10. Lagrange-Formalismus

Größe: px
Ab Seite anzeigen:

Download "10. Lagrange-Formalismus"

Transkript

1 Übungen zur T1: Theoretische Mechanik, SoSe013 Prof Dr Dieter Lüst Theresienstr 37, Zi Lagrange-Formalismus Dr James Gray Übung 101: Penel an Feern Eine Punktmasse m 1 ist wie in ie Abbilung urch zwei Feern an zwei Wänen befestigt Die Ruhelänge er Feern entspricht gerae em Fall, ass m 1 sich in er Mitte zwischen en Wänen befinet Beie Feern haben ie gleiche Feerkonstante k, h ie Rückstellkraft ist em Betrage nach F = k x Die Punktmasse m 1 arf sich nur waagerecht (entlang er x-achse) bewegen Es ist eine weitere Punktmasse m mit einem masselosen Stab er Länge l an m 1 befestigt Die zweite Punktmasse kann in er x z-ebene Aufgaben unter em Einfluss 185 er homogenen Schwerkraft F G = m gê z schwingen Der Auslenkungswinkel es Penels ist ϕ mer nach außen bewe- m 1 x ê ϕ (68) auf em Stab hält un Da sich ie Perle frei ir ie Zentrifugalkraft rt egen V = 0 auf k F G ϕ l k m Messung V = 0 in Zylinerkoa) Wählen Sie geeignete verallgemeinerte Koorinaten un stellen Sie ie Lagrange-Funktion ω auf (630) 1 Wählen Sie geeignete verallgemeinerte Koorinaten un stellen Bewegungsgleichungen Sie ie Lagrange-Funktion ab auf b) Leiten Sie ie it ρ nur eine c) verallgesgleichung kann Bewegungsgleichungen irekt 3 Nehmen jeweils Sie nuninan, er ass Form er Auslenkungswinkel ϕ klein ist Nehmen Sie nun Leiten an, ass Sie ie erbewegungsgleichungen Auslenkungswinkel ϕ klein ab ist Zeigen Sie, ass sich beie Zeigen Sie, ass sich a q + beie bq = f(q Bewegungsgleichungen, q, q ) jeweils (1) in er Form schreiben (631) lassen Hier sin a un b konstante Koeffizienten, a q + bq = f (q, q, q q ist ie eine un q ie anere verallgemeinerte Koorinate Beie Bewegungsgleichungen ) beschreiben (633) eine getriebene m ersten Aufgabenteil Schwingung schreiben lassen Hier sin a un b konstante Koeffizienten, g muss selbstverstän- q ist ie eine un q ie anere verallgemeinerte Koorinate Lösung von Übung 101 rhaltung im Formalisiter Art aus? Hier soll Schwingung Dies wir in Kapitel 7 genauer iskutiert Hinweis: Zwangsbeingung f = 1 Resultat:, (63) mρ ρω (69) Die Massen Abbilung m 1 un 610m Die sin Massen urch m 1 einen un mstab siner urch Länge einenl verbunen Stab er Länge Währen l verbunen Währen m enn sich ie Perle raial m 1 über zwei Feern mit Feerkostanten 1 über zwei Feern k an en mitwänen Feerkostanten befestigt k an ist, kann m en Wänen befestigt ist, kann m an m 1 unter em Einfluss er Gra- an m 1 unter em Einfluss er Gravitationskraft F G schwingen vitationskraft F G schwingen z Beie Bewegungsgleichungen beschreiben eine getriebene ausführliche Lösung:

2 a) Wir wählen ie Koorinaten so, ass ie Punktmasse m 1 im Gleichgewicht x = 0 un z = 0 erfüllt Die y-koorinate spielt hier keine Rolle Es gibt mit x un ϕ zwei Freiheitsgrae Die Koorinaten er beien Punktmassen lauten ( ) ( ) x x + l sin ϕ x 1 = un x 0 = l cos ϕ Daraus ergeben sich ie Geschwinigkeiten ( ) ẋ ẋ 1 = un ẋ 0 = ( ẋ + l ϕ cos ϕ l ϕ sin ϕ ) Die kinetische Energie lautet T = m 1 ẋ + m (ẋ + l ϕ + lẋ ϕ cos ϕ ) Die Auslenkung x er ersten Punktmasse hängt mit er in en Feern gespeicherten potentiellen Enregie zusammen: V 1 = k x + k x = kx Die zweite Punktmasse bewegt sich im homogenen Schwerefel un hat ie potentielle Energie Es ergibt sich ie Lagrange-Funktion V = m gl cos ϕ L = m 1 + m ẋ + m l ϕ + m l(ẋ ϕ + g) cos ϕ kx () b) Aus er Lagrange-Funktion () folgen ie Bewegungsgleichungen un t [(m 1 + m )ẋ + m l ϕ cos ϕ] + kx = 0 [ m l ϕ + m lẋ cos ϕ ] + m l(ẋ ϕ + g) sin ϕ = 0 t Nach Ausführung er Zeitableitung verbleiben ie Gleichungen un (m 1 + m )ẍ + m l ϕ cos ϕ m l ϕ sin ϕ + kx = 0 l ϕ + ẍ cos ϕ + g sin ϕ = 0 c) Kleine Winkel beeuten, ass ie trigonometrischen Funktionen entwickelt weren können: sin ϕ ϕ un cos ϕ 1

3 Die Bewegungsgleichung für x nimmt ann ie folgene Form an: Entsprechen erhält man für ϕ (m 1 + m )ẍ + kx = m l( ϕ ϕ ϕ) (3) l ϕ + gϕ = ẍ (4) Beie Gleichungen haben ie Form (1) Die Bewegungsgleichungen sin nicht einfach zu lösen, a sie eng miteinaner gekoppelt sin: Die Argumente auf en rechten Seiten von (3) un (4) erhalten jeweils ie anere Koorinate, (3) sogar en nicht-linearen Term ϕ ϕ Übung 10: Bewegungsgleichungen in Kugelkoorinaten aus em Lagrange-Formalismus a) Stellen Sie ie Bewegungsgleichungen einer Punktmasse in Kugelkoorinaten auf Nutzen Sie azu en Lagrange-Formalismus Das Potenzial soll abei eine allgemeine Funktion V (r, θ, φ) sein b) Eine Punktmasse bewege sich in einem raialsymmetrischen Potenzial V (r) Allerings ist ihre Bewegung urch eine Zwangsbeingung nur auf einer Kegeloberfläche mit Öffnungswinkel θ = θ 0 möglich Stellen Sie ie Bewegungsgleichungen für ieses Problem auf Zeigen Sie, ass ie Raialgleichung in er Form m r = V eff r geschrieben weren kann Wie lautet as effektive Potenzial V eff? c) Überlegen Sie sich en Fall,ass ie Zwangsbeingung nicht zu einer Bewegung auf einem Kegel führt, sonern zu einer Bewegung auf einer Ebene mit φ = φ 0 Stellen Sie ie Bewegungsgleichungen auf un lösen Sie sie für ie kräftefreie Bewegung in er Form r(θ) Welche Gestalt hat ie resultierene Bahnkurve? (Diese letzte Frage lässt sich auch irekt urch Nachenken beantworten) Lösung von Übung 10 a) Die Koorinaten er Punktmasse in Kugelkoorinaten lauten x 1 = r sin θ cos ϕ, x = r sin θ sin ϕ un x 3 = r cos θ Es gibt keine Zwangsbeingungen; es müssen also alle rei Koorinaten (r, θ, ϕ) berücksichtigt weren Um ie kinetische Energie T in Kugelkoorinaten zu erhalten, müssen ie ersten Zeitableitungen bestimmt weren Dabei hängen sowohl r, θ, als auch ϕ von er Zeit ab Das Ergebnis ist ẋ 1 = ṙ sin θ cos ϕ + r θ cos θ cos ϕ r ϕ sin θ sin ϕ, ẋ = ṙ sin θ sin ϕ + r θ cos θ sin ϕ + r ϕ sin θ cos ϕ, ẋ 3 = ṙ cos θ r θ sin θ 3

4 Die kinetische Energie lautet T = m (ẋ 1 + ẋ + ẋ 3) = m [ ṙ + r ( θ ] + ϕ sin θ) Der Umformungsschritt besteht vor allem aus Fleissarbeit un mehrfacher Anwenung er Ientität sin x + cos x = 1, bereitet aber keine konzeptionellen Schwierigkeiten Man erkennt, ass keine gemischten Terme wie ṙ θ oer θ ϕ auftreten Die Lagrange-Gleichungen für r, θ un ϕ sin t (mṙ) mr( θ + ϕ sin θ) = V r, t (mr θ) mr ϕ sin θ cos θ = V θ, t (mr ϕ sin θ) = V ϕ b) Die Zwangsbeingung ist holonom un lautet f = θ θ 0 = 0 Glücklicherweise ist sie mit en Kugelkoorinaten verträglich Allerings gibt es nur noch zwei unabhängige Parameter: en Raius r un en Azimutwinkel ϕ Da θ nicht mehr zu en generalisierten Koorinaten gehört, sin einfach alle Terme θ aus er Lagrange- Funktion zu streichen, un θ ist urch ie Konstante θ 0 zu ersetzen Dies führt auf L = m (ṙ + r ϕ sin θ 0 ) V (r) Die Bewegungsgleichungen lauten emnach t (mṙ) mr( ϕ sin θ 0 ) = V r t (mr ϕ sin θ 0 ) = 0 un Der konjugierte Impuls p ϕ = mr ϕ sin θ 0 ist erhalten un kann verwenet weren, um ϕ aus er Bewegungsgleichung für r zu eliminieren: m r Wir schreiben iese Gleichung als p ϕ mr 3 sin θ 0 = V r mit em effektiven Potenzial m r = V eff r V eff = V (r) + p ϕ mr sin θ 0 4

5 c) Für ie Zwangsbeingung f = ϕ ϕ 0 = 0 un ie kräftefreie Bewegung ist ie Lagrange-Funktion L = T = m (ṙ + r θ ) Hier sin r un θ ie beien unabhängigen Koorinaten Entsprechen finet man schnell ie Bewegungsgleichungen t (mṙ) mr θ = 0, t (mr θ) = 0 Hier ist θ zyklisch un er konjugierte Impuls p θ = mr θ erhalten Die Raialgleichung vereinfacht sich zu m r = r p θ mr Nach Multiplikation mit ṙ = r/t lässt sich ies zu m ṙ = p θ mr + C aufintegrieren Wie iese Gleichung zu lösen ist, zeigt er Abschnitt 33 im Skript 13/T1/mechanikskriptpf un es ergibt sich θ θ 0 = arcsin p θ/r mc Hier ist θ 0, neben C, eine weitere Integrationskonstante allgemeine Lösung somit Leicht umgeformt lautet ie r cos(θ θ p ) = p θ mc, (5) wobei θ p er Winkel ist, bei em ie Punktmasse en kleinsten Abstan vom Ursprung besitzt Anhan von Abbilung (15) in 13/T1/mechanikskriptpf sieht man, ass (5) eine Gerae in Kugelkoorinaten beschreibt Sie liegt in er Ebene, ie urch ϕ = ϕ 0 festgelegt ist un läuft im Abstan p θ / mc am Ursprung vorbei Dass es sich um eine Gerae hanelt, liegt auf er Han: Die kräftefreie Bewegung einer Punktmasse in einer Ebene kann nur entlang einer Gerae erfolgen Übung 103: Penel mit variabler Faenlänge Stellen Sie sich zunächst eine sphärisches Penel vor (iese Art von Penel wir im Skript 13/T1/mechanikskriptpf ausführlich vorgestellt 5

6 Variationsrechnung eren noch eine wichtige Rolle 3 e äche ugeloberfläche mit Raius R oorinaten einer Punktmasse O R in ϑsin ϕ, x3 = Rcos ϑ (69), ϕ), un ie beien unabhänf G = mg e3 1 = ϑ [0, π) un q = ϕ Offensichtlich weren q1 un ngung beeinflusst Sie eignen Abbilung 6 Das sphärische Penel sich als einevorstellen, PunktDas spha rische Penel kann man sich alskann eineman Punktmasse ie zu oorinaten für as Problem masse vorstellen, ie zu einem Aufhängepunkt (Ursprung O) en koneinem (Ursprung O) en konstanten Abstan R besitzt Das Aufha ngepunkt stanten Abstan R besitzt Das Penel kann unter em Einfluss er Penel kann unter em Einfluss er Schwerkraft schwingen Schwerkraft schwingen n verallgemeinerten Nun seikoorinaie Faenla nge nicht mehr konstant (wie in er Abbilung argestellt), sonern sie ist e Koorinaten beschränkt sein Da Zwangsbeingungen allen Zeiten gelten, erfüllen ie urch ie Funktion R ie = R(t) vorgegeben unzusomit zeitabha ngig q j beispielsweise um Winkel SieAnfangsbeingungen a) Bestimmen ie Lagrange-Funktion in Kugelkoorinaten Nutzen Sie azu ie Ergebie generalisierten nisse Koorinaten aus er vorangegangenen Aufgabe x0 R = 0, x0 v0 = 0, (61) menfassen Es wir stattessen b) Geben Sie ie Bewegungsgleichungen an Was ist beim Aufstellen er Bewegungsgleichunierten Koorinaten als skalare wobei v = x ie ist Wirer wissen, ass ie Bewegen zu beachten (enken SieGeschwinigkeit abei an ie Anzahl Freiheitsgrae)? gung einer freien Punktmasse urch rei Differenzialgleichungen zweiter Ornung beschrieben wir, eren vollstänige Integration sechs Parameter (z B in Form von AnfangsbeingunLo sung von U bung 103 gen) benötigt Wegen (61) bleiben avon allerings nur vier unabhängige übrig Es kann zuna chst irekt ie Lagrange-Funktion in Kugelkoorinaten aufgeschrieben weren: lässt sich ie Problematik er m? ϕ sin θ)] mgr cos θ kräfte sowie eines Lösungsver- L = T V = [r + r (θ + eim sphärischen Penel hanelt Überlegen Sie sich anhan von (61), ass ie Anfangsgev0 tangential zur verläuft Aufstellung er Bewegungsgleichung istkugeloberfläche zu beachten, ass nur θ un ϕ Freiheitsgrae ie sich unterbei emer Einfluss er schwinigkeit auf er Oberfläche Kugel sin einer Es gibt aher nur zwei Lagrange-Gleichungen Obwohl er Raius un seine Zeitableitung lung 6) Man kannlagrange-funktion sich beiin er auftritt, hanelt es sich abei um eine vorgegebene Funktion ohne Offensichtlich steht ie Zwangsbeingung (610) im WierPunktmasse an einem masselofreiheit Die Bewegungsgleichungen lauten spruch zur Lösung er Newton schen Bewegungsgleichung einer ist Der Ursprung O liege im Punktmasse im Schwerefel, mr θ + mrr θ = mr ϕ sin θ cos θ + mgr sin θ utet ie holonome Zwangsbe1 x(t) = gt + v0 t + x0 (613) un ) R = 0 (610) Wir ϕ müssen Z r einführen, sin θ +aher mr eine ϕ θ sinzwangskraft θ cos θ + mr ϕ sin θ =um 0 ie ie Bahnkurve x(t) eine Funk- mr ängigkeit nur implizit über ie Bewegungsgleichung mit er Zwangsbeingung kompatibel zu, hanelt es sich um eine skle- machen; wir schreiben rheonome Zwangsbeingung m x = mg + Z (614) Kugelraius selbst eine Funk(t) Dies wir in Aufgabe 64 Diese Zwangskraft kann nur von em Faen auf ie Punktmasse ausgeübt weren un muss entlang es Faens wirken Da wir allerings noch nicht wissen, welchen Betrag ie Zwangskraft Zeitabhängigkeiten nicht mehr hat, notieren wir tableitungen er ZwangsbeinZ = λx (615) 6 Man nennt en Proportionalitätsfaktor λ einen Lagrange- = x + x x = 0 (611) Multiplikator Der Grun für en zusätzlichen Faktor wir Theoretische Physik

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er

Mehr

1. Probeklausur. φ = 2x 2 y(z 1).

1. Probeklausur. φ = 2x 2 y(z 1). Übungen zur T: Theoretische Mechanik, SoSe04 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Probeklausur Dr. Reinke Sven Isermann Reinke.Isermann@lmu.e Übung.: Gegeben sei ie Funktion φ = x y z. a Berechnen

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators 8 Raialsymmetrisches elektrisches Fel, Coulomb-Gesetz; Kapazität es Kugelkonensators Die Felstärke im raialen Fel - as Coulombsche Gesetz Am Ene es letzten Kapitels wure ie Grungleichung es elektrischen

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Ferienkurs Theoretische Mechanik. Lagrangeformalismus

Ferienkurs Theoretische Mechanik. Lagrangeformalismus Ferienkurs Theoretische Mechanik Lagrangeformalismus Sebastian Wild Mittwoch, 14.09.2011 Inhaltsverzeichnis 1 Zwangskräfte und Lagrangegleichungen 1. Art 2 1.1 Motivation, Definition von Zwangsbedingungen..........

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE Kapitel 10: Relativistische Hamiltonfunktionen Vorlesung für Stuenten er Technischen Physik Helmut Nowotny Technische Universität Wien Institut für Theoretische Physik

Mehr

4. Drehimpulserhaltung und Streuung

4. Drehimpulserhaltung und Streuung Übungen zur T: Theoretische Mechani, SoSe203 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 425 Dr. James Gray James.Gray@physi.uni-muenchen.de 4. Drehimpulserhaltung und Streuung Übung 4.: Noch einmal der

Mehr

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs; Lösungem. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Ferienkurs; Lösunge Soerseester 2011, Prof. Metzler 1 Inhaltsverzeichnis 1 Quickies 3 2 Lagrange Gleichung 1. Art 3 2.1 Perle auf Schraubenlinie..................................

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Mathematik III. Vorlesung 87. Die äußere Ableitung

Mathematik III. Vorlesung 87. Die äußere Ableitung Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Ferienkurs Theoretische Mechanik Lösungen Hamilton

Ferienkurs Theoretische Mechanik Lösungen Hamilton Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig

Mehr

Gekoppelte Pendel und Kopplungsgrad

Gekoppelte Pendel und Kopplungsgrad Fakultät für Physik un Geowissenschaften Physikalisches Grunpraktikum M Gekoppelte Penel un Kopplungsgra Aufgaben. Messen Sie für rei Stellungen er Kopplungsfeer jeweils ie Schwingungsauer T er gleichsinnigen

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Aufgaben zum Wochenende (2)

Aufgaben zum Wochenende (2) Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie

Mehr

1 Lagrange sche Gleichung 1. Art

1 Lagrange sche Gleichung 1. Art 1 Lagrange sche Gleichung 1. Art 1.1 Einführung und Beispiel Bewege sich ein Massepunkt auf einer Geraden (G) im Raum, so hat dieser einen Freiheitsgrad, d.h. es müssen 2 Zwangsbedingungen für ihn gelten.

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: 23.1.12 Jungius 9, Hörs 2 1 Mathey Einführung in ie

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Allgemeine Mechanik Musterlo sung 5.

Allgemeine Mechanik Musterlo sung 5. Allgemeine Mechanik Musterlo sung 5 U bung HS 203 Prof R Renner Gekoppelte Pendel Wir betrachten ein System aus zwei gleichen mathematischen Pendeln der La nge l = l2 = l mit Massen m = m2 = m im Schwerefeld

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 3 Tobias Spranger - Prof. Tom Kirchner WS 5/6 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 5 Übungsblatt 6 Lösungsvorschlag 3 ufgaben,

Mehr

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht.

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht. Aufgaben Konensator 57. Zwei kreisförmige Metallplatten mit em Raius 0 cm, ie parallel im Abstan von 0 cm angeornet sin, bilen einen Plattenkonensator. In er Mitte zwischen en Platten hängt an einem ünnen

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

Lagrange Formalismus

Lagrange Formalismus Lagrange Formalismus Frank Essenberger FU Berlin 1.Oktober 26 Inhaltsverzeichnis 1 Oszillatoren 1 1.1 Fadenpendel.............................. 1 1.2 Stabpendel.............................. 3 1.3 U-Rohr................................

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x)

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x) Kapitel 7 Differentialrechnung 71 Definitionen un Ableitungen er elementaren Funktionen Die Funktion f) sei efiniert für a

Mehr

Grundlagen der Lagrange-Mechanik

Grundlagen der Lagrange-Mechanik Grundlagen der Lagrange-Mechanik Ahmed Omran 1 Abriss der Newton schen Mechanik 1.1 Newton sche Axiome 1. Axiom: Im Inertialsystem verharrt ein Körper in seinem momentanen Bewegungszustand (in Ruhe, oder

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 1: Grundlagen der Newton schen Mechanik, Zweiteilchensysteme gehalten von: Markus Krottenmüller

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Bewegung auf Paraboloid 2

Bewegung auf Paraboloid 2 Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 8 vom 17.06.13 Abgabe: 24.06. Aufgabe 34 4 Punkte Bewegung auf Paraboloid 2 Ein Teilchen der Masse m bewege sich reibungsfrei unter

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

1 Lokale Umkehrbarkeit und implizite Funktionen

1 Lokale Umkehrbarkeit und implizite Funktionen Christina Schinler Karolina Stoiber Ferienkurs Analysis 2 für Physiker SS 2013 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Fehlerrechnung mit Hilfe der Differentialrechnung

Fehlerrechnung mit Hilfe der Differentialrechnung HTBLA Neufelen Fehlerrechnung mit Hilfe er Differentialrechnung Seite von 9 Peter Fischer pe.fischer@atn.nu Fehlerrechnung mit Hilfe er Differentialrechnung Mathematische / Fachliche nhalte in Stichworten:

Mehr

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser Hamilton-Mechanik Simon Filser 4.9.09 Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html 9. Januar 006 Übungsblatt 8 Lösungsvorschlag 3 Aufgaben,

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

2.5 Kondensatoren und Feldenergie

2.5 Kondensatoren und Feldenergie 30 KAPITEL 2. ELEKTOSTATIK 2.5 Konensatoren un Felenergie Aus en echnungen für eine unenlich ausgeehnte Platte mit homogener Laungsichte, ie wir in en Abschnitten 2.2 un 2.4 vorgenommen haben, können wir

Mehr

Allgemeine Mechanik Musterlösung 3.

Allgemeine Mechanik Musterlösung 3. Allgemeine Mechanik Mustelösung 3. HS 014 Pof. Thomas Gehmann Übung 1. Umlaufbahnen fü Zweiköpepobleme Die Bewegungsgleichung von zwei Köpen in einem zentalwikenem Kaftfel, U() = α/, lautet wie folgt:

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

Übungen zur Theoretischen Physik I: Mechanik

Übungen zur Theoretischen Physik I: Mechanik Prof Dr H Friedrich Physik-Departent T30a Technische Universität München Blatt 4 Übungen zur Theoretischen Physik I: Mechanik (Abgabe schriftlich, in der Übungsgruppe in der Woche vo 805-2205) Betrachten

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Kreisbewegung Ein Massepunkt bewege sich auf einer Kreisbahn mit der konstanten Geschwindigkeit

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretishe Physik 2 Theoretishe Mehanik) Prof. Dr. Th. Felmann 11. Februar 2014 Kurzzusammenfassung Vorlesung 28 vom 7.2.2014 Vierergeshwinigkeit un Viererimpuls Zur Beshreibung er relativistishen Bewegungsgleihungen

Mehr

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV

Aufgabe 3.1. Aufgabe 3.2. Aufgabe 3.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik IV ZÜ 3. Aufgabe 3. Ein Wagen Masse M) kann eibungsfei auf eine waagechten Bahn fahen. An eine Achse uch seinen Schwepunkt S que zu Fahtichtung hängt eibungsfei gelaget ein Massenpenel Masse, Länge l, Stab

Mehr

Theoretische Mechanik

Theoretische Mechanik Theoretische Mechanik Kompenium) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stan: 23 Oktober 2008 Inhaltsverzeichnis Newton sche Mechanik 3 Mechanische Größen un wichtige Sätze 3 Planetenbewegung

Mehr

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus

Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und

Mehr

Energiemethoden, Prof. Popov, WiSe 11/12, 4. Woche Lösungshinweise Seite 1 Lagrangesche-Gleichungen 1. Art. 3m 2 r. Somit sind.

Energiemethoden, Prof. Popov, WiSe 11/12, 4. Woche Lösungshinweise Seite 1 Lagrangesche-Gleichungen 1. Art. 3m 2 r. Somit sind. Eneriemethoen, Prof. Popov, WiSe 11/1, 4. Woche Lösunshinweise Seite 1 Tutorium Aufabe 47 Auf einer schiefen Ebene Neiunswinkel α befinet sich ein Sstem aus einem Klotz Masse m 1 un einem Vollzliner Masse

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Cluster 1: Kabelverlauf

Cluster 1: Kabelverlauf Teil B Seite 1 / 6 Doris Schönorfer Cluster 1: Kabelverlauf zum Menü Hinweis: Cluster 1 bezieht sich auf Höhere Technische Lehranstalten (HTL) für ie Ausbilungsrichtungen Bautechnik, Holztechnik & Innenraumgestaltung

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

Physik II Übung 10 - Lösungshinweise

Physik II Übung 10 - Lösungshinweise Physik II Übung 0 - Lösungshinweise Stefan Reutter SoSe 202 Moritz Kütt Stan: 04.07.202 Franz Fujara Aufgabe Lolli Die kleine Carla hat von einem netten Onkel einen großen, runen Lolli geschenkt bekommen.

Mehr

Lösung zu Übungsblatt 3

Lösung zu Übungsblatt 3 Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik. Ebenes Pendel (*) Lösung zu Übungsblatt 3 Lagrange-Formalismus, Systeme von Schwingungen Man betrachte ein ebenes Doppelpendel

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik Klassische Mechanik 30. September 016 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 5 Punkten. Die Klausur

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

1 Die drei Bewegungsgleichungen

1 Die drei Bewegungsgleichungen 1 Die drei Bewegungsgleichungen Unbeschleunigte Bewegung, a = 0: Hier gibt es nur eine Formel, nämlich die für den Weg, s. (i) s = s 0 + v t s ist der zurückgelegte Weg, s 0 der Ort, an dem sich der Körper

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

Blatt 05.2: Green sche Funktionen

Blatt 05.2: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 05 Dozent: Jan von Delft Übungen: Katharina Stadler, Frauke Schwarz, Dennis Schimmel, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5t/

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr

Lösungen Aufgabenblatt 11

Lösungen Aufgabenblatt 11 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 11 Übungen E1 Mechanik WS 2017/2018 ozent: Prof. r. Hermann Gaub Übungsleitung: r. Martin Benoit und r. Res Jöhr Verständnisfragen

Mehr

Lineare Differentialgleichungen erster Ordnung

Lineare Differentialgleichungen erster Ordnung HTBLA Neufelen Lineare Differentialgleichungen erster Ornung Seite 1 von 7 Peter Fischer pe.fischer@atn.nu Lineare Differentialgleichungen erster Ornung Mathematische / Fachliche Inhalte in Stichworten:

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie

Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie Dirk H. Rischke Sommersemester 2010 Inhaltsverzeichnis 1 Lagrange-Mechanik 1 1.1 Zwangskräfte, Zwangsbedingungen und generalisierte

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

6. Orbits und die Runge-Lenz Vektor

6. Orbits und die Runge-Lenz Vektor Übungen zur T: Theoretische Mechani, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physi.uni-muenchen.de 6. Orbits und die Runge-Lenz Vetor Übung 6.: Die Rücehr der Kanonenugel

Mehr

Grundlagen der Analytischen Mechanik

Grundlagen der Analytischen Mechanik Höhere Technische Mechanik Grundlagen der Analytischen Mechanik Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Grundlagen der Analytischen

Mehr

8.1 Lösung der Laplace-Gleichung durch Separation der Variablen

8.1 Lösung der Laplace-Gleichung durch Separation der Variablen 8 Methoen zur Lösung er Lapace-Geichung Gesucht: Lösung er Lapace-Geichung für gegebene Ranbeingungen. Strategie: φ = 0. Ermitte ie Symmetrien er Ranbeingungen. Diese bestimmen as geeignete Koorinatensystem.

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: 7.9.11, Abgabe am 14.9.11) Beispiel 1: Stoß in der Ebene [3 Punkte] Betrachten Sie den elastischen Stoß dreier Billiardkugeln A, B und C

Mehr

Allgemeine Mechanik Musterlösung 5.

Allgemeine Mechanik Musterlösung 5. Allgemeine Mechanik Musterlösung 5. HS 014 Prof. Thomas Gehrmann Übung 1. Rotierende Masse. Eine Punktmasse m rotiere reibungslos auf einem Tisch (siehe Abb. 1). Dabei ist sie durch einen Faden der Länge

Mehr

Aufgaben zur Großübung

Aufgaben zur Großübung Mathematische Methoen II (SoSe 07) Aufgaben zur Großübung Aufgaben für 03. April 07. Bestimmen Sie jeweils f() eplizit un geben Sie en maimalen Definitionsbereich von g(), h() un f() an. f() = (g h)(),

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls un Drehimpuls es elektromagnetischen Feles 8.1 Energie In Abschnitt.5 hatten wir em elektrostatischen Fel eine Energie zugeornet, charakterisiert urch ie Energieichte ω el ɛ 0 E. (8.1

Mehr