Flachwasseranalogie. Praktikumsanleitung. Verantwortlicher: Dr.-Ing. Veit Hildebrand

Größe: px
Ab Seite anzeigen:

Download "Flachwasseranalogie. Praktikumsanleitung. Verantwortlicher: Dr.-Ing. Veit Hildebrand"

Transkript

1 Fakultät Maschinenwesen, Institut für Luft- und Raumfahrttechnik, Arbeitsgruppe Experimentelle Aerodynamik Praktikumsanleitung Flachwasseranalogie Verantwortlicher: Dr.-Ing. Veit Hildebrand Erstellt von: Dipl.-Ing. Thomas Eipper, Christian Scheibner Stand: Sommersemester 2011

2 Inhaltsverzeichnis Inhaltsverzeichnis Abbildungsverzeichnis 2 Symbolverzeichnis 3 1 Einleitung und Lehrziele 5 2 Grundlagen der Flachwasseranalogie 6 3 Versuchsaufbau 11 4 Versuchsdurchführung 12 5 Auswertung 14 Literaturverzeichnis 16 1

3 Abbildungsverzeichnis Abbildungsverzeichnis 2.1 Veranschaulichung der verwendeten Größen Veranschaulichung der Grundwellengeschwindigkeit Prinzipskizze zum Versuchsaufbau

4 Symbolverzeichnis Lateinische Symbole a c Grundwellengeschwindigkeit, m s Geschwindigkeit (allgemein), m s c p Spezifische Wärmekapazität bei konstantem Druck, J kg K F R Froude-Zahl, dimensionslos g Gravitationsbeschleunigung, g = 9,81 m s 2 h p T Wasserhöhe (momentan), m Druck, allgemein, bar Temperatur, K x, y, z Kartesische Raumkoordinaten mit Höhe z, m Griechische Symbole κ ρ Isentropenexponent, dimensionslos Fluiddichte, kg m 3 3

5 Indizes und hochgestellte Symbole Unendlich 0 Ausgangszustand, Zustand 0 dyn Dynamisch 4

6 1 Einleitung und Lehrziele 1 Einleitung und Lehrziele Ein wichtiges Merkmal einer kompressiblen Strömung ist die Ausbreitung von Druckstörungen und damit einhergehenden Veränderungen der Fluiddichte. Die Ausbreitung der Störungen erfolgt dabei stets mit Schallgeschwindigkeit. Die Charakteristika einer solchen gasdynamischen Strömung lassen sich mit Hilfe eines Flachwasserkanales visualisieren. Dieser besteht im Wesentlichen aus einer glatten, ebenen, horizontal angeordneten Plattform, über welche Wasser mit geringer Tiefe und freier Oberfläche fließt. Gasdynamische Prozesse können nun simuliert werden, indem verschiedene Körper in die Strömung gebracht werden und anschließend das entstehende Strömungsbild interpretiert wird. Auf diese Weise können zum Beispiel Machsche Linien oder Stoßfronten sichtbar gemacht werden. Ziel dieses Praktikums ist es, die prinzipielle Arbeitsweise eines Flachwasserkanales und die Methodik der Interpretation eines Strömungsbildes am Beispiel einer 2D-Lavaldüse kennenzulernen. Zunächst wird dazu im 2. Kapitel auf die strömungsmechanischen Grundlagen der sogenannten Flachwasseranalogie eingegangen. Im Anschluss werden der Aufbau des Praktikumsversuches und die durchzuführenden praktischen Arbeitsschritte am Flachwasserkanal beschrieben. Die Auswertung durch die Praktikumsteilnehmer erfolgt über die Anfertigung eines Protokolls, das den in Kapitel 5 dieser Anleitung aufgelisteten Inhalt haben soll. Hinweis: Es ist zweckmäßig, zuvor die Anleitung zum Versuch Lavaldüse durchzulesen, da diese wichtige Zusammenhänge enthält, die zum Verständnis des hier Behandelten beitragen. 5

7 2 Grundlagen der Flachwasseranalogie 2 Grundlagen der Flachwasseranalogie Die Basis für die Realisierbarkeit der Visualisierung einer gasdynamischen Strömung mit Hilfe eines Flachwasserkanales bildet die sogenannte Flachwasseranalogie. Sie besagt, dass eine kompressible Strömung (sowohl eben als auch 2D) und eine Flüssigkeitsströmung mit freier Oberfläche und geringer Tiefe unter bestimmten Bedingungen durch dieselben Gleichungen beschrieben werden können. Bei einer Veränderung der Wassergeschwindigkeit, z.b. durch einen sich verengenden oder erweiternden Querschnitt, durch welchen das Wasser fließt, kommt es gleichzeitig zu einer Veränderung der Wasserhöhe. Dabei geht eine Beschleunigung mit einer Verringerung und eine Verzögerung mit einem Anstieg der Wasserhöhe einher (siehe Abb. 2.1). Abbildung 2.1: Veranschaulichung der verwendeten Größen Die Aufstellung der stationären, inkompressiblen Bernoulli-Gleichung (folgt aus der Energie- 6

8 2 Grundlagen der Flachwasseranalogie erhaltung) entlang einer Stromlinie zwischen einem Punkt im Zustand 0 und einem beliebigen, stromabwärts befindlichen Punkt im Zustand momentan (siehe Abb. 2.1) ergibt: p 0 ρ + c g z 0 = p ρ + c2 2 + g z (2.1) Da sich Punkt 0 in der Beruhigungszone des Flachwasserkanals befindet, in welcher das Wasser noch nicht strömt, kann die Geschwindigkeit c 0 = 0 gesetzt werden. Damit ergibt sich: p 0 + ρ g z 0 = c2 2 ρ + p + ρ g z (2.2) Für jeden Punkt des Wasserfilms gilt mit dem Umgebungsdruck p unter Einbeziehung des hydrostatischen Drucks: p = p + ρ g (h z) (2.3) Den Zusammenhang 2.3 für den Druck in Gleichung 2.2 eingesetzt liefert: c 2 2 = g (h 0 h) = g h 0 g h (2.4) Ein Vergleich mit dem gasdynamischen Energiesatz in der Form c 2 2 = c P T 0 c P T (2.5) zeigt, dass die Wassertiefe bei einer entsprechenden Anordnung im Flachwasserkanal der Temperatur der zugehörigen gasdynamischen Strömung entspricht: h h 0 T T 0 (2.6) 7

9 2 Grundlagen der Flachwasseranalogie Ein ähnlicher Vergleich über den Ansatz der Masseerhaltung führt bei Aufstellung der Kontinuitätsgleichung für Wasser- sowie Gasströmung zu einer Analogie zwischen Wassertiefe h und Fluiddichte ρ: h h 0 ρ ρ 0 (2.7) Weiterhin wird bei Betrachtung einer Strömung im Flachwasserkanal beobachtet, dass sich kleine Störungen der Wassertiefe h, z.b. verursacht durch einen örtlichen Aufstau, mit der so genannten Grundwellengeschwindigkeit g h fortpflanzen (siehe Abbildung 2.2). Dies ist eine Analogie zur Ausbreitung von Druckstörungen mit der Schallgeschwindigkeit a in einer kompressiblen Strömung. Zum gleichen Ergebnis einer unmittelbaren Analogie zwischen Schallgeschwindigkeit und Wassertiefe kommt man bei einer weiteren Gegenüberstellung von Gleichungen (Energie- und Bewegungsgleichungen) für die rotationsfreie Flachwasserströmung und die gasdynamische Strömung. Es ergibt sich also: a 2 g h (2.8) Die in Analogie zur Machzahl M (Verhältnis lokaler Geschwindigkeit zu Schallgeschwindigkeit) aufgestellte Froude-Zahl F R mit F R = c ( ) h0 = 2 g h h 1 (2.9) ist eine Kennzahl für die Bewegungscharakteristik des Wassers. Bei F r < 1 spricht man von fließendem, bei F r > 1 von schießendem Wasser. Abbildung 2.2: Veranschaulichung der Grundwellengeschwindigkeit 8

10 Über die umgeformte ideale Gasgleichung 2 Grundlagen der Flachwasseranalogie p = ρ T (2.10) p 0 ρ 0 T 0 kann schließlich noch eine Analogiebeziehung zwischen Druck und Wasserhöhe gefunden werden: ( ) p h 2 (2.11) p 0 h 0 Eine Situation, in der die Wasserhöhe auf sehr kurzer Strecke schlagartig ansteigt, wird als Wassersprung bezeichnet. Er visualisiert gemäß Zusammenhang 2.11 einen gasdynamischen Verdichtungsstoß, bei welchem sich der Druck im strömenden Fluid (z.b. auf Grund von starkem Gegendruck) plötzlich erhöht. Er kann nur in einer überschallschnellen Strömung auftreten, d.h. im Flachwasserkanal bei F r > 1. Ein Verdichtungstoß bzw. ein Wassersprung ist jedoch kein isentroper Vorgang, weshalb beim Auftreten dieses Phänomens von den bisher genannten Analogien nur die Beziehung 2.7 ihre Gültigkeit behält. Die etwas umgeformte, im Praktikum Lavaldüse (Gleichung 2.8 in der gleichnamigen Anleitung) verwendete Isentropenbeziehung T ρ 1 κ = konst. (2.12) auf die Situation des Flachwasserkanals mit T h und ρ h angewendet ergibt: h h 1 κ = konst. (2.13) Aus Gleichung 2.13 folgt ganz offensichtlich, dass die vorher gefundenen Analogien zwischen gasdynamischer Strömung und Flachwasserströmung nur für einen Isentropenexponenten von 9

11 2 Grundlagen der Flachwasseranalogie Gasdynamische Strömung Flachwasserkanalströmung Temperaturverhältnis T T 0 Wassertiefenverhältnis h h 0 Dichteverhältnis ρ ρ 0 Wassertiefenverhältnis h h 0 Druckverhältnis p p 0 ( h Quadriertes Wassertiefenverhältnis h 0 ) 2 Schallgeschwindigkeit a Machzahl M = c a Grundwellengeschwindigkeit g h Froude-Zahl F R = c ( ) = 2 h0 g h h 1 Unterschallströmung M < 1 F R < 1 strömendes Wasser Überschallströmung M > 1 F R > 1 schießendes Wasser (Verdichtungsstoß) (Wassersprung) Tabelle 2.1: Zusammenfassung der Analogiebeziehungen κ = 2 gültig sind. Ein solches Gas existiert jedoch in der Natur nicht. Ergebnisse aus Flachwasserexperimenten sind daher für kompressible Gasströmungen nur qualitativ, nicht aber quantitativ repräsentativ. Tabelle 2.1 fasst alle gefundenen Analogiebeziehungen zwischen gasdynamischer Strömung und Flachwasserströmung nocheinmal zusammen. 10

12 3 Versuchsaufbau 3 Versuchsaufbau Der Versuch zum Praktikum "Flachwasseranalogie wird in den Räumen des Hochgeschwindigkeitswindkanals (HWK), einer Außenstelle der TU Dresden, durchgeführt. Die Anlage befindet sich in einem Bergwerk der Kali und Salz GmbH in Merkers/Rhön, Thüringen. Der prinzipielle Aufbau besteht entsprechend Abbildung 3.1 aus dem Flachwasserkanal, einem 2D-Modell einer Lavaldüse, einer Beleuchtungseinheit, einer Kamera und einem Schrägrohrmanometer (nicht Bestandteil der Skizze). Abbildung 3.1: Prinzipskizze zum Versuchsaufbau 11

13 4 Versuchsdurchführung 4 Versuchsdurchführung Zu Beginn des Versuches ist der Teststand bereits entsprechend Abbildung 3.1 aufgebaut. Die durchzuführenden Arbeitsschritte gliedern sich in die nachfolgendenden 4 Punkte: 1. Einstellung des überexpandierenden, angepassten und unterexpandierenden Zustandes der in der Wasserströmung befindlichen Lavaldüse Die verschiedenen Betriebszustände einer Lavaldüse können mittels der Flachwasseranalogie simuliert werden. Dazu ist es notwendig, die entsprechenden Verhältnisse der vorliegenden Wasserhöhen zu regulieren. Die Funktionsweise dieser Anpassung wird Ihnen zum Praktikum am Flachwasserkanal erläutert. Bei Unklarheiten bezüglich der Begriffe angepasst und überbzw. unterexpandierend wird an dieser Stelle auf das 2. Kapitel der Anleitung zum Versuch Lavaldüse verwiesen. 2. Vermessung der Wasserhöhen und der dynamischen Drücke entlang der Düsenachse Für einen beliebigen Betriebszustand ist mittels einer in den Teststand integrierten Abtastvorrichtung der Verlauf der Wasserhöhen innerhalb der Düse entlang ihrer Achse zu messen. Die Vorrichtung ist auf Rollen gelagert und parallel zur Düsenachse verschiebbar. Weiterhin soll mittels eines Schrägrohrmanometers die Messung des Verlaufes des dynamischen Druckes entlang der Düsenachse erfolgen. Im Rahmen der späteren Auswertung kann daraus die entsprechende Strömungsgeschwindigkeit ermittelt werden, um mit der gemessenen Wasserhöhenverteilung auf den Verlauf der Froude-Zahl F R rückzuschließen. 3. Vermessung des entstehenden Strömungsbildes hinter der Düse für den unterexpandierenden Fall Stellen Sie entsprechend Punkt 1 den Betriebszustand unterexpandierend ein! Vermessen Sie 12

14 4 Versuchsdurchführung nun mit Hilfe der Abtastvorrichtung das Wasserhöhenprofil im Düsennachlauf! Achten Sie beim Notieren der Höhenwerte auf die Zuordnung zu den entsprechenden Koordinaten (x, y)! 4. Fotometrische Erfassung Fertigen Sie für verschiedene Strömungssituationen Fotoaufnahmen des Nachlaufprofils der Lavaldüse an! Von jeder Praktikumsgruppe sind vor dem Versuch Tabellen anzufertigen, in welche die gemessenen Größen eingetragen werden können. 13

15 5 Auswertung 5 Auswertung Zu diesem Praktikum ist von jeder teilnehmenden Gruppe ein Protokoll mit dem nachfolgenden Inhalt anzufertigen. Zur Auswertung des im Praktikum durchgeführten Versuches soll das Protokoll neben den unter a) - d) gelisteten Aufgaben weiterhin Standardangaben wie eine kurze Beschreibung des Versuchsaufbaus, der Versuchsdurchführung und eine Fehlerdiskussion enthalten. a) Stellen Sie einen der entsprechend Kapitel 4 (Punkt 2) gemessenen Höhenverläufe entlang der Düsenachse grafisch dar! b) Ermitteln Sie gemäß der Definition des dynamischen Drucks p dyn = ρ 2 c2 (5.1) den Verlauf der Strömungsgeschwindigkeit entlang der Düsenachse und tragen Sie die berechneten Werte ebenfalls in das unter a) angefertigte Diagramm ein! Verwenden Sie eine Wasserdichte von ρ = 998,2 kg m 3 = konst. c) Berechnen Sie mit Hilfe von Gleichung 2.9 den Verlauf der Froude-Zahl F R und tragen Sie auch diese Entwicklung in das Diagramm ein. Welches theoretische Wasserhöhenverhältnis h h 0 liegt im engsten Querschnitt der Düse vor? Vergleichen Sie die Verläufe der Wasserhöhe und der Froude-Zahl mit denen der äquivalenten Größen der vermessenen, gasdynamischen Strömung im Praktikumsversuch Lavaldüse (gleichen Betriebszustand beachten)! 14

16 5 Auswertung d) Stellen Sie die für den unterexpandierenden Betriebszustand gemessenen Höhen im Nachlauf der Lavaldüse in einem Diagramm (z.b. Koordindaten x,y als Ebene und Höhe z als Farbe) dar und vergleichen Sie das entstehende Schaubild mit der fotometrischen Aufnahme vom gleichen Strömungszustand! 15

17 Literaturverzeichnis Literaturverzeichnis [1] HELLER, WINFRIED: Manuskript zur Vorlesung Gasdynamik. Technische Universität Dresden, [2] KUHLMANN, HENDRIK: Anleitung zur Laborübung Flachwasserkanal. Institut für Strömungsmechanik und Wärmeübertragung, Technische Universität Wien,

Lavaldüse. Praktikumsanleitung. Verantwortlicher: Dr.-Ing. Veit Hildebrand

Lavaldüse. Praktikumsanleitung. Verantwortlicher: Dr.-Ing. Veit Hildebrand Fakultät Maschinenwesen, Institut für Luft- und Raumfahrttechnik, Arbeitsgruppe Experimentelle Aerodynamik Praktikumsanleitung Lavaldüse Verantwortlicher: Dr.-Ing. Veit Hildebrand Erstellt von: Dipl.-Ing.

Mehr

Strömungsvisualisierung mittels Schlierenmethode

Strömungsvisualisierung mittels Schlierenmethode Fakultät Maschinenwesen, Institut für Luft- und Raumfahrttechnik, Arbeitsgruppe Experimentelle Aerodynamik Praktikumsanleitung Strömungsvisualisierung mittels Schlierenmethode Verantwortlicher: Dr.-Ing.

Mehr

11.6 Laval - Düse Grundlagen

11.6 Laval - Düse Grundlagen 11.6-1 11.6 Laval - Düse 11.6.1 Grundlagen Beim Ausströmen eines gas- oder dampfförmigen Mediums aus einem Druckbehälter kann die Austrittsgeschwindigkeit höchstens den Wert der Schallgeschwindigkeit annehmen.

Mehr

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen:

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: ρ ρ 0; t x 0;etc. Als Unterscheidungskriterium zwischen inkompressibel und kompressibel wird die Machzahl

Mehr

9.3 Stationäre, kompressible und reibungsfreie Strömungen in Rohren oder Kanälen mit veränderlichem Querschnitt

9.3 Stationäre, kompressible und reibungsfreie Strömungen in Rohren oder Kanälen mit veränderlichem Querschnitt 9.3 Stationäre, kompressible und reibungsfreie Strömungen in Rohren oder Kanälen mit veränderlichem Querschnitt 9.3.1 Düse und Diffusor im unter- und überschallschnellen Strömungen Kontinuität Impuls (reibungsfrei)

Mehr

ρ P d P ρ F, η F v s

ρ P d P ρ F, η F v s ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungsmechanik II 13. 8. 1 1. Aufgabe (1 Punkte) In einem Versuch soll die Bewegung von kugelförmigen Polyethylen-Partikeln (Durchmesser d P, Dichte ρ P

Mehr

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes.

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. ......... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 20. 08. 2004 1. Aufgabe (11 Punkte) a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. b) Nennen

Mehr

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts

9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts 9.4 Stationäre kompressible Strömungen in Rohren oder Kanälen konstanten Querschnitts Die Strömung tritt mit dem Zustand 1 in die Rohrleitung ein. Für ein aus der Rohrstrecke herausgeschnittenes Element

Mehr

Einführung in die Strömungsmechanik

Einführung in die Strömungsmechanik Einführung in die Strömungsmechanik Rolf Radespiel Fluideigenschaften Grundlegende Prinzipien und Gleichungen Profile Windkanal und Druckmessungen BRAUNSCHWEIG, 5. JUNI 2002 Was versteht man unter Strömungsmechanik?

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuch 17: Lichtbeugung Universität der Bundeswehr München Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 Versuch 17: Lichtbeugung Im Modell

Mehr

Versuch V1 - Viskosität, Flammpunkt, Dichte

Versuch V1 - Viskosität, Flammpunkt, Dichte Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel

Mehr

Ermittlung von aerodynamischen Beiwerten eines PV-Solar-Tracker-Modells im Windkanal

Ermittlung von aerodynamischen Beiwerten eines PV-Solar-Tracker-Modells im Windkanal Ermittlung von aerodynamischen Beiwerten eines PV-Solar-Tracker-Modells im Windkanal LWS-TN-10_74 ASOLT1 Florian Zenger, B.Eng. Prof. Dr.-Ing. Stephan Lämmlein Labor Windkanal/Strömungsmesstechnik Hochschule

Mehr

Potentialströmung und Magnuseffekt

Potentialströmung und Magnuseffekt Potentialströmung und Magnuseffekt (Zusammengefasst und ergänzt nach W Albring, Angewandte Strömungslehre, Verlag Theodor Steinkopff, Dresden, 3 Aufl 1966) Voraussetzungen Behandelt werden reibungs und

Mehr

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Laborpraktikum Grundlagen der Umwelttechnik II

Laborpraktikum Grundlagen der Umwelttechnik II Hochschule für Technik, Wirtschaft und Kultur Leipzig Maschinenbau und Energietechnik Versuchstag: Brennstoff- und Umweltlabor Bearbeiter: Prof. Dr.-Ing. J. Schenk Dipl.- Chem. Dorn Namen: Seminargruppe:

Mehr

Praktikum Aerodynamik des Flugzeugs

Praktikum Aerodynamik des Flugzeugs Praktikum Aerodynamik des Flugzeugs 1. Versuch: Sondenmessungen Betreuer: Dipl.-Ing. Anja Kölzsch Dipl.-Ing. Moritz Grawunder Ziel des heutigen Termins Einführung in die Strömungsmesstechnik Messung verschiedener

Mehr

11. Gasdynamik Aufgabe 11.1 [2]

11. Gasdynamik Aufgabe 11.1 [2] 11-1 11. Gasdynamik Aufgabe 11.1 [2] Ein punktförmiges Masseteilchen bewegt sich um die Erde auf einem Durchmesser von 13,3. 10 3 km mit 1 500 km/h. Welche Zeit benötigt ein Schallimpuls, der von dem Masseteilchen

Mehr

15 Eindimensionale Strömungen

15 Eindimensionale Strömungen 97 Durch Druckunterschiede entstehen Strömungen, die sich auf unterschiedliche Weise beschreiben lassen. Bei der Lagrange schen oder materiellen Beschreibung betrachtet man das einelne Fluidteilchen, das

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Hilfe. Excel Makros. Version /2007. Josef BERTSCH Gesellschaft m.b.h & Co. Kessel und Energietechnik Apparatebau Nahrungsmittelanlagen

Hilfe. Excel Makros. Version /2007. Josef BERTSCH Gesellschaft m.b.h & Co. Kessel und Energietechnik Apparatebau Nahrungsmittelanlagen Stoffdaten für Luft Excel Makros Hilfe Version 1.7-01/2007 Josef BERTSCH Gesellschaft m.b.h & Co Kessel und Energietechnik Apparatebau Nahrungsmittelanlagen Zentrale: A-6700 Bludenz, Herrengasse 23 Tel.:

Mehr

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit 1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der

Mehr

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen.

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen. Thermodynamik II - Lösung 3 Aufgabe 5: Auf den windreichen Kanarischen Inseln ist eine Kühlanlage geplant, die Kaltwasser (Massenstrom ṁ w = 5 kg/s) von t aus = 18 C liefern soll. Das Wasser wird der Umgebung

Mehr

Eigenschaften der Fluide

Eigenschaften der Fluide W. Heller, 2011 PT Kapitel 2 Eigenschaften der Fluide Aggregatzustand fest flüssig gasförmig Festkörper Flüssigkeiten Gase Fluide Wechselwirkung der Fluid- Moleküle dominiert durch intermolekulares Potential

Mehr

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe:

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe: Strömungsanlage 1 Fachhochschule Trier Studiengang Lebensmitteltechnik Fluidmechanik -Laborübung-. Semester Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen Namen: Datum: Abgabe:

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

Musterprotokoll. Titel des Versuchs

Musterprotokoll. Titel des Versuchs Musterprotokoll Titel des Versuchs Experimentatoren/Protokollanten Peter Brown, Matr. 4711, BSYT, Gruppe 1 Michael Kirchhoff, Matr. 1234, MSPG, Gruppe 1 Petra Nernst, Matr. 6666, UEPT, Gruppe 1 Michaela

Mehr

Protokoll zum Versuch: Atwood'sche Fallmaschine

Protokoll zum Versuch: Atwood'sche Fallmaschine Protokoll zum Versuch: Atwood'sche Fallmaschine Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 11.01.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 3

Mehr

5. Nichtlineare Effekte bei Überschallströmung

5. Nichtlineare Effekte bei Überschallströmung 5. Nichtlineare Effekte bei Überschallströmung 5.. Schiefer Verdichtungsstoß Im letzten Kapitel haben wir gesehen, daß die Neigung der Machlinien im Fall schwach gestörter Parallelströmung nur von der

Mehr

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gerd Junge Einführung in die Technische Strömungslehre ISBN: 978-3-446-42300-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42300-8 sowie im Buchhandel.

Mehr

Klausur Strömungsmechanik 1 WS 2009/2010

Klausur Strömungsmechanik 1 WS 2009/2010 Klausur Strömungsmechanik 1 WS 2009/2010 03. März 2010, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Versuch 3 Das Trägheitsmoment

Versuch 3 Das Trägheitsmoment Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

Mechanik Translationsbewegungen des Massenpunktes Freier Fall

Mechanik Translationsbewegungen des Massenpunktes Freier Fall P1.3.5.3 Mechanik Translationsbewegungen des Massenpunktes Freier Fall Freier Fall: Vielfach- Zeitmessung mit der g- Leiter Beschreibung aus CASSY Lab 2 Zum Laden von Beispielen und Einstellungen bitte

Mehr

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease.

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. A 36 Michaelis-Menten-Kinetik: Hydrolyse von Harnstoff Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. Grundlagen: a) Michaelis-Menten-Kinetik Im Bereich der Biochemie spielen

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Laborübung, Diode. U Ri U F

Laborübung, Diode. U Ri U F 8. März 2017 Elektronik 1 Martin Weisenhorn Laborübung, Diode 1 Diodenkennlinie dynamisch messen Die Kennlinie der Diode kann auch direkt am Oszilloskop dargestellt werden. Das Oszilloskop bietet nämlich

Mehr

Versuch 4 - Trägheitsmoment und Drehimpuls

Versuch 4 - Trägheitsmoment und Drehimpuls UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 4 - Trägheitsmoment und Drehimpuls 23. überarbeitete Auflage 2009 Dr. Stephan Giglberger Prof.

Mehr

Praktikum Elektronik für Wirtschaftsingenieure

Praktikum Elektronik für Wirtschaftsingenieure Fakultät Elektrotechnik Hochschule für Technik und Wirtschaft Dresden University of Applied Sciences Friedrich-List-Platz 1, 01069 Dresden ~ PF 120701 ~ 01008 Dresden ~ Tel.(0351) 462 2437 ~ Fax (0351)

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre

Bernoulligleichung. umax. Bernoulligleichung. Stromfadenvorstellung. Bild 1: Stromfaden als Sonderform der Stromröhre Bernoulligleichung 1 Bernoulligleichung Stromfadenvorstellung Bild 1: Stromfaden als Sonderform der Stromröhre Im Arbeitsblatt Kontinuitätsgleichung wurde die Stromröhre eingeführt. Sie ist ein Bilanzgebiet

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Versuch D4: Volumenstrommessung

Versuch D4: Volumenstrommessung Versuch D4: Volumenstrommessung 1 Einführung und Grundlagen Bei technischen Prozessabläufen ist die Prozessüberwachung von zentraler Bedeutung für den korrekten Ablauf und für die Sicherheitstechnik. Sollen

Mehr

1. Aufgabe (10 Punkte)

1. Aufgabe (10 Punkte) Teil: Technische Hydromechanik 11.02.2009, Seite 1 NAME:.... MATR.NR.:... Aufgabe 1 2 3 4 5 6 Summe Note Mögliche 10 15 25 20 25 25 120 Punktzahl Erreichte Punktzahl Bearbeitungszeit 120 Minuten (1 Punkt

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Schülerexperiment: Bestimmung der Geschwindigkeit eines Körpers

Schülerexperiment: Bestimmung der Geschwindigkeit eines Körpers Schülerexperiment: Bestimmung der Geschwindigkeit eines Körpers Stand: 26.08.2015 Jahrgangsstufen 7 Fach/Fächer Benötigtes Material Natur und Technik/ Schwerpunkt Physik Maßbänder, Stoppuhren, Taschenrechner,

Mehr

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG

Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018)

Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) 4.1 Begriff

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E Wheatstonesche Brücke Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den 7..000 INHALTSVEZEICHNIS. Einleitung. Theoretische Grundlagen. Die Wheatstonesche Brücke. Gleichstrombrücke

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe 1.9.08 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: O 2 - Linsensysteme Literatur Eichler, Krohnfeld, Sahm: Das neue physikalische Grundpraktikum, Kap. Linsen, aus dem Netz der Universität http://dx.doi.org/10.1007/3-540-29968-8_33

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik Kapitel : Berechnungsverfahren für Netzwerke Berechnungsverfahren für Netzwerken. Überlagerungsprinzip. Maschenstromverfahren. Knotenpotentialverfahren 6. Zweipoltheorie 7.5

Mehr

Labor für Technische Akustik

Labor für Technische Akustik Labor für Technische Akustik Kraus Abbildung 1: Experimenteller Aufbau zur optischen Ermittlung der Schallgeschwindigkeit. 1. Versuchsziel In einer mit einer Flüssigkeit gefüllten Küvette ist eine stehende

Mehr

Harmonische Schwingung Schraubenfedern in Parallel- und Reihenschaltung

Harmonische Schwingung Schraubenfedern in Parallel- und Reihenschaltung Harmonische Schwingung TEP Prinzip Für unterschiedliche Federn und Federkombinationen soll die Federkonstante D bestimmt werden. Für die verschiedenen experimentellen Versuchsaufbauten und die angehängten

Mehr

Wärmeabfuhr in der Elektronik

Wärmeabfuhr in der Elektronik Maximilian Wutz Wärmeabfuhr in der Elektronik Mit 150 Bildern und 12 Tabellen vieweg VIII Inh altsverz eichnis 1 Einleitung 1 1.1 Die grundsätzliche Bedeutung der Wärmeabfuhr in der Elektronik.. 1 1.2

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1 Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

Berechnung und Auswahl von Stellventilen

Berechnung und Auswahl von Stellventilen Berechnung und Auswahl von Stellventilen SAMSON AG Technischer Verkauf Markus Güntner Mai 11 / Technischer Verkauf M. Güntner Berechnung und Auswahl von Stellventilen 1 Berechnung und Auswahl von Stellventilen

Mehr

2 (Druck auf die Rohrwand), e v1. den Staudruck.

2 (Druck auf die Rohrwand), e v1. den Staudruck. Bernoulli Gleichung Strömt Gas oder eine Flüssigkeit durch ein Rohr mit einer Verengung, dann beobachtet man, daβ der Druck p des strömenden Mediums auf die Wand des Rohres im Bereich der Verengung kleiner

Mehr

Physik I Mechanik der Kontinua und Wärmelehre Thomas Schörner-Sadenius

Physik I Mechanik der Kontinua und Wärmelehre Thomas Schörner-Sadenius Physik I Mechanik der Kontinua und Wärmelehre Thomas Universität Hamburg Wintersemester 2014/15 ORGANISATORISCHES Thomas : Wissenschaftler (Teilchenphysik) am Deutschen Elektronen-Synchrotron (DESY) Kontakt:

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016 Die Brücke ins Studium Vorkurs Physik Dr. Oliver Sternal Dr. Nils-Ole Walliser 19.-23. September 2016 2. Fluidmechanik 2. Fluidmechanik 2.1 Fluidstatik 2. Fluidmechanik 2.1 Fluidstatik 2.1.1 Druck in ruhenden

Mehr

Versuchsauswertung: P1-26,28: Aeromechanik

Versuchsauswertung: P1-26,28: Aeromechanik Praktikum Klassische Physik I Versuchsauswertung: P1-26,28: Aeromechanik Christian Buntin Jingfan Ye Gruppe Mo-11 Karlsruhe, 18. Januar 21 christian.buntin@student.kit.edu JingfanYe@web.de Inhaltsverzeichnis

Mehr

Hydraulik für Bauingenieure

Hydraulik für Bauingenieure Hydraulik für Bauingenieure Grundlagen und Anwendungen von Robert Freimann 1. Auflage Hydraulik für Bauingenieure Freimann schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser

Mehr

Praktikum Elektronik

Praktikum Elektronik Fakultät Elektrotechnik Hochschule für Technik und Wirtschaft Dresden University of Applied Sciences Friedrich-List-Platz 1, 01069 Dresden ~ PF 120701 ~ 01008 Dresden ~ Tel. (0351) 462 2437 ~ Fax (0351)

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen.

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. Das stationäre Magnetfeld 16 4 Stationäre Magnetfelder 4.1 Potentiale magnetischer Felder 4.1 Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. a) Berechnen Sie mit

Mehr

Strömungslehre. Technische. Vogel Buchverlag. Kamprath-Reihe

Strömungslehre. Technische. Vogel Buchverlag. Kamprath-Reihe Kamprath-Reihe Willi Bohl Prof. Dipl.-Ing. Prof. Dr.-Ing. Wolfgang Elmendorf Technische Strömungslehre Stoffeigenschaften von Flüssigkeiten und Gasen, Hydrostatik, Aerostatik, Inkompressible Strömungen,

Mehr

Entwicklung einer netzbasierten Methodik zur Modellierung von Prozessen der Verdunstungskühlung

Entwicklung einer netzbasierten Methodik zur Modellierung von Prozessen der Verdunstungskühlung Institut für Energietechnik - Professur für Technische Thermodynamik Entwicklung einer netzbasierten Methodik zur Modellierung von Prozessen der Verdunstungskühlung Tobias Schulze 13.11.2012, DBFZ Leipzig

Mehr

Protokolle erstellen

Protokolle erstellen Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik Protokolle erstellen - eine kurze Einweisung - WS 2011/2012 www.emg.tu-bs.de Protokoll Was ist das? Versuchs-, Mess-, Praktikums-,

Mehr

Elektrolytische Leitfähigkeit

Elektrolytische Leitfähigkeit Elektrolytische Leitfähigkeit 1 Elektrolytische Leitfähigkeit Gegenstand dieses Versuches ist der Zusammenhang der elektrolytischen Leitfähigkeit starker und schwacher Elektrolyten mit deren Konzentration.

Mehr

Betriebsfeld und Energiebilanz eines Ottomotors

Betriebsfeld und Energiebilanz eines Ottomotors Fachbereich Maschinenbau Fachgebiet Kraft- u. Arbeitsmaschinen Fachgebietsleiter Prof. Dr.-Ing. B. Spessert März 2016 Praktikum Kraft- und Arbeitsmaschinen Versuch 2 Betriebsfeld und Energiebilanz eines

Mehr

Was versteht man unter Bewegung?

Was versteht man unter Bewegung? Bewegungen Was versteht man unter Bewegung? Beobachten: Beschreiben: Ortsveränderung in einer bestimmten Zeit Messen: Objektivierte Darstellung durch Vergleiche mit allgemein gültigen Standards: Längenmaß,

Mehr

Versuch 2 - Elastischer und inelastischer Stoß

Versuch 2 - Elastischer und inelastischer Stoß UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 2 - Elastischer und inelastischer Stoß 26. überarbeitete Auflage vom 10. Mai 2016 Dr. Stephan

Mehr

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage Hans Dieter Baehr Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Vierte, berichtigte Auflage Mit 271 Abbildungen und zahlreichen Tabellen sowie 80 Beispielen Springer-Verlag

Mehr

Grundlagen der Elektrotechnik I Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen

Grundlagen der Elektrotechnik I Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen Grundlagen der Elektrotechnik I 17 11.01.01 Einführung eines Einheitensystems.1 Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen Physikalische Größen: Meßbare,

Mehr

12.1 Fluideigenschaften

12.1 Fluideigenschaften 79 Als Fluide bezeichnet man Kontinua mit leicht verschieblichen Teilen. Im Unterschied zu festen Körpern setzen sie langsamen Formänderungen ohne Volumenänderung nur geringen Widerstand entgegen. Entsprechend

Mehr

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Gasthermometer 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 21.06.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Zustandgleichung des idealen Gases Ein ideales

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie 10.08.2008 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: W 3 - Kalorimetrie 1. Grundlagen Definition und Einheit von Wärme und Temperatur; Wärmekapazität (spezifische und molare); Regel von Dulong

Mehr

Protokoll Grundpraktikum I: T6 Thermoelement und newtonsches Abkühlungsgesetz

Protokoll Grundpraktikum I: T6 Thermoelement und newtonsches Abkühlungsgesetz Protokoll Grundpraktikum I: T6 Thermoelement und newtonsches Abkühlungsgesetz Sebastian Pfitzner 5. Juni 03 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (55077) Arbeitsplatz: Platz 3 Betreuer:

Mehr

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I

Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume. Klausur Herbst Strömungsmechanik I Leibniz Universität Hannover Institut für Turbomaschinen und Fluid-Dynamik Prof. Dr.-Ing. J. Seume Klausur Herbst 008 Strömungsmechanik I Bearbeitungsdauer: 90 min zugelassene Hilfsmittel: - Taschenrechner

Mehr

Peter von Böckh. Wärmeübertragung. Grundlagen und Praxis. Zweite, bearbeitete Auflage. 4y Springer

Peter von Böckh. Wärmeübertragung. Grundlagen und Praxis. Zweite, bearbeitete Auflage. 4y Springer Peter von Böckh Wärmeübertragung Grundlagen und Praxis Zweite, bearbeitete Auflage 4y Springer Inhaltsverzeichnis 1 Einleitung und Definitionen 1 1.1 Arten der Wärmeübertragung 3 1.2 Definitionen 5 1.2.1

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Technische Strömungslehre

Technische Strömungslehre 01.3 Bruno Eck Technische Strömungslehre Bearbeitet von R. Ermshaus Neunte, überarbeitete Auflage Band 1: Grundlagen Mit 263 Abbildungen \ Springer-Verlag \ v Berlin Heidelberg l^ewyork London Paris Tokyo

Mehr

HAW Hamburg. Fakultät Technik und Informatik. Department Maschinenbau und Produktion. Praktikum - Konstruktion 4. Versuch M4

HAW Hamburg. Fakultät Technik und Informatik. Department Maschinenbau und Produktion. Praktikum - Konstruktion 4. Versuch M4 MUT HAW Hamburg Fakultät Technik und Informatik Department Maschinenbau und Produktion Labor für Maschinenelemente und Tribologie W 16 Prof. Dr.-Ing. Frank Helmut Schäfer Dipl.-Ing. Niels Eiben (Autor)

Mehr

Die Summen- bzw. Differenzregel

Die Summen- bzw. Differenzregel Die Summen- bzw Differenzregel Seite Kapitel mit Aufgaben Seite WIKI Regeln und Formeln Level Grundlagen Aufgabenblatt ( Aufgaben) Lösungen zum Aufgabenblatt Aufgabenblatt (7 Aufgaben) Lösungen zum Aufgabenblatt

Mehr

Versuch Q1. Äußerer Photoeffekt. Sommersemester Daniel Scholz

Versuch Q1. Äußerer Photoeffekt. Sommersemester Daniel Scholz Demonstrationspraktikum für Lehramtskandidaten Versuch Q1 Äußerer Photoeffekt Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt am:

Mehr

Funktionen in der Mathematik

Funktionen in der Mathematik R. Brinkmann http://brinkmann-du.de Seite 05.0.008 Funktionen in der Mathematik Bei der mathematischen Betrachtung natürlicher, technischer oder auch alltäglicher Vorgänge hängt der Wert einer Größe oft

Mehr

Wima-Praktikum 2: Bildsynthese-Phong

Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Bildsynthese-Phong Wima-Praktikum 2: Prof. Dr. Lebiedz, M. Sc. Radic 1 Inhaltsverzeichnis 1 Einleitung 3 2 Kurze Beschreibung der Aufgabenstellung und dem Phong- Modell 3 3 Modellierung

Mehr

Experimentelle Hydromechanik Wehrüberfall und Ausfluss am Planschütz

Experimentelle Hydromechanik Wehrüberfall und Ausfluss am Planschütz UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Bauingenieur- und Vermessungswesen Institut für Wasserwesen Dr.-Ing. H. Kulisch Universitätsprofessor Dr.-Ing. Andreas Malcherek Hydromechanik und Wasserbau

Mehr

Kontrollfragen. Hydrodynamik. Stephan Mertens. 6. Juli 2013 G N D O O

Kontrollfragen. Hydrodynamik. Stephan Mertens. 6. Juli 2013 G N D O O Kontrollfragen Hydrodynamik Stephan Mertens 6. Juli 2013 UE R ICKE UNI VERSITÄT MAG G N VO D O TT O EBURG 1 Einführung und Motivation 1. Erläutern Sie die Lagrange sche und die Euler sche Darstellung

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 11

Technische Universität München Zentrum Mathematik. Übungsblatt 11 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 11 Hausaufgaben Aufgabe 11.1 Berechnen Sie jeweils die Jacobi-Matrix folgender

Mehr

Versuch C: Auflösungsvermögen Einleitung

Versuch C: Auflösungsvermögen Einleitung Versuch C: svermögen Einleitung Das AV wird üblicherweise in Linienpaaren pro mm (Lp/mm) angegeben und ist diejenige Anzahl von Linienpaaren, bei der ein normalsichtiges Auge keinen Kontrastunterschied

Mehr