Gravitationswellen Eine Einführung aus Anlaß des 100. Jubiläums der Allgemeinen Relativitätstheorie. Karl-Heinz Lotze, Jena

Größe: px
Ab Seite anzeigen:

Download "Gravitationswellen Eine Einführung aus Anlaß des 100. Jubiläums der Allgemeinen Relativitätstheorie. Karl-Heinz Lotze, Jena"

Transkript

1 Gravitationswellen Eine Einführung aus Anlaß des 100. Jubiläums der Allgemeinen Relativitätstheorie Karl-Heinz Lotze, Jena

2 Teil I Elektrostatik und Gravitostatik

3 Elektrostatik und Gravitostatik ein Vergleich Wie schwer ist es, einen Körper zu beschleunigen (alle Kräfte)? m I a = F, m I : träge Masse Elektrostatik Wie stark koppelt ein elektrisch geladener Körper an ein elektrisches Feld (Feldstärke E)? Erfahrung: F E = qe, a = q m I E, q: elektrische Ladung q m I : spezifische elektrische Ladung q m I 0

4 Elektrostatik und Gravitostatik ein Vergleich Wie schwer ist es, einen Körper zu beschleunigen (alle Kräfte)? m I a = F, m I : träge Masse Gravitostatik Wie stark koppelt ein gravitativ geladener Körper an ein Schwerefeld (Feldstärke g)? Kurz: Wie schwer ist der Körper? F G = m G g, a = m G m I g, m G : (passive) Gravitationsladung, schwere Masse m G m I : spezifische Gravitationsladung Erfahrung: Universalität der Gravitation m G(1) m I(1) = m G(2) m I(2) =... = const, (const = 1)

5 Universalität der Gravitation Quelle: National Geographic

6 Universalität der Gravitation

7 Gedankenexperiment: Einsteins Fahrstuhl Lokales Gedankenexperiment: Innerhalb der Fahrstuhlkabine ist die Änderung des Schwerefeldes unbeobachtbar klein ( g = g k, g = const). Galileisches Fallgesetz für den Apfel: F = m G(1) g Beschleunigung der Kabine: z 0 = m G(2) m I(2) g m I(1) z = F m I(1) z 0 ( z = m G(1) + m ) G(2) g m I(1) m I(2) z (t) = z(t) z 0 (t) z = 0 für m G = m I

8 Schwerelosigkeit Die Relativität des freien Falls z = 0 für m G = m I Keine Relativbeschleunigung zwischen Apfel und Kabine, Schwerelosigkeit Bewegung des Apfels relativ zur Kabine (je nach Anfangsbedingungen): Ruhe geradlinig-gleichförmige Bewegung Vergleich mit dem Trägheitsgesetz: Der Innenraum der Kabine ist ein Inertialsystem.

9 Das Äquivalenzprinzip In einem kleinen Labor, das in einem Schwerefeld frei fällt, sind die Gesetze der Physik dieselben wie jene, die in Abwesenheit eines Schwerefeldes in einem Newtonschen Inertialsystem gelten.

10 Das Äquivalenzprinzip andere Formulierungen Kein lokales Experiment kann zwischen freiem Fall im Schwerefeld und geradlinig-gleichförmiger Bewegung (Ruhe) in Abwesenheit eines Schwerefeldes unterscheiden.

11 Das Äquivalenzprinzip andere Formulierungen Ein gleichmäßig gegenüber einem Inertialsystem (Fixsternhimmel) beschleunigtes Bezugssystem ist lokal identisch mit einem Bezugssystem, das in einem Schwerefeld ruht.

12 Nichtlokale Gedankenexperimente Nichtlokales Gedankenexperiment: Innerhalb der Fahrstuhlkabine ist die Änderung des Schwerefeldes beobachtbar. Newtonsches Fallgesetz: F = GMm r r 2 r Beschleunigung des Kreismittelpunktes: r 0 = GM k z0 2 Relativbeschleunigung des Apfels in bezug auf den Kreismittelpunkt: m r = F m r 0

13 Nichtlokale Gedankenexperimente für r z 0 : Fazit: m r = F m r 0 r GM z 3 0 (x i 2z k ) Schwerelosigkeit ( r = 0) existiert nur in einem Punkt, dem Kreismittelpunkt bei x = 0 = z.

14 Die Gezeiten r GM z 3 0 (x i 2z k ) longitudinale (vertikale) Gezeitenwirkung z GM { z0 2 2 z < 0 für z } < 0 z 0 > 0 für z zwei (!) Gezeitenberge > 0 transversale (horizontale) Gezeitenwirkung ẍ GM z 2 0 x { > 0 für x < 0 z 0 < 0 für x > 0

15 Nichtlokale Gedankenexperimente aber Inhomogenes Schwerefeld im Innern des Labors homogenes Beschleunigungsfeld im Innern des Raumschiffs.

16 Nichtlokale Gedankenexperimente aber Inhomogenes Schwerefeld im Innern des Labors homogenes Beschleunigungsfeld im Innern des Raumschiffs. Fazit: Die Anwesenheit eines Schwerefeldes ist durch seine Änderung feststellbar. Das Äquivalenzprinzip gilt für lokale Experimente.

17 Teil II Elektromagnetische Strahlung und Gravitationsstrahlung

18 Elektrodynamik und Gravitodynamik Wellen 1864: J.C. Maxwell sagt elektromagnetische Wellen voraus. 1888: H. Hertz weist elektromagnetische Wellen im Labor nach. 1916: A. Einstein sagt Gravitationswellen voraus. 1974: R. Hulse & J. Taylor entdecken den Doppelpulsar PSR : R. Hulse & J. Taylor interpretieren die Periodenänderung des Doppelpulsars als indirekten Nachweis von Gravitationswellen. 2015: 100. Jubiläum der Allgemeinen Relativitätstheorie. Direkter Nachweis von Gravitationswellen am , bekanntgegeben am

19 Fragen Warum sind Gravitationswellen so schwach? In welcher Beziehung steht diese Schwäche zu dem grundlegenden Unterschied zwischen Elektromagnetismus und Gravitation? Warum Gravitationswellen-Astronomie?

20 Elektromagnetische Wellen Der Feldlinien-Knick

21 Elektrische Dipole erzeugen elektromagnetische Wellen Beschleunigte Bewegung infolge der elastischen Kraft (elektrische oder gravitative Anziehung wird vernachlässigt). x 1 = l 0 2 m 2 m 1 A sin ωt x 2 = l A sin ωt Eigenfrequenz: k: Federkonstante l 0 : Länge der entspannten Feder µ: reduzierte (träge) Masse ω = k µ mit µ m 1m 2 m 1 + m 2

22 Elektrische Dipole erzeugen elektromagnetische Wellen Reduzierte Masse: Spezialfälle: µ m 1m 2 m 1 + m 2 m 1 = m 2 m : µ = m 2, ω = 2 k m k m 1 m 2 : µ m 2, ω = m 2 Anfangsbedingungen: x 1 (0) = l 0 2, ẋ 1(0) = 0 x 2 (0) = l 0 2, ẋ 2(0) = v 0 Amplitude: A = µ m 2 v 0 ω

23 Das elektrische Dipolmoment d = q 1 x 1 + q 2 x 2 = l 0 2 (q 2 q 1 ) + Der erste Term d 1 : zeitunabhängig invariant, falls q 1 + q 2 = 0 (z.b. für q 2 = q, q 1 = q: d 1 = l 0 q) Der zweite Term d 2 : zeitabhängig ( q2 q ) 1 m m I(2) m I(2) A sin ωt I(1) verschwindet, falls spezifische elektrische Ladungen gleich sind

24 Das elektrische Dipolmoment Der zweite Term d 2 Spezialfälle: für q 2 = q, q 1 = q ist d 2 = q v 0 ω sin ωt q 1 = 0, m 1 m 2 d 2 = q 2 v 0 ω sin ωt Eine einzelne elektrische Ladung in harmonischer Bewegung hat ein Dipolmoment.

25 Dipolstrahlung Eine Dimensionsanalyse Wheeler s Prinzip: Never start a calculation before you know the answer! Systemparameter: q, A, ω Naturkonstanten: ε 0, c q 2 = q, q 1 = q Ohne Herleitung: Die Dipolformel für die abgestrahlte Leistung E t = 1 2 d 2 4πε 0 3c 3 t

26 Dipolstrahlung Eine Dimensionsanalyse Dimensionsanalyse für die abgestrahlte Leistung (Leuchtkraft): Ansatz: E t (qa)α ω β c γ ε δ 0 Vergleich der Exponenten: VA = V δ A α+δ m α+γ δ s α β γ+δ Lösung: α = 2, β = 4, γ = 3, δ = 1 E t ω 4 (qa)2 ε 0 c 3 Fehlender Faktor: 1 12π

27 Beispiel: Das Rutherford-Atom Überlagerung von zwei Dipolen, die in zwei orthogonalen Richtungen schwingen. q = e, A r Larmor-Formel: x = r cos ωt y = r sin ωt E t = ω 4 (er)2 6πε 0 c 3 Rückwirkung: Lebensdauer des Atoms τ = E 10 E 10 s t Bohrsches Atommodell, Quantenmechanik...

28 Massendipole erzeugen keine Gravitationswellen Gravitatives Dipolmoment: d = l 0 2 ( ) mg(2) (m G(2) m G(1) + m ) G(1) m m I(2) m I(2) A sin ωt I(1) Der erste Term d 1 : zeitunabhängig m G(1) + m G(2) > 0 Es ist immer möglich, das Schwerpunkt- System zu wählen.

29 Massendipole erzeugen keine Gravitationswellen Der zweite Term d 2 : Fazit: Universalität der Gravitation m G(2) m I(2) m G(1) m I(1) = 0 Keine gravitativ ungeladenen Körper; je träger ein Körper ist, desto schwerer ist er. Kein zeitabhängiges Massen-Dipolmoment. Keine gravitative Dipol-Strahlung!

30 Die Matrix der Quadrupolmomente Das Quadrupolmoment einer diskreten Massenverteilung: N Q ij = m (k) x i(k) x j(k) k=1 Das reduzierte Quadrupolmoment (spurfrei) Q ij = Q ij 1 3 δ ijq, mit Q tr (Q ij )

31 Beispiel: Der harmonische Oszillator Q 11 = m ( A 2 + l2 0 2 ) + 2ml 0 A sin ωt ma 2 cos 2ωt, Q = Q 11 Der erste Term: zeitunabhängig Der zweite Term: dominant für A l 0 m 1 = m 2 = m, A l 0 ( ) Q ij = 2 3 ml 0A sin ωt diag(2, 1, 1)

32 Quadrupol-Strahlung Eine Dimensionsanalyse Systemparameter: m, l 0, A, ω Naturkonstanten: G, c m 1 = m 2 = m, A l 0 Ohne Herleitung: Die Quadrupol-Formel für die abgestrahlte Leistung E Q ij Q ij t = 1 t 5 c 5, (Summenkonvention) G

33 Quadrupol-Strahlung Eine Dimensionsanalyse Dimensionsanalyse für die abgestrahlte Leistung: Nur Systemparameter Ansatz: Vergleich der Exponenten: ( ) E t sys (ml 0A) α ω β Lösung: kg m 2 s 3 = kg α m 2α s β α = 1, β = 3 ( E t ) sys ml 0Aω 3

34 Quadrupol-Strahlung Eine Dimensionsanalyse Nur Naturkonstanten Ansatz: ( ) E t ref cα G β Vergleich der Exponenten: Lösung: kg m 2 s 3 = kg β m α+3β s α 2β α = 5, β = 1 ( E t )ref c5 G, Referenz-Leistung

35 Die Einstein-Leuchtkraft Die Einstein-Leuchtkraft: ( ) E = c5 t Einstein G = 3,6 J 1052 s Die einfachste Lösung: ( E ) 2 E t = ( E t t ) sys Einstein (ml 0A) 2 ω 6 c 5 G Fehlender Faktor: 4 15

36 Beispiel: Die rotierende Hantel Überlagerung von zwei harmonischen Schwingungen x 1 = x 2 = l 0 2 y 1 = y 2 = l 0 2 Fehlender Faktor: 8 m 1 = m 2 = m, masselose Stange 5 Beispiel: m = 1 kg, l 0 = 1 m, T = 1 s E t = 2, J s cos ωt sin ωt ( ) E ml 2 2 t 0 ω 6 c 5 G

37 Von der rotierenden Hantel zu den Doppelsternen Halte Ausschau nach kompakten Objekten & relativistischen Geschwindigkeiten! Wir stellen die abgestrahlte Leistung als Bruchteil der Einstein-Leuchtkraft dar. Wir führen ein: die Bahngeschwindigkeit v = l 0 2 ω den Schwarzschild-Radius R S = 2 Gm c 2 ( ) E 2 ( ) t = 128 RS v 6 c5 5 l 0 c G

38 Die Kompaktheit Wie kann man die Masse m eines Körpers in Längeneinheiten ausdrücken? Schwarzschild-Radius: R S = 2 Gm c 2 Beispiele: Erde: R Erde = 0,89 cm Sonne: R Sonne = 2,96 km Kompaktheit: C R S R mit R als typischer Größe des Systems Beispiele: Erde Sonne Weiße Zwerge Neutr.-St. Schw. Löcher 1, , ,3 1

39 Doppelsterne Anstelle der masselosen Stange der Hantel: Newtonsche Gravitation und das 3. Keplersche Gesetz T 2 (2r) 3 = 4π2 (2m)G. m 1 = m 2 = m CM: Schwerpunkt Kreisbahn, Umlaufzeit T Abgestrahlte Leistung: E t = 2 5 Halte Ausschau nach engen Binärsystemen aus Neutronensternen und/oder Schwarzen Löchern. ( ) 5 RS c5 2r G

40 Doppelsterne Beispiele 1 Der Doppel-Pulsar PSR (Hulse, Taylor) m 1 m 2 1,4 M Sun, T = 7,75 h r 1,3 R Sun = km (aber stark exzentrische Bahn) E t J s 2 Ohne Herleitung: für m 1 m 2 gilt E t = 32 5 m1 2m2 2 (m 1 + m 2 ) G 4 r 5 c 5 Sirius A, B Sonne Merkur E t 108 J s E t 75 J s

41 PSR : Die Periodenänderung Lebensdauer des Doppelsterns: E E t = 5 32π τ = T ( RS 2r ) 5/2 Beispiel: Der Doppelpulsar PSR τ = 1, yr

42 LIGO Hanford (Washington) Laser Interferometer Gravitational Wave Observatory Hanford (Washington)

43 LIGO Livingston (Louisiana) Laser Interferometer Gravitational Wave Observatory Livingston (Louisiana)

44 Das Gravitationswellen-Ereignis GW Datum: Uhrzeit: 9 h 50 m 45 s (Coordinated Universal Time) Frequenzanstieg von 35 Hz auf 250 Hz Relative Amplitude: h = Länge der Interferometerarme: L = 4 km differentielle Änderung: L = h L = m

45 Das Gravitationswellen-Ereignis GW Oben: Amplitudenverlauf. Den Livingston- Daten sind von Hanford mit einer Zeitverschiebung von 6,9 ms überlagert. Unten: Überlagerung der Messungen mit den Vorhersagen der Allgemeinen Relativitätstheorie.

46 Verschmelzung Schwarzer Löcher die neue Astronomie Die Massen des Binärsystems: M 1 = 29M, M 2 = 36M Rotverschiebung: z = 0,09 entsprechend Leuchtkraft-Entfernung: D L = 410 Mpc Die Masse des bei der Verschmelzung entstandenen Schwarzen Loches: M = 62M Abstrahlung durch Gravitationswellen: (M 1 + M 2 ) M = 3M Maximale Gravitationswellen-Leuchtkraft: L GW = 3, W, entsprechend der Ruhenergie von 200M pro Sekunde.

Gravitationswellen & -strahlung. Seminarvortrag zur Vorlesung Allgemeine Relativitätstheorie, Jens P. Herwig, 17. März 2010

Gravitationswellen & -strahlung. Seminarvortrag zur Vorlesung Allgemeine Relativitätstheorie, Jens P. Herwig, 17. März 2010 , Der Effekt der Raumstauchung ist so klein, dass man Gravitationswellen wohl nie beobachten wird (A. Einstein) - Inhalt 1. Was sind Gravitationswellen und warum sind sie für uns wichtig? 2. Wo entstehen

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Beobachtung von Gravitationswellen

Beobachtung von Gravitationswellen Beobachtung von Gravitationswellen Johannes Hölzl johannes.hoelzl@sternwarte.uni-erlangen.de Uni Erlangen-Nürnberg Allgemeine Relativitätstheorie 24. Juli 2009 Johannes Hölzl (FAU) Gravitationswellen 24.

Mehr

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden

Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden Schwarze Löcher Staubsauger oder Stargate? Kai Zuber Inst. f. Kern- und Teilchenphysik TU Dresden 4.12.2010 Das Leben des Albert E. - Relativitätstheorie Das Leben der Sterne Schwarze Löcher Wurmlöcher

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

1 Felder bewegter Ladungen

1 Felder bewegter Ladungen Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 16.10.2008 1 Felder

Mehr

Zentrifugalkraft beim Karussell

Zentrifugalkraft beim Karussell Seil, Länge L m Also: Zentrifugalkraft beim Karussell tan( α) y = α r F Z r G ω r = x r r ' KS : mitrotierendes Koordinatensystem m G r α 2 m ω g r ' F r Z F r gesamt 2 ω sin( α) L = g Fragestellung: Um

Mehr

3. N. I Einführung in die Mechanik. II Grundbegriffe der Elektrizitätslehre

3. N. I Einführung in die Mechanik. II Grundbegriffe der Elektrizitätslehre 3. N I Einführung in die Mechanik Kennen die Begriffe Kraft und Arbeit Erläutern von Vektoren und Skalaren Lösen von maßstäblichen Konstruktionsaufgaben mit dem Kräfteparallelogramm Können Kräfte messen

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

Theory German (Germany)

Theory German (Germany) Q3-1 Large Hadron Collider (10 Punkte) Lies die allgemeinem Hinweise im separaten Umschlag bevor Du mit der Aufgabe beginnst. Thema dieser Aufgabe ist der Teilchenbeschleuniger LHC (Large Hadron Collider)

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Gravitationswellenastronomie

Gravitationswellenastronomie Gravitationswellenastronomie Gravitationswellenastronomie Andreas Wetscherek Betreuer: Dr. Wolfram Schmidt Albert Einstein (1879-1955) 1 / 29 Ein Gedicht Ein Gedicht Oh Gravity Wave, No searcher has yet

Mehr

1 Einleitung: Die Lichtgeschwindigkeit

1 Einleitung: Die Lichtgeschwindigkeit 1 Einleitung: Die Lichtgeschwindigkeit In der zweiten Hälfte des 19. Jahrhunderts wurde die elektromagnetische Natur des Lichts erkannt (J. C. Maxwell, ca. 1870). Wir wollen die Argumentation kurz skizzieren.

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Schwingungen und Wellen

Schwingungen und Wellen Schwingungen Wellen Jochen Trommer jtrommer@uni-leipzig.de Universität Leipzig Institut für Linguistik Phonologie/Morphologie SS 2007 Schwingungen beim Federpendel Schwingungen beim Federpendel Wichtige

Mehr

Kreisbeschleuniger IX (Synchrotron)

Kreisbeschleuniger IX (Synchrotron) Kreisbeschleuniger IX (Synchrotron) Höhere Energien wenn B-Feld und ω HF zeitlich variieren 2 qb q c B q cb Energiegewinn/Umlauf: inn/umla ωteilchen = = E = mc Ec ω Extraktion bei B = B max bei höchsten

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Laserinterferometer. Quadrupoleigenschaft der Wellen Michelson-Interferometer! (bekannt als empfindliches Instrument zur Messung von Längenänderungen)

Laserinterferometer. Quadrupoleigenschaft der Wellen Michelson-Interferometer! (bekannt als empfindliches Instrument zur Messung von Längenänderungen) Laserinterferometer Quadrupoleigenschaft der Wellen Michelson-Interferometer! (bekannt als empfindliches Instrument zur Messung von Längenänderungen) Vorschlag als Gravitationswellendetektor bereits in

Mehr

Die Suche nach Gravitationswellen. Seminarvortrag von Achmed Touni

Die Suche nach Gravitationswellen. Seminarvortrag von Achmed Touni Die Suche nach Gravitationswellen Seminarvortrag von Achmed Touni Inhalt Theorie der Gravitationswellen Erzeugung und Quellen der Gravitationswellen Nachweis von Gravitationswellen 1.) Indirekter Nachweis

Mehr

Das gravitomagnetische Feld der Erde

Das gravitomagnetische Feld der Erde Das gravitomagnetische Feld der Erde von T. Fließbach 1. Einführung magnetisch gravitomagnetisch 2. Bezugssysteme Bevorzugte Inertialsysteme 3. Newton und Mach Absoluter Raum? 4. Drehung eines Foucault-Pendels

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Physik. Schuleigenes Kerncurriculum. Klasse Kepler-Gymnasium Freudenstadt. Schwingungen und Wellen. Elektrodynamik: Felder und Induktion

Physik. Schuleigenes Kerncurriculum. Klasse Kepler-Gymnasium Freudenstadt. Schwingungen und Wellen. Elektrodynamik: Felder und Induktion 1 Klasse 11+12 Elektrodynamik: Felder und Induktion Einführung in die Kursstufe Felder Analogien zwischen Gravitationsfeld, Magnetfeld und elektrischem Feld Eigenschaften, Visualisierung und Beschreibung

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer

Mehr

Stoffverteilungsplan Physik Gymnasium

Stoffverteilungsplan Physik Gymnasium Stoffverteilungsplan Physik Gymnasium Impulse Physik Thüringen Klassenstufe 9/10 Schülerbuch 978-3-12-772544-5 Klassenstufe 9/10 Arbeitsheft 978-3-12-772545-2 Schule: Lehrer: Sach- und Methodenkompetenz

Mehr

Physik 4. Felder Aufgaben Anhang

Physik 4. Felder Aufgaben Anhang Physik 4 Die meisten Teile von Physik 1-4 (MB/Diplom) sind in Physik 1 und Physik 2 (MB/Bachelor) eingegangen. Kapitel 2 von Physik 4 ist der Bachelor-Schere zum Opfer gefallen und findet sich hier: Felder

Mehr

Neutronensterne, Quarksterne und Schwarze Löcher

Neutronensterne, Quarksterne und Schwarze Löcher Neutronensterne, Quarksterne und Schwarze Löcher Schülervorlesung Physikalischer Verein, Frankfurt am Main 29. November 2005 Jürgen Schaffner Bielich Institut für Theoretische Physik/Astrophysik p.1 2005:

Mehr

8.2 Aufbau der Atome. auch bei der Entdeckung der Kathodenstrahlen schienen die Ladungsträger aus den Atomen herauszukommen.

8.2 Aufbau der Atome. auch bei der Entdeckung der Kathodenstrahlen schienen die Ladungsträger aus den Atomen herauszukommen. Dieter Suter - 404 - Physik B3 8.2 Aufbau der Atome 8.2.1 Grundlagen Wenn man Atome als Bausteine der Materie i- dentifiziert hat stellt sich sofort die Frage, woraus denn die Atome bestehen. Dabei besteht

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird?

Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Wie fällt ein Körper, wenn die Wirkung der Corioliskraft berücksichtigt wird? Beim freien Fall eines Körpers auf die Erde, muss man bedenken, dass unsere Erde ein rotierendes System ist. Um die Kräfte,

Mehr

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16

Mehr

Gravitationswellen. Der Klang des Universums

Gravitationswellen. Der Klang des Universums Gravitationswellen Der Klang des Universums Schülervorlesung: Einstein und der Kosmos Physikalischer Verein, Frankfurt a.m. 2004 Peter Aufmuth Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)

Mehr

Gravitationswellen (GW) und ihre Detektion Seminar zu

Gravitationswellen (GW) und ihre Detektion Seminar zu Gravitationswellen (GW) und ihre Detektion Seminar zur Astroteilchenphysik SS 11, Univ. Erlangen 3. Juni 2011 Linearisierte Theorie der ART Einsteinsche Feldgleichungen Einsteinsche Feldgleichungen: G

Mehr

Problem 1: Die Parabelmethode von Joseph John Thomson

Problem 1: Die Parabelmethode von Joseph John Thomson Problem 1: Die Parabelmethode von Joseph John Thomson Bei einer Internetrecherche für eine Arbeit über Isotope haben Sie den folgenden Artikel von J. J. Thomson gefunden, der in den Proceedings of The

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

8 Das Bohrsche Atommodell. 8. Das Bohrsche Atommodell

8 Das Bohrsche Atommodell. 8. Das Bohrsche Atommodell 1. Einführung 1.1. Quantenmechanik versus klassische Theorien 1.2. Historischer Rückblick 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse, Isotopie 4. Atomkern und Hülle:

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie

Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie Was ist Trägheit und Gravitation wirklich! Thermal-Time-Theorie Hypothese Nach der Thermal-Time-Theorie (ttt) ist die Gravitation keine Kraft zwischen zwei Massen, sondern eine Beschleunigung bzw. Kraft,

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Magnetismus - Einführung

Magnetismus - Einführung Magnetismus Magnetismus - Einführung Bedeutung: Technik:Generator, Elektromotor, Transformator, Radiowellen... Geologie: Erdmagnetfeld Biologie: Tiere sensitiv auf Erdmagnetfeld (z.b. Meeresschildkröten)

Mehr

Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau

Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 16.5.08 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

Allgemeine Relativitätstheorie Ausarbeitung. Von Jan Kaprolat

Allgemeine Relativitätstheorie Ausarbeitung. Von Jan Kaprolat Allgemeine Relativitätstheorie Ausarbeitung Von Jan Kaprolat Grundlegende Motivation zur ART Die Allgemeine Relativitätstheorie (ART) ist die Erweiterung der speziellen Relativitätstheorie (SRT). Sie bezieht

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

Schwingungen und Wellen Teil I

Schwingungen und Wellen Teil I Schwingungen und Wellen Teil I 1.. 3. 4. 5. 6. 7. 8. 9. 10. Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung

Mehr

Die Gravitationswaage

Die Gravitationswaage Physikalisches Praktikum für das Hauptfach Physik Versuch 02 Die Gravitationswaage Sommersemester 2005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent:

Mehr

Magnetische Monopole

Magnetische Monopole Magnetische Monopole Einführung: Aber in der Schule haben wir doch gelernt... Dirac s Idee symmetrischer Maxwell-Gleichungen Konsequenzen aus der Existenz magnetischer Monopole Quantisierung der elektrischen

Mehr

Einleitung Das Rutherford sche Atommodell Das Bohr sche Atommodell. Atommodelle [HERR] Q34 LK Physik. 25. September 2015

Einleitung Das Rutherford sche Atommodell Das Bohr sche Atommodell. Atommodelle [HERR] Q34 LK Physik. 25. September 2015 Q34 LK Physik 25. September 2015 Geschichte Antike Vorstellung von Leukipp und Demokrit (5. Jahrh. v. Chr.); Begründung des Atomismus (atomos, griech. unteilbar). Anfang des 19. Jahrh. leitet Dalton aus

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

IX Relativistische Mechanik

IX Relativistische Mechanik IX Relativistische Mechanik 34 Relativitätsprinzip Die bisher behandelte Newtonsche Mechanik gilt nur für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind. Im Teil IX stellen wir die

Mehr

Schulinternes Curriculum ARG

Schulinternes Curriculum ARG Physik Schulinternes Curriculum ARG Unterrichtsvorhaben Fachliche Kompetenzen Inhalte Methoden / Material UMGANG MIT DACHWISSEN verwenden Entropie als Wärmeäquivalent. S1 1 THERMODYNAMIK ea ERKENNTNISGEWINNUNG

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte:

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte: Elektromagnetismus Magnetismus Prinzip: Kein Monopol nur Dipole Kräfte: S N Richtung des Magnetischen Feldes I B Kraft auf Ladungen im B-Feld + Proportionalitätskonstante B FM = q v B Durch Messung: LORENTZ

Mehr

Thema heute: Aufbau der Materie: Atommodelle 1

Thema heute: Aufbau der Materie: Atommodelle 1 Wiederholung der letzten Vorlesungsstunde: Naturwissenschaften, Unterteilung der Naturwissenschaften in einzelne Wissensgebiete, Modellvorstellungen, der "reine Stoff", thermische Eigenschaften, Siedepunkt,

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005

Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005 Abschlussprüfung an Fachoberschulen im Schuljahr 200/200 Haupttermin: Nach- bzw Wiederholtermin: 0909200 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk

Mehr

EPI WS 2008/09 Dünnweber/Faessler

EPI WS 2008/09 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte

Mehr

Theoretische Mechanik

Theoretische Mechanik Theoretische Mechanik Übungen R. Kirschner, ITP, Univ. Leipzig 1-1 1. Betrachten Sie ein System aus 4 Massenpunkten, ( r i,m i ),i = 1,2,3,4, das sich in trivialer geradlinig-gleichförmiger Bewegung befindet.

Mehr

Maßeinheiten der Elektrizität und des Magnetismus

Maßeinheiten der Elektrizität und des Magnetismus Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

Elektromagnetische Wellen in Materie

Elektromagnetische Wellen in Materie Elektromagnetische Wellen in Materie Wir haben bis jetzt elektromagnetische Wellen nur im Vakuum behandelt, dabei haben wir die Ladungs- und Stromdichten ρ und j gleich Null gesetzt. In einem Medium werden

Mehr

Strom kann nur in einem geschlossenen Kreis fließen.

Strom kann nur in einem geschlossenen Kreis fließen. 1. Elektrischer Stromkreis Strom kann nur in einem geschlossenen Kreis fließen. Kurzschluss: Der Strom kann direkt vom einen Pol der Energiequelle (Batterie) zum anderen Pol fließen. Gefahr: Die Stromstärke

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2000/2001

Abschlussprüfung an Fachoberschulen im Schuljahr 2000/2001 Abschlussprüfung an Fachoberschulen im Schuljahr 2000/2001 Haupttermin: Nach- bzw. Wiederholtermin: 2.0.2001 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: Formelsammlung/Tafelwerk

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Klausur Experimentalphysik (1. Termin)

Klausur Experimentalphysik (1. Termin) Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fachbereich Elektrotechnik Univ.-Prof. Dr. D. Kip Experimentalphysik und Materialwissenschaften Telefon: 6541 2457 Klausur Experimentalphysik

Mehr

Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2009/10 Klausur ( )

Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2009/10 Klausur ( ) Nur vom Korrektor auszufüllen 1 2 3 4 5 6 7 8 9 10 Note Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2009/10 Klausur (12.2.2010) Name: Studiengang: In die Wertung der

Mehr

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 07 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 7.. 005 oder 14.. 005 1 Aufgaben 1. Wir berechnen Elektromotoren. Nehmen

Mehr

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005 Praktikumssemesterarbeit für Numerik Aufgabe HU-Berlin, Sommersemester 2005 Mario Krell Volker Grabsch 24. Juli 2005 Inhaltsverzeichnis Herleitung aus der Physik. Voraussetzungen und Annahmen Allgemein

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

= +1. Rotverschiebung. Unterschiedliche Arten der Rotverschiebung

= +1. Rotverschiebung. Unterschiedliche Arten der Rotverschiebung Rotverschiebung In der Astronomie wird die Rotverschiebung mit dem Buchstaben z bezeichnet. Mit ihrer Hilfe lassen sich z.b. Fluchtgeschwindigkeiten, Entfernungen und Daten aus früheren Epochen des Universum

Mehr

Physikalische Grundlagen makroskopisch bildgebender Verfahren in der Hirnforschung

Physikalische Grundlagen makroskopisch bildgebender Verfahren in der Hirnforschung Physikalische Grundlagen makroskopisch bildgebender Verfahren in der Hirnforschung Studiengang Neurobiologie/Neurowissenschaften Otto-von-Guericke Universität Magdeburg Sommersemester 2008 Reinhard König

Mehr

Urknall und. Entwicklung des Universums. Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1

Urknall und. Entwicklung des Universums. Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1 Urknall und Entwicklung des Universums Thomas Hebbeker RWTH Aachen Dies Academicus 08.06.2005 Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1 Blick ins Universum: Sterne

Mehr

I. Astronomische Weltbilder

I. Astronomische Weltbilder Grundwissen Physik 10. Jahrgangsstufe I. Astronomische Weltbilder 1. Geozentrisches Weltbild Wichtige Eigenschaften nach Ptolemäus 100-160: - Die Erde ist der Mittelpunkt der Welt - Das kugelförmige Himmelsgewölbe

Mehr

8. Relativistische Mechanik

8. Relativistische Mechanik 8. Relativistische Mechanik 8.1 Einleitung Einige experimentelle Tatsachen zeigen, dass die Galileiinvariante Mechanik nur begrenzte Gültigkeit haben kann. Konstanz der Lichtgeschwindigkeit Die Invarianz

Mehr

Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 4. Versuch: Atwoodsche Fallmaschine

Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 4. Versuch: Atwoodsche Fallmaschine Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 4. Versuch: Atwoodsche Fallmaschine 1 Einführung Wir setzen die Untersuchung der beschleunigten Bewegung in diesem Versuch fort.

Mehr

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron Elektrostatik 1. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Kräfte zwischen Ladungen, quantitativ 4. Elektrisches Feld 5. Der Satz von Gauß 6. Das elektrische Potenzial und Potenzialdifferenz

Mehr

Physikalisches Praktikum A 5 Balmer-Spektrum

Physikalisches Praktikum A 5 Balmer-Spektrum Physikalisches Praktikum A 5 Balmer-Spektrum Versuchsziel Es wird das Balmer-Spektrum des Wasserstoffatoms vermessen und die Rydberg- Konstante bestimmt. Für He und Hg werden die Wellenlängen des sichtbaren

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 011 Teilchenbahnen im elektrischen Querfeld 1) Elektronen starten an der negativen Platte eines Kondensators (d = 5 mm, U = 300 V) und

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Klausur 3 Klasse 11c Physik Lösungsblatt

Klausur 3 Klasse 11c Physik Lösungsblatt 16.05.00 Klausur 3 Klasse 11c Physik Lösungsblatt Bei den Aufgaben dürfen Sie ausschließlich die Programme Cassy-Lab, erive 5 und Excel benutzen. Alle schriftlichen Überlegungen und Ergebnisse müssen auf

Mehr

Einführung in die Physik der Neutronensterne. I. Sagert Institut für Theoretische Physik/ Astrophysik Goethe Universität, Frankfurt am Main

Einführung in die Physik der Neutronensterne. I. Sagert Institut für Theoretische Physik/ Astrophysik Goethe Universität, Frankfurt am Main Einführung in die Physik der Neutronensterne I. Sagert Institut für Theoretische Physik/ Astrophysik Goethe Universität, Frankfurt am Main Leben und Sterben von Sternen Supernova Geburt eines Neutronensterns

Mehr

Von Farbladungen und Quarkteilchen: die Starke Wechselwirkung. Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt

Von Farbladungen und Quarkteilchen: die Starke Wechselwirkung. Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt Von Farbladungen und Quarkteilchen: die Starke Wechselwirkung Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt Die vier Kräfte Gravitation Starke Kraft Schwache Kraft Elektromagnetismus

Mehr

Magnetohydrodynamik. Ivan Kostyuk 11. Juni 2015

Magnetohydrodynamik. Ivan Kostyuk 11. Juni 2015 Magnetohydrodynamik Ivan Kostyuk 11. Juni 2015 Zusammenfassung Dies ist eine Zusammenfassung meines Vortrages zum Thema Magnetohydrodynamik, welchen ich am 22.05.2015 im Rahmen des Seminares Elektrodynamik

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

Moderne Physik. von Paul A.Tipler und Ralph A. Liewellyn

Moderne Physik. von Paul A.Tipler und Ralph A. Liewellyn Moderne Physik von Paul A.Tipler und Ralph A. Liewellyn Aus dem Englischen von Dr. Anna Schleitzer Bearbeitet von Prof. Dr. Gerd Czycholl Prof. Dr. Cornelius Noack Prof. Dr. Udo Strohbusch 2., verbesserte

Mehr

Rätsel in der Welt der Quanten. Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften

Rätsel in der Welt der Quanten. Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften Rätsel in der Welt der Quanten Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften 1. Februar 2012 Die Klassische Physik Bewegung von Objekten Lichtwellen Bewegung von Objekten Newtonsche

Mehr

Gigantische Explosionen

Gigantische Explosionen Gigantische Explosionen Gammaastronomie - das Universum bei höchsten Energien Gernot Maier Credit: Stephane Vetter (Nuits sacrees) Kollidierende Galaxien Licht = Elektromagnetische Strahlung Welle Teilchen

Mehr

Der Lebensweg der Sterne

Der Lebensweg der Sterne Der Lebensweg der Sterne Wahrscheinlich durch die Überreste einer nahen Supernova konnte sich die Sonne samt Planeten bilden. Nach einem Milliarden Jahre langen Leben bläht sie sich nachdem der Wasserstoff

Mehr