2.5 Kondensatoren und Feldenergie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2.5 Kondensatoren und Feldenergie"

Transkript

1 30 KAPITEL 2. ELEKTOSTATIK 2.5 Konensatoren un Felenergie Aus en echnungen für eine unenlich ausgeehnte Platte mit homogener Laungsichte, ie wir in en Abschnitten 2.2 un 2.4 vorgenommen haben, können wir für as elektrische Fel zwischen zwei planparallele Platten zwanglos folgern, ass: E = 1 ε 0 A ( Qlinks Mit er orgabe, ass Q links = Q rechts = Q folgt für E 2 Q ) rechts 2 E = 1 ε 0 A Q (2.26) Die Energie, ie benötigt wir, um eine Probelaung q Q von links nach rechts zu verschieben, beträgt somit: U = q E }{{}}{{} Kraft Weg = q, wobei = E = Potenzial ( ifferenz) zwischen beien Platten. Mit (2.26) (q) ε 0 A Q = (q) oer Q = ε 0 A (2.27) Laung un Potenzialifferenz sin proportional zueinaner. Der Proportionalitätsfaktor ist eine Eigenschaft es Objekts un wir Kapazität genannt. Je höher ie Kapazität ist, esto mehr Laung wir bei gegebener Spannung auf ie Platten gelaen. C = ε 0 A Kapazität eines Plattenkonensators Kapazitäten (von Konensatoren) spielen in Schaltkreisen aber auch bei er Energiespeicherung eine wichtige olle, insbesonere ann wenn (kurzfristig) hohe Leistungen gewünscht sin. [C] = [Q] [ ] = 1 C = [ε 0 ] [ A 1 = 1 F Fara ] = [ε 0 ] m

2 2.5. KONDENSATOEN UND FELDENEGIE 31 Angabe von Kapazitäten ist auch in Längeneinheiten möglich. Jeoch ist C = 1 cm keine Angabe in S.I. Einheiten, kann aber urch Multiplikation mit ɛ 0 leicht umgerechnet weren. Die Kapazität ist proportional zur Linearimension es Bauteils. Bei er Miniaturisierung eines Schaltkreises wächst also ie Energieichte quaratisch mit em Quarat er inversen Linearimension, was auch besonere Anforerungen an ie in iesen Schaltungen verweneten Materialien stellt. Die Kapazität kann nicht nur für zwei parallele Platten efiniert weren, sonern für allgemeine Paare von metallischen Objekten. Kapazität eines Koaxialkabel: Ein Koaxialkabel besteht aus zwei voneinaner isolierten Metallrähten, siehe Abbilung. a Im letzten Kapitel: replacements i E = für i < < a λ = Q l Q l λ 2 π ε 0 l ist ein Längensegment Gesamtlaung Gesamtlänge Die Energie, ie benötigt wir, um eine kleine Testlaung von = i nach = a zu verschieben, ist: U = q a i E() = q a λ 1 2 π ε 0 i }{{} ln a =ln i a ln i =ln a i (2.28)

3 32 KAPITEL 2. ELEKTOSTATIK U = q λ ln a 2 π ε 0 }{{ i} Potenzialunterschie mit λ = Q l l Q = 2 π ε 0 (2.29) ln a }{{ i } C (Koaxialkabel) Ein 100 m langes Kabel mit a = 2 m un i = 1 m hat ieselbe Kapazität wie ein gleich langes Kabel mit a = 20 nm un i = 10 nm, nämlich C/ɛ 0 = 200π ln 2 m. Kugelkonensator: Die Beschreibung eines Kugelkonensators un ie Berechnung seiner Kapazität ist en Übungen zu entnehmen. In elektrischen Schaltungen weren Konensatoren oft seriell oer parallel zu Wierstänen, Spulen aber auch zu aneren Konensatoren geschaltet. Man kann ann jeweils parallel oer seriell geschaltete Konensatoren vereinfacht mit er Angabe einer effektiven Kapazität beschreiben. Parallelschaltung von Kapazitäten: placements Q 1 Q Q 2 C 1 C 2 C Ersatzschaltbil Die Gleichstromquelle ( ) gibt ie Potenzialifferenz vor. An jeer Kapazität liegt ieselbe Spannung an. Q 1 = C 1 Q 2 = C 2 Q gesamt = Q 1 + Q 2 = (C 1 + C 2 ) (2.30)

4 2.5. KONDENSATOEN UND FELDENEGIE 33 Parallelgeschaltete Kapazitäten aieren sich! siehe auch: C gesamt = ε 0 (A 1 + A 2 ) Die Flächen einer in zwei Teile geschnittenen Kapazität aieren sich. Serienschaltung von Kapazitäten: replacements Q 1 Q 2 Q C 1 C 2 C Ersatzschaltbil Die Summe er Spannungen muss en externen Spannung entsprechen! 1 = 1 C 1 Q 2 = 1 C 2 Q = Q = ( ) Q C 1 C 2 ( ) 1 (2.31) C 1 C 2 In Serienschaltung aieren sich ie inversen Kapazitäten. Siehe auch 1 C = 1 ε 0 A ( ) = }{{} C 1 C 2 =

5 34 KAPITEL 2. ELEKTOSTATIK 1 2 Auch komplizierte Serien- un Parallelschaltungen von Konensatoren lassen sich als effektive Kapazität arstellen, siehe Übungen. Bei ganz genauer Betrachtung muss man allerings ie Kapazität als eine Matrix ansehen. Dies zu vertiefen sprengt aber en ahmen er orlesung. Energie in einem Konensator Q links Q rechts Jee Partiallaung in er linken Platte fühlt as Potenzial er Laungen auf er rechten Platte. Die Gesamtenergie, ie in er Wechselwirkung zwischen en Laungen steckt, kann prinzipiell über Summation bzw. Integration berechnet weren. Alternativ: echte Platte erzeugt ein E-Fel: E = 1 Qrechts F = Q links E (2.32)

6 2.5. KONDENSATOEN UND FELDENEGIE 35 Nun verschiebe man ie linke Platte nach rechts bis sich ie beien Platten berühren. Damit ist ie Energie: U = 0 Q links ( 1) Qrechts r = 1 Qrechts + Q links = Q2 U = Q2 2 C (2.33) (2.34) oer wenn wir Q = C setzen: U = 1 2 C 2. (2.35) Das ist ie Energie, ie wir benötigen, um eine Kapazität zu laen. Diese Formel gilt auch für allgemeine Konensatoren. Interessanter Weise gibt es offensichtlich keine Selbstenergie einer Platte in ieser echnung. Alternative Sichtweise: Energie steckt im Fel er wechselwirkenen Laungen. Laungen selbst wechselwirken nicht, sonern sie erzeugen ein Fel, as Energie hat. Im Plattenkonensator: E = Q ε 0 A in (2.33) eingesetzt: Q = ε 0 A E U = (ε 0 A E) 2 2 ε 0 A = 1 2 ε 0 E 2 (A ) (2.36) Energie olumen = Energieichte = U A = 1 2 ε 0 E 2 (2.37) Diese Formel gilt allgemein - also auch außerhalb eines Plattenkonensator. Hintergrunwissen: Felenergie eines Protons Ein Proton ist prinzipiell ein Punktteilchen. Bei genauer Betrachtung stellt sich jeoch heraus, ass es einen zwar sehr kleinen, aber ennoch enlichen aius, = fm hat. Man kann nun annehmen, ass ie Laungsichte ρ innerhalb ieses aius konstant ist un außerhalb

7 36 KAPITEL 2. ELEKTOSTATIK gleich null un ie Felenergie berechnen. E { ρ = 0 r > ρ 0 r < Q 4 π ε 0 2 Betrachte nur Felenergie außerhalb es Protons, wo er Betrag es elektrischen Feles gegeben ist urch: E = 1 4 π ε 0 r 2 olumen einer Kugelschale er Dicke : = 4} π{{ r} 2 r Oberfläche einer Kugel U = ε0 E 2 2 r> 1 1 = 8 π ε 0 r r = }{{ 2 } 1 r = 1 r 4 π r 2 ε0 2 e 2 (4 π ε 0 ) 2 r 4 e 2 8 π ε 0 Setzen wir Zahlenwerte ein, erhalten wir U = 0.82 Me. Mit Hilfe er Formel E = m c 2 (hier steht E für Energie), kann man er Energie eine Masse zuornen. Das Ergebnis ist m = 1, kg. Dies ist nicht ie Masse eines Protons sonern ungefähr ie eines Elektrons (m e = 0, kg.) bzw. ie seines Antiteilchen. Die ermutung steckt nun nahe, ass es einen tieferen Zusamenhang gibt zwischen Protonen un Elektronen. In er Tat kann man urch Zuführung von Energie em Proton ein Positron entlocken: p + ω n + e + + ν e Lese: Proton plus Energie kann übergehen in Neutron plus Positron plus ein Elektronneutrino.

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators 4. Zusammenhang von elektrischer Felstärke un Spannung eines Konensators; Kapazität eines Konensators Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators Überlegung: Eine positive

Mehr

2.2 Elektrisches Feld

2.2 Elektrisches Feld 2.2. ELEKTRISCHES FELD 9 2.2 Elektrisches Fel Coulomb Gesetz: F i Q i F i = Q i 1 Q j Rij 2 R i R j R ij 4π ɛ j+i 0 }{{} elektrisches Fel am Ort R i Das elektrische Fel, as ie Laung am Ort R i spürt -

Mehr

Vorlesung 2: Elektrostatik

Vorlesung 2: Elektrostatik Vorlesung 2: Elektrostatik, georg.steinbrueck@esy.e Folien/Material zur Vorlesung auf: www.esy.e/~steinbru/physikzahnme georg.steinbrueck@esy.e 1 WS 216/17 Potentielle Energie un Arbeit im elektrischen

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

Das elektrische Feld als Energiespeicher

Das elektrische Feld als Energiespeicher Laungsquantelung Das elektrische Fel als Energiespeicher 79. Das elektrische Fel als Energiespeicher a) Welche Beobachtung legt nahe, ass in einem elektrischen Fel Energie gespeichert ist? b) Zeigen Sie,

Mehr

Physik II Übung 10 - Lösungshinweise

Physik II Übung 10 - Lösungshinweise Physik II Übung 0 - Lösungshinweise Stefan Reutter SoSe 202 Moritz Kütt Stan: 04.07.202 Franz Fujara Aufgabe Lolli Die kleine Carla hat von einem netten Onkel einen großen, runen Lolli geschenkt bekommen.

Mehr

Physik LK 12, Klausur 04 Induktion - Lösung

Physik LK 12, Klausur 04 Induktion - Lösung Physik LK 12, Klausur 4 Inuktion - Lösung 2.5.211 Die echnungen bitte vollstänig angeben un ie Einheiten mitrechnen. ntwortsätze schreiben, wenn Zahlenwerte zu berechnen sin. Die eibung ist bei allen ufgaben

Mehr

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht.

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht. Aufgaben Konensator 57. Zwei kreisförmige Metallplatten mit em Raius 0 cm, ie parallel im Abstan von 0 cm angeornet sin, bilen einen Plattenkonensator. In er Mitte zwischen en Platten hängt an einem ünnen

Mehr

Q C U C U Q C U C U. gilt dann: Q Q Q Q C U C U C U C C C U C U. Ges Ges. Ges n

Q C U C U Q C U C U. gilt dann: Q Q Q Q C U C U C U C C C U C U. Ges Ges. Ges n .6 chaltung von Konensatoren. Parallelschaltung von Konensatoren Bei er Parallelschaltung ist ie an en Konensatoren anliegene pannung konstant. s gilt: Die Konensatorgleichung Q C liefert ie sich auf en

Mehr

Umgestellt nach der Ladung erhält man: Der Zusammenhang der Einheiten ist:

Umgestellt nach der Ladung erhält man: Der Zusammenhang der Einheiten ist: Das Elektrische Fel Jeer Körper un jee Materie besteht aus Atomen. Das haben schon ie Griechen vor etwa 2500 Jahren vermutet. Demokrit, etwa 460-371 v.chr., ist erjenige, auf en ie Iee vom atomaren Aufbau

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

da U E d W. Stark; Berufliche Oberschule Freising W12 U12

da U E d W. Stark; Berufliche Oberschule Freising  W12 U12 .4 Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators n ie positive Platte eins Konensators, er mit einer Stromquelle er Spannung verbunen ist, wir ein zunächst elektrisch neutrales

Mehr

Trainingsblatt 04a (freiwillig)

Trainingsblatt 04a (freiwillig) Trainingsblatt 04a (freiwillig) Elektrizitätslehre un Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 5.05.2008 Aufgaben. Ein Konensator, zwischen essen Platten sich Eis befinet,

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Abituraufgaben: Statische elektrische Felder. 1 Aus Abiturprüfung 1990, Grundkurs - Plattenkondensator im Vakuum. Aufgabe

Abituraufgaben: Statische elektrische Felder. 1 Aus Abiturprüfung 1990, Grundkurs - Plattenkondensator im Vakuum. Aufgabe Abituraufgaben: Statische elektrische Feler 1 Aus Abiturprüfung 1990, Grunkurs - Plattenkonensator im Vakuum Aufgabe An einem Plattenkonensator mit er Plattenfläche A = 80cm 2 un em Plattenabstan = 25mm

Mehr

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen.

1 5. Endliche Körper Situation: Satz: Beispiel: Z iel: Klassifikation endlicher Körper und ihrer Beziehungen. 1 5. Enliche Körper Z iel: Klassifikation enlicher Körper un ihrer Beziehungen. 1 5. 1. Situation: K sei eine enliche Erweiterung es Körpers F p = Z/ p, p P, [ K: F p ] = n #( K = p n = : q K ist zyklisch

Mehr

1 Verbindungsleitungen

1 Verbindungsleitungen 1 Verbinungsleitungen Für ie Funktion aller elektronischen Schaltungen sin Verbinungsleitungen zischen en Bauelementen unverzichtbar. Ihre Aufgabe ist es, Signale von einem Baustein zum nächsten zu transportieren.

Mehr

Alte Physik III. 10. Februar 2011

Alte Physik III. 10. Februar 2011 D-MATH/D-PHYS Prof. R. Monnier Studienjahr HS11 ETH Zürich Alte Physik III 10. Februar 2011 Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus, und kreuzen Sie Ihre Studienrichtung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Frierich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 26/7 en Blatt 8.2.26 ektorräume: Basen un lineare Unabhängigkeit Zentralübungsaufgaben

Mehr

Querschnittsaufgabe: Messung des Magnetfeldes unterhalb einer Hochspannungsfreileitung

Querschnittsaufgabe: Messung des Magnetfeldes unterhalb einer Hochspannungsfreileitung orlesung "Grunlagen er Elektrotechnik" Seite von 5 Querschnittsaufgabe: Messung es Magnetfeles unterhalb einer Hochspannungsfreileitung. Ziel Die folgene Aufgabe soll azu ienen, einige Methoen un Kenntnisse

Mehr

Cluster 1: Kabelverlauf

Cluster 1: Kabelverlauf Teil B Seite 1 / 6 Doris Schönorfer Cluster 1: Kabelverlauf zum Menü Hinweis: Cluster 1 bezieht sich auf Höhere Technische Lehranstalten (HTL) für ie Ausbilungsrichtungen Bautechnik, Holztechnik & Innenraumgestaltung

Mehr

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I Die Fellinien es Feles eines stromurchflossenen,

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009

Mehr

Zusammenfassung: Elektrische Felder

Zusammenfassung: Elektrische Felder LGÖ Ks Ph 11 -stünig Schuljahr 15/16 Zusammenfassung: Elektrische eler Inhaltsverzeichnis Wieerholung: Elektrische Grunschaltungen... Blatt Elektrische Laung... 1 Elektrische eler un elektrische elstärke...

Mehr

7. Arithmetische Funktionen. Möbiussche Umkehrformel

7. Arithmetische Funktionen. Möbiussche Umkehrformel O. Forster: Einführung in ie Zahlentheorie 7. Arithmetische Funktionen. Möbiussche Umkehrformel 7.1. Definition. Unter einer arithmetischen Funktion versteht man eine Abbilung α : N 1 C. Die arithmetische

Mehr

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn Zahlentheorie Kaitel 14 Quaratische Zahlkörer Markus Klenke un Fabian Mogge Universität Paerborn 9. Mai 008 Inhaltsverzeichnis 14 Quaratische Zahlkörer 0 Vorwort............................... A Wieerholung...........................

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946 Pro Dr-Ing hena Krawietz Beispiel ür ie Berechnung es Wärmeurchgangskoeizienten eines zusammengetzten Bauteiles nach DIN EN ISO 6946 DIN EN ISO 6946: Bauteile - Wärmeurchlasswierstan un Wärmeurchgangskoeizient

Mehr

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls un Drehimpuls es elektromagnetischen Feles 8.1 Energie In Abschnitt.5 hatten wir em elektrostatischen Fel eine Energie zugeornet, charakterisiert urch ie Energieichte ω el ɛ 0 E. (8.1

Mehr

Bau. eines. Kippsensors. ppg7. Kippwinkelmessung mit einem flüssigkeitsgefüllten Plattenkondensator

Bau. eines. Kippsensors. ppg7. Kippwinkelmessung mit einem flüssigkeitsgefüllten Plattenkondensator Bau eines Kippsensors Kippwinkelmessung mit einem flüssigkeitsgefüllten Plattenkonensator ppg7 Bau eines Kippsensors 2/ 7 ppg7 Protokoll er Gruppe 7 es Projektpraktikums im Wintersemester 2005/06 an er

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

Optische Abbildung mit Einzel- und Tandemobjektiven

Optische Abbildung mit Einzel- und Tandemobjektiven Optische Abbilung mit Einzel- un Tanemobjektiven. Wirkungsgra einer Abbilung mit einem Einzelobjektiv Mit einem Einzelobjektiv wir ein strahlener egenstan er Fläche A [m ] un er Ausstrahlung M W m au ein

Mehr

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 2 PHYS7357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 8. 7. 29 Aufgaben. In der Vorlesung

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

Logik / Kombinatorik - Hinweise zur Lösungsfindung

Logik / Kombinatorik - Hinweise zur Lösungsfindung Logik / Kombinatorik Hinweise zur Lösungsfinung Aufgabe 1) Günstige Bezeichnungen einführen; Tabelle anfertigen un ie unmittelbaren Folgerungen aus bis eintragen (siehe linke Tabelle). Da ies noch nicht

Mehr

Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung

Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung Dispersion DADOS Problemstellung Für ie Auswertung von Spektren ist es notwenig, ie Nichtlinearität er Wellenlängenskala auf em CCD Chip zu berücksichtigen. Dies wir hier am Beispiel es DADOS urchgerechnet,

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007 Dr. Michael Gieing ph-heielberg.e/wp/gieing Einführung in ie Geometrie Skript zur gleichnamigen Vorlesung im Wintersemester 006/007 Kapitel 1: Axiomatik Vo r l e s u n g 8 : S t r e c k e n m e s s u n

Mehr

P = U I cos ϕ. 3,52 kw 220 V 0,8 = 20 A. Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos ϕ bestimmt: ϕ = arccos(0,8 ) = 36,87

P = U I cos ϕ. 3,52 kw 220 V 0,8 = 20 A. Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos ϕ bestimmt: ϕ = arccos(0,8 ) = 36,87 a) Strom nach Betrag und Phase: Der Betrag des Stroms wird aus der Wirkleistung bestimmt: P = U cos ϕ = P U cos ϕ = 3,52 kw 220 V 0,8 = 20 A Der Phasenwinkel des Stroms wird aus dem Leistungsfaktor cos

Mehr

Messung des Strömungswiderstandes in Rohrbögen

Messung des Strömungswiderstandes in Rohrbögen Messung 6 Messung es Strömungswierstanes in Rohrbögen 1. EINLEITUNG In er Ingenieurpraxis ist er Großteil er vorkommenen Strömungen Rohrströmung - man enke z.b. an Wasserleitungen, Abwasserkanäle, Eröl-

Mehr

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität 1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität Ladung und Stromstärke Die Einheit der Stromstärke wurde früher durch einen chemischen Prozess definiert; heute

Mehr

15 Differentialrechnung in R n

15 Differentialrechnung in R n 36 15 Differentialrechnung in R n 15.1 Lineare Abbilungen Eine Abbilung A : R n R m heißt linear falls A(αx + βy) = αa(x) + βa(y) für alle x, y R n un alle α, β R. Man schreibt oft Ax statt A(x) un spricht

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

D U A L - S Y S T E M. DOS für Einsteiger

D U A L - S Y S T E M. DOS für Einsteiger D U A L - S Y S T E M VHS-Kurs von Uwe Koch Das DUAL-System Uwe Koch Seite 1 Zur Darstellung von Zahlen gibt es verschieene Zahlensysteme. So unterscheiet man zunächst zwischen Aitionssystemen un Stellenwertsystemen.

Mehr

AlZAGK-Seminar: Pellsche Gleichung: Kettenbruchverfahren und das Archimedische problema bovinum

AlZAGK-Seminar: Pellsche Gleichung: Kettenbruchverfahren und das Archimedische problema bovinum AlZAGK-Seminar: Pellsche Gleichung: Kettenbruchverfahren un as Archimeische roblema bovinum Claas Grenzebach 25. Juni 2002 Die Pellsche Gleichung Wenn Harols Streitkräfte, ie in 3 Quarate aufgeteilt waren,

Mehr

Musterlösung zur Einsendearbeit zum Kurs Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht, Kurseinheit 1

Musterlösung zur Einsendearbeit zum Kurs Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht, Kurseinheit 1 E zu KE 1, SS 2010 Seite 1 Musterlösung zur Einsenearbeit zum Kurs 42110 Preisbilung auf unvollkommenen Märkten un allgemeines Gleichgewicht, Kurseinheit 1 Die folgene Lösungsskizze soll Ihnen einen nhaltspunkt

Mehr

IV. Dielektrische Werkstoffe. 1. Klassifizierung

IV. Dielektrische Werkstoffe. 1. Klassifizierung IV. Dielektrische Werkstoffe 1. Klassifizierung Dielektrische Werkstoffe, oer kurz Dielektrika genannt, begegnen uns, ob gewollt oer ungewollt, in allen elektrischen Bauelementen, Baugruppen un Geräten.

Mehr

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte 1.4 LEMMA: Resonanz un Güte Stehwellenresonatoren Definition: Koppelt man zwei schwingungsfähige Systeme, inem as eine System (Erreger) as anere System (Resonator) zum Mitschwingen zwingt, kann Resonanz

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Weitere Formatierungsmöglichkeiten

Weitere Formatierungsmöglichkeiten Stanar-Tabstopp 326 Weitere Formatierungsmöglichkeiten Im vorangegangenen Kapitel haben Sie verschieene Formatierungsmöglichkeiten kennen gelernt, welche Ihnen erlauben, ie Zeichen zu veränern, Absätze

Mehr

Fehlerrechnung mit Hilfe der Differentialrechnung

Fehlerrechnung mit Hilfe der Differentialrechnung HTBLA Neufelen Fehlerrechnung mit Hilfe er Differentialrechnung Seite von 9 Peter Fischer pe.fischer@atn.nu Fehlerrechnung mit Hilfe er Differentialrechnung Mathematische / Fachliche nhalte in Stichworten:

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Polynomfunktionen - Fundamentalsatz der Algebra

Polynomfunktionen - Fundamentalsatz der Algebra Schule / Institution Titel Seite 1 von 7 Peter Schüller peter.schueller@bmbwk.gv.at Polynomfunktionen - Funamentalsatz er Algebra Mathematische / Fachliche Inhalte in Stichworten: Polynomfunktionen, Funamentalsatz

Mehr

Inhalt. 10. Elektrostatik. 10. Elektrostatik

Inhalt. 10. Elektrostatik. 10. Elektrostatik Inhalt 10. Elektrostatik 10.1 Elektrische Ladung 10.2 Coulombsches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 1.1 Der Raum 10.1 Elektrische

Mehr

Mathematische Kenntnisse

Mathematische Kenntnisse Lehrbrief 1 Technik Seite 1 von 9 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Amateurfunk ist nun mal ein technisches Hobby, eshalb sin einige grunlegene mathematische

Mehr

2 Multivariate Normalverteilung

2 Multivariate Normalverteilung 2 Multivariate Normalverteilung 2. Multivariate Normalverteilung Definition 2.. Normalverteilung Eine univariat normalverteilte Zufallsvariable X besitzt ie Dichte ) (x µ)2 f (x) = exp ( x R. 2π σ 2σ 2

Mehr

Leicht. Leicht. Leicht. Brandschutz ist doch ganz leicht. Leichtbeton mit besten Werten. Bundesverband Leichtbeton e.v.

Leicht. Leicht. Leicht. Brandschutz ist doch ganz leicht. Leichtbeton mit besten Werten. Bundesverband Leichtbeton e.v. Leicht Leicht Leicht Branschutz ist och ganz leicht Leichteton mit esten Werten Bunesveran Leichteton e.v. 1 Der Branschutz Die für en Branschutz zustänige Norm ist ie DIN 4102. Die gültige Ausgae atiert

Mehr

VORANSICHT. Multiple-Choice-Tests zur Elektrizitätslehre. Multiple-Choice-Test: einfache und objektive Auswertungsmöglichkeiten!

VORANSICHT. Multiple-Choice-Tests zur Elektrizitätslehre. Multiple-Choice-Test: einfache und objektive Auswertungsmöglichkeiten! 21. Multiple-hoice-Tests zur lektrizitätslehre 1 von 20 Multiple-hoice-Tests zur lektrizitätslehre r. Wolfgang Tews, erlin Mit diesen Tests, die viele Themenbereiche der lektrizitätslehre in der Sek I

Mehr

3.1. Elektrostatik Elektrische Ladungen Atome und Elementarteilchen

3.1. Elektrostatik Elektrische Ladungen Atome und Elementarteilchen 3.1. Elektrostatik 3.1.1. Elektrische Laungen Luftballon mit Styropor, Wasserstrahl, Haaren, OHPFolien un Papier, Katzenfell un Gummistab, Selbstgebautes Elektroskop aus Plastikbecher, lufolie, Büroklammer

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss Physik A VL9 (.. Elektostatik II Fele, elektische Abeit un Potential, elektische Fluss Das elektische Fel elektisches Fel eine Punktlaung Dastellung uch Fellinien elektische Abeit un elektisches Potential

Mehr

Schwache Konvergenz von W-Verteilungen auf der Zahlengeraden

Schwache Konvergenz von W-Verteilungen auf der Zahlengeraden Kapitel 5 Schwache Konvergenz von W-Verteilungen auf er Zahlengeraen 5.1 Schwache Konvergenz bzw. Verteilungskonvergenz Bezeichne W(, B 1 ie Menge aller W-Verteilungen auf (, B 1. Definition 5.1 (Schwache

Mehr

Lehrbrief 1 Technik Seite 1 von 7

Lehrbrief 1 Technik Seite 1 von 7 Lehrbrief 1 Technik Seite 1 von 7 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Es ist nunmal ein technisches Hobby, einige grunlegene mathematische Kenntnisse sin

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

Tutorium Physik 2. Elektrizität

Tutorium Physik 2. Elektrizität 1 Tutorium Physik 2. Elektrizität SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 10. ELEKTRIZITÄT 4 10.1 Coulombkraft:

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik 9. Elektrostatik 9.1 Elektrische Ladung 9.2 Coulombsches Gesetz 9.3 Elektrisches Feld 9.4 Kraft auf Ladungen 9.5 Elektrisches Potential 9.6 Elektrische Kapazität 9.1 Elektrische Ladung Es gibt (genau)

Mehr

Grundwissen. Physik. Jahrgangsstufe 8

Grundwissen. Physik. Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Seite 1 1. Energie; E [E] = 1Nm = 1J (Joule) 1.1 Energieerhaltungssatz Formulierung I: Energie kann nicht erzeugt oder vernichtet

Mehr

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem

Mehr

Schaltungen mit mehreren Widerständen

Schaltungen mit mehreren Widerständen Grundlagen der Elektrotechnik: WIDERSTANDSSCHALTUNGEN Seite 1 Schaltungen mit mehreren Widerständen 1) Parallelschaltung von Widerständen In der rechten Schaltung ist eine Spannungsquelle mit U=22V und

Mehr

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik Mechanische Eigenschaften Die Matrix der Verzerrungen ε ij und die Matrix der mechanischen Spannungen σ ij bilden einen Tensor 2. Stufe und werden durch den Tensor 4. Stufe der elastischen Koeffizienten

Mehr

Anforderungen an den Versand und Transport von kleinen Lithiumbatterien gemäß Sondervorschrift 188 ADR

Anforderungen an den Versand und Transport von kleinen Lithiumbatterien gemäß Sondervorschrift 188 ADR Anforerungen an en Versan un Transport von kleinen Lithiumbatterien gemäß Sonervorschrift 188 ADR Zu Buchstabe a) Kenngrößen für Zellen a Lithium-Ionen-Zellen Jee Zelle er Kategorie Lithium-Ionen-Zelle

Mehr

benutzt wird? 3. Berechnen Sie den Scheinwiderstand Z der Spule bei einer Frequenz von 500Hz.

benutzt wird? 3. Berechnen Sie den Scheinwiderstand Z der Spule bei einer Frequenz von 500Hz. +DXVDUEHLW Aufgabe: Gegeben ist ein Ringkern-Spulenkörper mit einem Durchmesser von d cm, einem Kerndurchmesser von d cm und einer ermeabilitätszahl von 6.. Wieviel Windungen muß man auf diesen Spulenkörper

Mehr

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)

Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 04/05 Thomas Maier, Alexaner Wolf Lösung Optische Abbilungen Aufgabe : Vergrößerungslinse Mit einer (ünnen) Linse soll ein Gegenstan G so auf einen 3m entfernten

Mehr

Berechnen Sie den Umfang U des Grundstückes: a) mit Variablen (jeder Schritt muss ersichtlich sein). b) für a=5m.

Berechnen Sie den Umfang U des Grundstückes: a) mit Variablen (jeder Schritt muss ersichtlich sein). b) für a=5m. TG TECHNOLOGISCHE GRUNDLAGEN Seite 1 1 1.2.55 Berechnen Sie den Umfang U des Grundstückes: a) mit Variablen (jeder Schritt muss ersichtlich sein). b) für a5m. Kapitel 1 TG TECHNOLOGISCHE GRUNDLAGEN Seite

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011

Mehr

Zwischenklausur Physik I für MWWT

Zwischenklausur Physik I für MWWT Prof. Martin H. Müser Lehrstuhl f. Materialsimulation Universität des Saarlandes 17. 12. 2011 Name: Zwischenklausur Physik I für MWWT Matrikelnummer: Die sechs besten Punktezahlen aus den acht reguären

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Infos: Buffons Nadel 05/2013

Infos:  Buffons Nadel 05/2013 Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 7; LK 05/013 Buffons Nael Infos: www.mue.e Im 18. Jahrhunert beteiligten sich eine Reihe von Aeligen an er Weiterentwicklung er Naturwissenschaften

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Elektrochemische Doppelschicht

Elektrochemische Doppelschicht Luwig Pohlmann PC III - Elektrochemie SS 5 Elektrochemische Doppelschicht. Helmholtz-Moell: Moell es Plattenkonensators. Gouy-Chapman-Theorie: iffuse Doppelschicht 3. Stern-Theorie: Kombination von Helmholtz-

Mehr

Der Taschenrechner CAS: TI Inspire (Texas Instruments)

Der Taschenrechner CAS: TI Inspire (Texas Instruments) Der Taschenrechner (Texas Instruments) Übersicht: 1. Katalog (wichtige Funktionen un wie man sie aufruft) 2. Funktionen efinieren (einspeichern mit un ohne Parameter) 3. Nullstellen 4. Gleichungen lösen

Mehr

Binomische Formel mod p

Binomische Formel mod p Binomische Formel mo p Lemma Binomische Formel mo p Seien a, b Z un p P. Dann gilt (a+b) p a p + b p mo p. Nach Binomischer Formel gilt (a+b) p = p p ) i=0( i a i b p i = a p + b p + p 1( p ) i=1 i a i

Mehr

Ersatzwiderstände Best. - Nr. MD01495

Ersatzwiderstände Best. - Nr. MD01495 Ersatzwiderstände Best. - Nr. MD01495 1. Vorstellung 1.1. Pädagogische Ziele 4 Widerstände von 10, 20, 40 und 80 KΩ ermöglichen es, 96 unterschiedliche Werte zu erzielen. Voraussetzung dafür ist, dass

Mehr

Elektrotechnik Formelsammlung v1.2

Elektrotechnik Formelsammlung v1.2 Inhaltsverzeichnis 3. Das Coulombsches Gesetz...2 3.. Elementarladung...2 32. Elektrische Arbeit...2 33. Elektrische Feldstärke...2 34. Elektrische Spannung...3 34.. Ladung Q...3 34... Kondensatoren-Gesetz...3

Mehr

Aufgaben zum Kondensator - ausgegeben am

Aufgaben zum Kondensator - ausgegeben am Aufgaben zum Kondensator - ausgegeben am 17.09.2012 konden2_17_09_2012.doc 1.Aufgabe: Ein Kondensator hat die Plattenfläche A 1,2 10-2 m 2, den Plattenabstand d 0,5 mm und die Ladung Q 2,6 10-7 C. Berechnen

Mehr

Einführung in die Chaostheorie

Einführung in die Chaostheorie Einführung in ie Chaostheorie Die sogenannte Chaostheorie befasst sich mit er Erforschung nichtlinearer ynamischer Systeme, ie chaotisches Verhalten zeigen können. Chaotisches Verhalten liegt u.a. ann

Mehr

1 Lokale Umkehrbarkeit und implizite Funktionen

1 Lokale Umkehrbarkeit und implizite Funktionen Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 2016 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar ist oer

Mehr

Anwendungsbeispiel Strahlensatz

Anwendungsbeispiel Strahlensatz Anwendungsbeispiel Strahlensatz L5 Das berühmteste Beispiel der Proportionalität ist der Strahlensatz aus der Geometrie (siehe dazu auch Geometrie). Hier noch einmal die Hauptsätze des Strahlensatzes:

Mehr

ELEKTRISCHE SPANNUNGSQUELLEN

ELEKTRISCHE SPANNUNGSQUELLEN Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN

Mehr

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators Formeln und Naturkonstanten 1. Allgemeines Energieströme P = v F P = ω M P = U I P = T I S Energiestromstärke bei mechanischem Energietransport (Translation) Energiestromstärke bei mechanischem Energietransport

Mehr