverteilung 1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen

Mehr

Fachhochschule Düsseldorf Wintersemester 2008/09

Fachhochschule Düsseldorf Wintersemester 2008/09 Fachhochschule Düsseldorf Wintersemester 2008/09 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 26.01.2009 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige

Mehr

Beschreibende Statistik Eindimensionale Daten

Beschreibende Statistik Eindimensionale Daten Mathematik II für Biologen 16. April 2015 Prolog Geordnete Stichprobe Rang Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten Erkennung potentieller Eindimensionales

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

Datenanalyse aus einer Urliste

Datenanalyse aus einer Urliste Datenanalyse aus einer Urliste Worum geht es in diesem Modul? Geordneter Datensatz und Extremwerte Empirische Verteilungsfunktion Bestimmung von Quantilen Spezielle Quantile Median und Angeln Fünf-Zahlen-Zusammenfassung

Mehr

STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme. 1 Kurze Wiederholung. Warum nur zwei grafische Darstellungsformen?

STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme. 1 Kurze Wiederholung. Warum nur zwei grafische Darstellungsformen? STATISTIK I Übung 07 Box-Plots und Stem-and-Leaf-Diagramme 1 Kurze Wiederholung Warum nur zwei grafische Darstellungsformen? Im Rahmen der Vorlesungen haben wir kurz eine ganze Reihe grafischer Darstellungsformen

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

2. Mathematik-Schularbeit für die 6. Klasse Autor: Gottfried Gurtner

2. Mathematik-Schularbeit für die 6. Klasse Autor: Gottfried Gurtner 2. Mathematik-Schularbeit für die 6. Klasse Autor: Gottfried Gurtner Arbeitszeit: 100 Minuten Lernstoff: Mathematische Grundkompetenzen: AG2.1, AG2.2, AG2.3 FA1.1, FA1.5, FA1.6, FA1.7, FA1.9 FA2.1, FA2.2,

Mehr

Kai Schaal. Universität zu Köln

Kai Schaal. Universität zu Köln Deskriptive Statistik und Wirtschaftsstatistik Tutorium zur Anwendung von Statistik 1 in Excel Kai Schaal Universität zu Köln Organisatorisches und Einleitung (1) Was, wann, wo? Anwendung von Statistik

Mehr

1 Verteilungen und ihre Darstellung

1 Verteilungen und ihre Darstellung GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen

Mehr

Anwendung A_0801_Quantile_Minimum_Maximum

Anwendung A_0801_Quantile_Minimum_Maximum 8. Lageparameter 63 8.3 Interaktive EXCEL-Anwendungen (CD-ROM) Anwendung A_080_Quantile_Minimum_Maimum Die Anwendung besteht aus einem Tabellenblatt Simulation : In der Simulation wird aus einer Urliste

Mehr

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe

Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Vorlesung Grundlagen der Biometrie WS 2011/12 1. Grundbegriffe Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 1. Grundbegriffe der beschreibenden Statistik Statistische Einheiten, Grundgesamtheit

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

2 Statistische Maßzahlen

2 Statistische Maßzahlen 2 Statistische Maßzahlen Übersicht 2.1 Quantile, speziellmedian, QuartileundPerzentile... 25 2.2 Modus, Median, arithmetischesmittel... 28 2.3 Arithmetisches,geometrisches,harmonischesMittel... 31 2.4

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Das Histogramm, bzw. Stabdiagramm / Histogramm / Balkendiagramm

Das Histogramm, bzw. Stabdiagramm / Histogramm / Balkendiagramm Histogram / Histogramm / histogram Akademische Disziplin der Statistik/academic field of statistics/ la discipline statistique/estadística/disciplina academica della statistica deskriptive Statistik/descriptive

Mehr

Statistik I WS 2014/2015. Prof. Dr. Walter Krämer

Statistik I WS 2014/2015. Prof. Dr. Walter Krämer Statistik I WS 2014/2015 Prof. Dr. Walter Krämer Organisatorisches Dozenten: Vorlesung: Prof. Dr. Walter Krämer Übungen: Dipl.-Stat. Marianthi Neblik cand.stat. Eva-Maria Becker cand.stat. Nicole Dauzenroth

Mehr

Inhaltsverzeichnis. Teil I Einführung

Inhaltsverzeichnis. Teil I Einführung Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Gliederung der Vorlesung Statistische Grundlagen Etremwertstatistik

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung)

Mehr

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?

Mehr

Eine Einführung in R: Deskriptive Statistiken und Graphiken

Eine Einführung in R: Deskriptive Statistiken und Graphiken Eine Einführung in R: Deskriptive Statistiken und Graphiken Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 28. Oktober 2010 Bernd

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Statistik für BiologInnen

Statistik für BiologInnen Statistik für BiologInnen Wolfgang Desch Institut für Mathematik und Wissenschaftliches Rechnen Karl-Franzens-Universität Graz 1. Beschreibende Statistik 2. Zufallsgrößen 3. Statistisches Schätzen und

Mehr

Stochastik und Statistik

Stochastik und Statistik Stochastik und Statistik p. 1/44 Stochastik und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Stochastik und Statistik p. 2/44 Daten Schätzung Test Mathe Die Datenminen

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Beschreibung von Daten

Beschreibung von Daten Kapitel 1 Beschreibung von Daten 1.1 Beispiele zum Üben 1.1.1 Aufgaben Achtung: die Nummerierung ist nicht ident mit der im Buch; Bsp. 1-1 enspricht Bsp 2-20 im Buch, 1-2 2-21 im Buch usw. 1 1 In einem

Mehr

Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit

Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit Beschreibende Statistik Deskriptive Statistik Schließende Statistik Inferenzstatistik Beschreibung der Stichprobe Schluss von der Stichprobe auf die Grundgesamtheit Keine Voraussetzungen Voraussetzung:

Mehr

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43

1 45, 39, 44, 48, 42, 39, 40, , 31, 46, 35, 31, 42, 51, , 42, 33, 46, 33, 44, 43 1) Ermittle jeweils das arithmetische Mittel. Ordne die Datenerhebungen nach der Größe der arithmetischen Mittel. Beginne mit dem Größten. 1 45, 39, 44, 48, 42, 39, 40, 31 2 35, 31, 46, 35, 31, 42, 51,

Mehr

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche

Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael

Mehr

Musterlösung zur Aufgabensammlung Statistik I Teil 3

Musterlösung zur Aufgabensammlung Statistik I Teil 3 Musterlösung zur Aufgabensammlung Statistik I Teil 3 2008, Malte Wissmann 1 Zusammenhang zwischen zwei Merkmalen Nominale, Ordinale Merkmale und Mischungen Aufgabe 12 a) x\ y 1.Klasse 2.Klasse 3.Klasse

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 28.05.2013 Konzentrationsmaße 1. Konzentrationsbegriff

Mehr

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Skript zur Vorlesung Statistik

Skript zur Vorlesung Statistik Skript zur Vorlesung Statistik Dietrich Baumgarten 9. April 2009 Inhaltsverzeichnis 1 Grundlagen 7 1.1 Die zwei Begriffe der Statistik........................ 7 1.2 Gliederung einer statistischen Erhebung..................

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Übungsaufgaben zu Kapitel 2 und 3... 2 Aufgabe 1... 2 Aufgabe 2... 2 Aufgabe 3... 2 Aufgabe 4... 2 Aufgabe 5... 3 Aufgabe 6... 3 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9... 4 Aufgabe

Mehr

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten

absolute Häufigkeit h: Anzahl einer bestimmten Note relative Häufigkeit r: Anzahl einer bestimmten Note, gemessen an der Gesamtzahl der Noten Statistik Eine Aufgabe der Statistik ist es, Datenmengen zusammenzufassen und darzustellen. Man verwendet dazu bestimmte Kennzahlen und wertet Stichproben aus, um zu Aussagen bzw. Prognosen über die Gesamtheit

Mehr