da U E d W. Stark; Berufliche Oberschule Freising W12 U12

Größe: px
Ab Seite anzeigen:

Download "da U E d W. Stark; Berufliche Oberschule Freising W12 U12"

Transkript

1 .4 Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators n ie positive Platte eins Konensators, er mit einer Stromquelle er Spannung verbunen ist, wir ein zunächst elektrisch neutrales Teilchen gebracht. Das Teilchen nimmt beim Berühren er Platte ie positive Laung q auf. Die Felkraft F beschleunigt ann ieses Teilchen zur negativen Platte, wo es ie Laung q an iese Platte un amit an ie Stromquelle abgibt. Im Stromkreis ist amit ie Laung q geflossen. Wir ie Laung q aufgrun er Spannung vom Pluspol zum Minuspol transportiert, ann wir ie elektrische rbeit W a 2 2 q W2 2 q q verrichtet. Diese rbeit ist aber gleich er vom Fel verrichteten rbeit W2 Fel qe. Setzt man beie gleich, so folgt: qe q Elektrische Felstärke im hom ogenen E Fel eines Plattenkonensators Damit lässt sich für as homogene Fel eines Plattenkonensators er Betrag E er elektrischen Felstärke aus er angelegten Spannung un em Plattenabstan berechnen. E Fel.5 Kapazität eines Konensators Wir legen in einem Versuch Gleichspannung an einen Konensator. Die am Minuspol angeschlossene Platte wir geeret, wourch erreicht wir, ass ie gesamte Konensatorlaung auf er positiven Platte sitzt. Trennt man nun en Konensator von er Stromquelle un entlät sie über ein Laungsmessgerät (MV), so kann ie Laungsmenge er positiven Platte ermittelt weren.

2 Durch Variation er angelegten Spannung ergeben sich folgene Werte (er Plattenabstan,5mm ist bei allen Messungen konstant): in V in C 4,6 6,2 8, 9,8 Tragen Sie obige Messwerte in ein Diagramm ein. Was folgern Sie araus? Im Rahmen er Mess- un Zeichengenauigkeit liegen ie Messwerte auf einer rsprungshalbgeraen, somit folgt:, also konstant. Diese Konstante charakterisiert as Speichervermögen es benutzten Konensators für elektrische Laungen un wir eshalb Kapazität C genannt. Je größer sie ist, umso mehr Laungen kann man bei gleicher Spannung auf en Konensator bringen. C Definition er Kapazität C s C F Fara V V Diese Einheit wir zu Ehren von Michael Faraay (79-867), engl. Physiker un Chemiker, so genannt. Da ie Einheit F sehr groß ist, verwenet man bei technischen Konensatoren meist kleinere Einheiten. 6 Mikrofara F F 9 Nanofara nf F 2 Pikofara pf F Von welchen geometrischen Größen ie Kapazität abhängt wollen wir nun untersuchen. Zusammenhang zwischen Kapazität un Plattenfläche Es ist naheliegen, ass ie von einem Konensator aufgenommene Laung bei konstanter Spannung un konstantem Plattenabstan irekt proportional zu seiner wirksamen Plattenfläche ist: Man kann sich experimentell von er Gültigkeit ieser Überlegung überzeugen: Veroppelt man ie wirksame Plattenfläche veroppelt sich auch ie Laung, falls man ie angelegte Spannung un en Plattenabstan konstant lässt. us folgt mit C bei konstantem : C Zusammenhang zwischen Kapazität un Plattenabstan Versuch: Man legt an einen Konensator eine konstante Spannung 8V un misst ie auf en Konensator fließene Laung bei verschieenen bstänen er Konensatorplatten (Plattenfläche bleibt ebenfalls konstant). 2

3 Dabei erhält man folgene Messergebnisse: in mm,,5 2, 2,5 3, 8 in s 6,6 4,7 3,6 2,9 2,4 C in F 8,3 5,9 4,5 3,6 3, in,,67,5,4,33 mm Tragen Sie ie Messwerte in ein C Diagramm ein. Was folgern Sie araus? Im Rahmen er Mess- un Zeichengenauigkeit gilt: C 2 un somit C konstant (Die leichte Zunahme es Proukts liegt vermutlich am zunehmenen Streufel an en Ränern er Platten; aurch erhöht sich ie Kapazität es Konensators etwas.) Folgerung: C C C k 2 C Die Proportionalitätskonstante k lässt sich aus en Messwerten berechnen, wenn man noch ie Plattenfläche bestimmt. Es folgt: 2 s k... 8,854 Vm Die Proportionalitätskonstante k hängt nicht vom verweneten Konensator ab; sie ist ie bereits beim Coulomb-Gesetz vorkommene elektrische Felkonstante. Somit folgt für ie Kapazität eines Plattenkonensators. C Kapazität eines Plattenkonensators Streng genommen gilt ie Konstante für ie Kapazität eines Plattenkonensators nur für as Vakuum. Durch Luft wir ie Kapazität zwischen en Platten aber kaum veränert, wohl aber urch anere Stoffe (Dielektrika). Bringt man eine Dielektrikum zwischen ie Platten eines Plattenkonensators, so erhöht sich essen Kapazität. Hierfür gilt: C Der Erhöhungsfaktor r, er vom Dielektrikum abhängt, wir relative Dielektrizitätszahl genannt. (Dielektrizitätszahlen siehe Formelsammlung Seite 3!) r 3

4 2 ufgabe: Ein Plattenkonensator mit er Fläche 5,m un em Plattenabstan 4,cm ist mit einer Stromquelle er Gleichspannung V verbunen. a) Berechne ie Kapazität es Konensators, seine Laung un en Betrag er Felstärke im homogenen Fel. b) Wie änern sich Kapazität, Laung un Betrag er Felstärke, wenn er Plattenabstan er n-te Teil es ursprünglichen bstanes wir un er Konensator mit er Stromquelle verbunen bleibt. Die ursprünglichen Größen weren jetzt mit C, un E bezeichnet, ie neuen mit C, un E. 4

5 Technische usführungen von Konensatoren Konensatoren sin wichtige Bauelemente er Elektrotechnik; sie bestehen wie Plattenkonensatoren im Prinzip immer aus zwei voneinaner isolierten Leiterflächen. Zur Erzielung großer Kapazitäten müssen ie Leiteroberflächen groß, er Plattenabstan klein un r es verweneten Dielektrikums möglichst groß sein. Beispiel: Bei Folienkonensatoren bestehen ie Platten aus Metallfolien; als Dielektrikum weren Papier- oer Kunststofffolien verwenet. Neuerings benützt man auch eine Kunststofffolie, auf ie auf beien Bei Elektrolytkonensatoren (Elkos) besteht ie positive Platte aus einer luminiumfolie, ie mit einer Oxischicht l O als Dielektrikum überzogen ist. Eine 2 3 Seiten Metallschichten aufgeampft weren. Eine Metallschicht erhält einen isolierten Überzug un ann weren ie Folien zu Rollen aufgewickelt un in einem kleinen Kunststoffbecher lufticht vergossen (Kapazitätsbereich: pf bis F). Elektrolytflüssigkeit bilet zusammen mit einer weiteren lufolie ie negative Platte. m ie Oberfläche noch zu vergrößern weren ie Folien urch Ätzen aufgeraut. Zusammen mit einer Isolationsfolie weren ie lufolien aufgewickelt un in einem lubecher lufticht verschlossen (Kapazitätsbereich: F bis F ). Bei Keramikkonensatoren weren auf Keramik- Hohlzyliner als Dielektrikum außen un innen Metallschichten aufgeampft; ie äußere Metallschicht erhält noch einen isolierenen Überzug (Kapazitätsbereich: pf bis,5 F ). 5

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators

4. Zusammenhang von elektrischer Feldstärke und Spannung eines Kondensators; Kapazität eines Kondensators 4. Zusammenhang von elektrischer Felstärke un Spannung eines Konensators; Kapazität eines Konensators Zusammenhang von elektrischer Felstärke un Spannung eines Plattenkonensators Überlegung: Eine positive

Mehr

Q C U C U Q C U C U. gilt dann: Q Q Q Q C U C U C U C C C U C U. Ges Ges. Ges n

Q C U C U Q C U C U. gilt dann: Q Q Q Q C U C U C U C C C U C U. Ges Ges. Ges n .6 chaltung von Konensatoren. Parallelschaltung von Konensatoren Bei er Parallelschaltung ist ie an en Konensatoren anliegene pannung konstant. s gilt: Die Konensatorgleichung Q C liefert ie sich auf en

Mehr

1.1. Der Kondensator Flächenladungsdichte. Versuch 1: Gegeben: wird konstant gehalten,

1.1. Der Kondensator Flächenladungsdichte. Versuch 1: Gegeben: wird konstant gehalten, .. Der Konensator.. Flächenlaungsichte Versuch : Gegeben: wir konstant gehalten, elektrisches Fel E ie Fläche i er Plättchen wir variiert. Fläche er Konensatorplatten ist gegeben, er Betrag er Laung auf

Mehr

Vorlesung 2: Elektrostatik

Vorlesung 2: Elektrostatik Vorlesung 2: Elektrostatik, georg.steinbrueck@esy.e Folien/Material zur Vorlesung auf: www.esy.e/~steinbru/physikzahnme georg.steinbrueck@esy.e 1 WS 217/18 Potentielle Energie un rbeit im elektrischen

Mehr

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht.

= 1 und der Ladung Q aufgefasst. Die elektrische Feldstärke beträgt 1, N/C, so dass die Entladung durch einen Blitz unmittelbar bevorsteht. Aufgaben Konensator 57. Zwei kreisförmige Metallplatten mit em Raius 0 cm, ie parallel im Abstan von 0 cm angeornet sin, bilen einen Plattenkonensator. In er Mitte zwischen en Platten hängt an einem ünnen

Mehr

Das elektrische Feld als Energiespeicher

Das elektrische Feld als Energiespeicher Laungsquantelung Das elektrische Fel als Energiespeicher 79. Das elektrische Fel als Energiespeicher a) Welche Beobachtung legt nahe, ass in einem elektrischen Fel Energie gespeichert ist? b) Zeigen Sie,

Mehr

Vorlesung 2: Elektrostatik

Vorlesung 2: Elektrostatik Vorlesung 2: Elektrostatik, georg.steinbrueck@esy.e Folien/Material zur Vorlesung auf: www.esy.e/~steinbru/physikzahnme georg.steinbrueck@esy.e 1 WS 216/17 Potentielle Energie un Arbeit im elektrischen

Mehr

2. Stegreifaufgabe aus der Physik Lösungshinweise

2. Stegreifaufgabe aus der Physik Lösungshinweise 2. Stegreifaufgabe aus er Physik Lösungshinweise Gruppe A Aufgabe 1 (a) Die Einheit er Kapazität ist [C] = 1 C V = 1As V = 1 F (Fara) (2 Punkte) (b) Versuchsaufbau: Ein Konensator wir mit Hilfe einer bei

Mehr

3.1. Prüfungsaufgaben zur Elektrostatik

3.1. Prüfungsaufgaben zur Elektrostatik 3.. Prüfungsaufgaben zur Elektrostatik ufgabe a: Fellinien Zeichne ie Fellinien für zwei verschoben parallel angeornete gleichnamig gelaenen Platten: Lösung: ufgabe b: Fellinien Zeichne ie Fellinien für

Mehr

Physik GK 12, AB 01 Stromfluss / Elektrostatik Lösung =10 s beträgt 4 na.

Physik GK 12, AB 01 Stromfluss / Elektrostatik Lösung =10 s beträgt 4 na. ufgabe 1: Elektrische Laung un elektrischer Strom 1.1. uf eine Metallkugel weren immer mehr Laungen aufgebracht. Die Menge er Laungen auf er Kugel folgt er Funktion Q(t )=(0,1t 2 s 2 + 2t s 1 )nc. Wir

Mehr

Die Kapazität. Aufladbare Systeme und Kapazität: Für Systeme, die bei Anlegen einer Spannung U eine Ladung Q speichern können, gilt stets

Die Kapazität. Aufladbare Systeme und Kapazität: Für Systeme, die bei Anlegen einer Spannung U eine Ladung Q speichern können, gilt stets Die Kapazität Auflabare Systeme un Kapazität: Für Systeme, ie bei Anlegen einer Spannung U eine Laung Q speichern können, gilt stets Q U C = Kapazität = Q U [C] = C V = A2 s 4 kgm 2 = F = Fara (Einheit

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 2. Klausur Grunlagen er Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie en Aufgabensatz nicht auf. Benutzen Sie für ie Lösung er Aufgaben

Mehr

Physik II Übung 10 - Lösungshinweise

Physik II Übung 10 - Lösungshinweise Physik II Übung 0 - Lösungshinweise Stefan Reutter SoSe 202 Moritz Kütt Stan: 04.07.202 Franz Fujara Aufgabe Lolli Die kleine Carla hat von einem netten Onkel einen großen, runen Lolli geschenkt bekommen.

Mehr

Umgestellt nach der Ladung erhält man: Der Zusammenhang der Einheiten ist:

Umgestellt nach der Ladung erhält man: Der Zusammenhang der Einheiten ist: Das Elektrische Fel Jeer Körper un jee Materie besteht aus Atomen. Das haben schon ie Griechen vor etwa 2500 Jahren vermutet. Demokrit, etwa 460-371 v.chr., ist erjenige, auf en ie Iee vom atomaren Aufbau

Mehr

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators 8 Raialsymmetrisches elektrisches Fel, Coulomb-Gesetz; Kapazität es Kugelkonensators Die Felstärke im raialen Fel - as Coulombsche Gesetz Am Ene es letzten Kapitels wure ie Grungleichung es elektrischen

Mehr

Abituraufgaben: Statische elektrische Felder. 1 Aus Abiturprüfung 1990, Grundkurs - Plattenkondensator im Vakuum. Aufgabe

Abituraufgaben: Statische elektrische Felder. 1 Aus Abiturprüfung 1990, Grundkurs - Plattenkondensator im Vakuum. Aufgabe Abituraufgaben: Statische elektrische Feler 1 Aus Abiturprüfung 1990, Grunkurs - Plattenkonensator im Vakuum Aufgabe An einem Plattenkonensator mit er Plattenfläche A = 80cm 2 un em Plattenabstan = 25mm

Mehr

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1)

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1) Feler un Wellen WS 017/018 Musterlösung zum 6. Tutorium 1. Aufgabe (**) Kapazität kann für jee beliebige Leiteranornung efiniert weren C = εe = f E s s }{{} φ() φ(1) Sin mehrere Leiter vorhanen, befinen

Mehr

Physik LK 12, Klausur 04 Induktion - Lösung

Physik LK 12, Klausur 04 Induktion - Lösung Physik LK 12, Klausur 4 Inuktion - Lösung 2.5.211 Die echnungen bitte vollstänig angeben un ie Einheiten mitrechnen. ntwortsätze schreiben, wenn Zahlenwerte zu berechnen sin. Die eibung ist bei allen ufgaben

Mehr

Felder und Wellen WS 2018/2019 C = U = φ(2) φ(1)

Felder und Wellen WS 2018/2019 C = U = φ(2) φ(1) Feler un Wellen WS 08/09 Musterlösung zum 6. Tutorium. Aufgabe (**) Kapazität kann für jee beliebige Leiteranornung efiniert weren C = εe = f E s s }{{} φ() φ() Sin mehrere Leiter vorhanen, befinen sich

Mehr

2.5 Kondensatoren und Feldenergie

2.5 Kondensatoren und Feldenergie 30 KAPITEL 2. ELEKTOSTATIK 2.5 Konensatoren un Felenergie Aus en echnungen für eine unenlich ausgeehnte Platte mit homogener Laungsichte, ie wir in en Abschnitten 2.2 un 2.4 vorgenommen haben, können wir

Mehr

Übungen zur Physik II PHY 121, FS 2018

Übungen zur Physik II PHY 121, FS 2018 Übungen zur Physik II PHY 2, FS 208 Serie 0 Abgabe: Dienstag, 5. Mai 2 00 Quellenfrei = source-free Wirbel = curl, ey, vortex Verschiebungsstrom = isplacement current Eisenkern = iron/magnet core quellenfreies

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

Zusammenfassung: Elektrische Felder

Zusammenfassung: Elektrische Felder LGÖ Ks Ph 11 -stünig Schuljahr 15/16 Zusammenfassung: Elektrische eler Inhaltsverzeichnis Wieerholung: Elektrische Grunschaltungen... Blatt Elektrische Laung... 1 Elektrische eler un elektrische elstärke...

Mehr

Zusammenfassung: Elektrische Felder

Zusammenfassung: Elektrische Felder Zusammenfassung: Elektrische eler Inhaltsverzeichnis Wieerholung: Elektrische Grunschaltungen... Blatt Elektrische Laung... 1 Elektrische eler un elektrische elstärke... Vergleich: Elektrisches el un Gravitationsfel...

Mehr

Trainingsblatt 04a (freiwillig)

Trainingsblatt 04a (freiwillig) Trainingsblatt 04a (freiwillig) Elektrizitätslehre un Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 5.05.2008 Aufgaben. Ein Konensator, zwischen essen Platten sich Eis befinet,

Mehr

Abhängigkeiten der Kapazität eines Kondensators

Abhängigkeiten der Kapazität eines Kondensators Abhängigkeiten der Kapazität eines Kondensators Themen der häuslichen, schriftlichen Vorbereitung: Klärung der Begriffe Ladung und Spannung, Definition der Kapazität als Proportionalitätskonstante zwischen

Mehr

Lehrfach: Messtechnik - Grundlagen. Versuch: Kapazitive Füllstandsmessung

Lehrfach: Messtechnik - Grundlagen. Versuch: Kapazitive Füllstandsmessung FM 2 Lehrfach: Messtechnik - Grunlagen Versuch: Kapazitive Füllstansmessung Oc Hochschule Zittau/Görlitz; Fakultät Elektrotechnik un Informatik Prof. Dr.-Ing. Kratzsch, Prof. Dr.-Ing. habil. Hampel i.r.

Mehr

Übungsblatt 5 ( )

Übungsblatt 5 ( ) Experimentalphysik für Naturwissenschaftler 2 Universität Erlangen Nürnberg SS 20 Übungsblatt 5 (08.07.20) ) Magnetische Fellinien Welche er folgenen Fellinienbiler sin richtig un welche nicht? a) richtig

Mehr

2. Musterklausur in K1

2. Musterklausur in K1 Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Musterklausur in K Die Klausur stellt nur eine kleine Auswahl der möglichen Themen dar. Inhalt der Klausur kann aber der gesamte

Mehr

3.1. Elektrostatik Elektrische Ladungen Atome und Elementarteilchen

3.1. Elektrostatik Elektrische Ladungen Atome und Elementarteilchen 3.1. Elektrostatik 3.1.1. Elektrische Laungen Luftballon mit Styropor, Wasserstrahl, Haaren, OHPFolien un Papier, Katzenfell un Gummistab, Selbstgebautes Elektroskop aus Plastikbecher, lufolie, Büroklammer

Mehr

Bau. eines. Kippsensors. ppg7. Kippwinkelmessung mit einem flüssigkeitsgefüllten Plattenkondensator

Bau. eines. Kippsensors. ppg7. Kippwinkelmessung mit einem flüssigkeitsgefüllten Plattenkondensator Bau eines Kippsensors Kippwinkelmessung mit einem flüssigkeitsgefüllten Plattenkonensator ppg7 Bau eines Kippsensors 2/ 7 ppg7 Protokoll er Gruppe 7 es Projektpraktikums im Wintersemester 2005/06 an er

Mehr

2.2 Elektrisches Feld

2.2 Elektrisches Feld 2.2. ELEKTRISCHES FELD 9 2.2 Elektrisches Fel Coulomb Gesetz: F i Q i F i = Q i 1 Q j Rij 2 R i R j R ij 4π ɛ j+i 0 }{{} elektrisches Fel am Ort R i Das elektrische Fel, as ie Laung am Ort R i spürt -

Mehr

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes

Physik 11 Das Ampersche Durchflutungsgesetz. 1. Das Magnetfeld eines stromdurchflossenen Drahtes 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I 1. Das Magnetfel eines stromurchflossenen Drahtes I Die Fellinien es Feles eines stromurchflossenen,

Mehr

Kostenfunktion - Der Cournotsche Punkt

Kostenfunktion - Der Cournotsche Punkt Kostenfunktion Seite 1 von 8 Wilfrie Rohm Kostenfunktion - Der Cournotsche Punkt Der Cournotsche Punkt C beschreibt ie gewinnmaximale Preis-Mengen-Kombination mit en Koorinaten C(p c ; x c ). Er sagt aus,

Mehr

3.5 RL-Kreise und Impedanz

3.5 RL-Kreise und Impedanz 66 KAPITEL 3. ELEKTRISCHE SCHALTUNGEN 3.5 RL-Kreise un Impeanz Neues Element: Spule Spannung an einer Spule: V = L Q Selbstinuktivität (Einheit: Henry) [L] = 1 V s A Ursache für as Verhalten einer Spule:

Mehr

Aufgabe 1 Kondensatorformel

Aufgabe 1 Kondensatorformel Physikklausur Elektrische Felder Tarmstedt, 02.10.2009 erhöhtes Niveau (Folker Steinkamp) Ph_eN_2011 Name: Punkte: von Notenp. Zensur Aufgabe 1 Kondensatorformel Versuchsbeschreibung: Lädt man einen Kondensator

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Mathey Einführung in ie theor. Physik 1 Einführung in ie theoretische Physik 1 Prof. Dr. L. Mathey Dienstag 15:45 16:45 un Donnerstag 1:45 12: Beginn: 23.1.12 Jungius 9, Hörs 2 1 Mathey Einführung in ie

Mehr

MTPA-Regelung ("Maximum Torque per Ampere )

MTPA-Regelung (Maximum Torque per Ampere ) Vorlesung Bewegungssteuerung urch geregelte elektrische Antriebe MTPA-Regelung ("Maximum Torque per Ampere ) Technische Universität München Lehrstuhl für Elektrische Antriebssysteme un Leistungselektronik

Mehr

Der Elektrik-Trick für die Mittelstufe. Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her.

Der Elektrik-Trick für die Mittelstufe. Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her. Der Kondensator 1. Aufbau Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her. In der Elektrotechnik handelt es sich bei einem Kondensator um ein Bauelement,

Mehr

Halbleiter. Differenzieller Widerstand

Halbleiter. Differenzieller Widerstand Scnces Cologne Dipl.-ng. (FH) Dipl.-Wirt. ng. (FH) G. Danlak Differenzller Wierstan DW- Stan: 9.3.6; m Steigung einer Funktion in einem Punkt x zu ermitteln, bestimmt man ihren Differenzialuotnten. Das

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung: 3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren

Mehr

MTPA-Regelung ("Maximum Torque per Ampere )

MTPA-Regelung (Maximum Torque per Ampere ) Vorlesung Bewegungssteuerung urch geregelte elektrische Antriebe MTPA-Regelung ("Maximum Torque per Ampere ) Professor Dr.-Ing. Dr.h.c. Ralph Kennel Technische Universität München Lehrstuhl für Elektrische

Mehr

Physik-eA-2010 Klausur des 4.Semesters 15. Februar Untersuchungen eines Americiumpräparats - Am241

Physik-eA-2010 Klausur des 4.Semesters 15. Februar Untersuchungen eines Americiumpräparats - Am241 Physik-eA-200 lausur es 4Semesters 5 Februar 200 Untersuchungen eines Americiumpräparats - Am24 I I Spektrum eines Americiumpräparates treten ua ie Energien E, =5,387 MeV, E, 2 =5,442 MeV un E, 3 =5,484

Mehr

Studiengang Sensorsystemtechnik Aufgabenblätter

Studiengang Sensorsystemtechnik Aufgabenblätter Stuiengang Sensorsystemtechnik Aufgabenblätter Physik ST2 1. Aufgabe (S-25) Thema: Coulomb-Gesetz, elektrisches Fel, Superpositionsprinzip Zwei positive gleiche Punktlaungen q befinen sich auf er y-achse,

Mehr

IIE2. Modul Elektrizitätslehre II. Dielektrika

IIE2. Modul Elektrizitätslehre II. Dielektrika IIE2 Modul Elektrizitätslehre II Dielektrika Ziel dieses Versuches ist, die Funktionsweise eines Kondensators mit Dielektrikum zu verstehen. Des weiteren soll die Kapazität des Kondensators und die relative

Mehr

Logik / Kombinatorik - Hinweise zur Lösungsfindung

Logik / Kombinatorik - Hinweise zur Lösungsfindung Logik / Kombinatorik Hinweise zur Lösungsfinung Aufgabe 1) Günstige Bezeichnungen einführen; Tabelle anfertigen un ie unmittelbaren Folgerungen aus bis eintragen (siehe linke Tabelle). Da ies noch nicht

Mehr

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,

Mehr

4 Elektrodynamik. 4.1 Maxwell-Gleichungen

4 Elektrodynamik. 4.1 Maxwell-Gleichungen 202 4. Elektroynamik 4 Elektroynamik Die Kapitel 2 un 3 haben gezeigt, ass sich elektrostatische un magnetostatische Probleme völlig unabhängig voneinaner behaneln lassen. Gewisse formale Analogien erlauben

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

Physik LK 12, 4. KA Maxwell + Wechselstromkreise Lösung E C. B d A. E d A. dt A

Physik LK 12, 4. KA Maxwell + Wechselstromkreise Lösung E C. B d A. E d A. dt A Aufgabe I: Maxwell-Gleichungen 1.1 Gib eine gültige Definition für ie Inuktionsspannung an un erkläre ie physikalischen Grunlagen. Die Inuktionsspannung U in ist efiniert als as Linienintegral er inuzierten

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

Lösung Repetitionsübung

Lösung Repetitionsübung Lösung Repetitionsübung A1: Differential- un Integralrechnung a) x e x2 /4 = x 2 e x2 /4 x ln sinh(x ex +1) = cosh(x ex +1) sinh(x e x +1) (ex +x e x ) = e x (1 + x) coth(x e x +1) x y e xy = x x = ( 1

Mehr

Dr. Neidhardt Thema: Parabeln. [ein Bindeglied zwischen Geometrie und Algebra ] Referent: Christian Schuster

Dr. Neidhardt Thema: Parabeln. [ein Bindeglied zwischen Geometrie und Algebra ] Referent: Christian Schuster Dr. Neihart 14.11.03 Thema: Parabeln [ein Bineglie zwischen Geometrie un Algebra ] Referent: Christian Schuster Glieerung: Anwenungsgebiete un Vorkommen von Parabel Erscheinungen in er Natur Parabeln:

Mehr

Plattenkondensator C Q U C Q U DA. 0 8, As. [U] 1As V 1Farad 1F. E s. E s 0 r E A

Plattenkondensator C Q U C Q U DA. 0 8, As. [U] 1As V 1Farad 1F. E s. E s 0 r E A Plattenkondensator Seite 1 von 16 Kapazität C eines Kondensators Capacitance C of a capacitor Definition C Q U Einheit [C] [ Q] [U] 1As V 1Farad 1F C Q U DA E s 0 r E A E s A Fläche der Kondensatorplatten

Mehr

r = F = q E Einheit: N/C oder V/m q

r = F = q E Einheit: N/C oder V/m q 1 Wiederholung: Elektrische Ladung: Einheit 1 Coulomb = 1 C (= 1 As) Elementarladung e = 1.6 10 19 C Kraft zwischen zwei elektrischen Ladungen: r F ' Q1 Q = f 2 r 2 r e r f ' = 8.99 10 9 Nm 2 C 2 Elektrische

Mehr

IV. Dielektrische Werkstoffe. 1. Klassifizierung

IV. Dielektrische Werkstoffe. 1. Klassifizierung IV. Dielektrische Werkstoffe 1. Klassifizierung Dielektrische Werkstoffe, oer kurz Dielektrika genannt, begegnen uns, ob gewollt oer ungewollt, in allen elektrischen Bauelementen, Baugruppen un Geräten.

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus

Mehr

Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her.

Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her. 3.1 Aufbau Das Wort Kondensator leitet sich vom lateinischen condensare (= verdichten, dicht zusammenpressen) her. In der Elektrotechnik handelt es sich bei einem Kondensator um ein Bauelement, dass in

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Grundpraktikum I Fernrohr

Grundpraktikum I Fernrohr Grunpraktikum I Fernrohr 6.Versuch Datum: 08.05.2006 Thomas Hemmelmayr (#0455761 un Michael Drack (#0457224 1. Keplersches (astronomisches Fernrohr 1.1. Versuchsaufbau us zwei Sammellinsen soll ein Fernrohr,

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

Physik I TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1

Physik I TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1 Physik I TU Dortmund SS18 Götz Uhrig Shaukat Khan Kapitel 1 Kugelkondensator Radien a (innen) und b (außen), Ladung ±. In der inneren Hohlkugel ist das E-Feld null (wie in jeder Hohlkugel, s. oben), außerhalb

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

7.6 Relativitätstheorie und Elektrodynamik

7.6 Relativitätstheorie und Elektrodynamik 7.6. RELATIVITÄTSTHEORIE UND ELEKTRODYNAMIK 77 7.6 Relativitätstheorie un Elektroynamik Für eine Beschreibung von Kenngrößen in er Natur, ie mit er speziellen Relativitätstheorie verträglich ist, ist es

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretishe Physik 2 Theoretishe Mehanik) Prof. Dr. Th. Felmann 11. Februar 2014 Kurzzusammenfassung Vorlesung 28 vom 7.2.2014 Vierergeshwinigkeit un Viererimpuls Zur Beshreibung er relativistishen Bewegungsgleihungen

Mehr

Gruppentheorie und ihre Anwendungen in der Physik Ü5

Gruppentheorie und ihre Anwendungen in der Physik Ü5 Frank Essenberger, Max Hoffmann 8. Juni 2007 Gruppentheorie un ihre Anwenungen in er Physik Ü5 Aufgabe 8 a) Als erstes müssen ie Gruppen bestimmt weren. Das Element E einer Gruppe G bilet immer einen Klasse

Mehr

14 Erhaltungssätze und das Variationsprinzip

14 Erhaltungssätze und das Variationsprinzip 14 Erhaltungssätze un as Variationsprinzip 14.1 Globale Erhaltungssätze Bisher haben wir nur Variationen es Wirkungsintegrals betrachtet, ie ie Werte er Freiheitsgrae (r, v, φ, A) an en Enpunkten es Zeitintegrals

Mehr

Praktikum Radioaktivität und Dosimetrie" Absorption von β-strahlung

Praktikum Radioaktivität und Dosimetrie Absorption von β-strahlung Praktikum Raioaktivität un Dosimetrie" Absorption von β-strahlung 1. Aufgabenstellung 1.1 Bestimmen Sie ie Schichticke von Glimmerplättchen aus er Absorptionskurve. 1. Ermitteln Sie en Massenabsorptionskoeffizienten

Mehr

Zulassungstest zur Physik II für Chemiker

Zulassungstest zur Physik II für Chemiker SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24

Mehr

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität 1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität Ladung und Stromstärke Die Einheit der Stromstärke wurde früher durch einen chemischen Prozess definiert; heute

Mehr

Abschlussprüfung Berufliche Oberschule 2015 Physik 12 Technik - Aufgabe III - Lösung

Abschlussprüfung Berufliche Oberschule 2015 Physik 12 Technik - Aufgabe III - Lösung Abschlussprüfung Berufliche Oberschule 15 Physik 1 Technik - Aufgabe III - Lösung Teilaufgabe 1. Ein Plattenkondensator mit Luft als Dielektrikum wird zunächst an eine Gleichspannungsquelle mit der Spannung

Mehr

Weitere Formatierungsmöglichkeiten

Weitere Formatierungsmöglichkeiten Stanar-Tabstopp 326 Weitere Formatierungsmöglichkeiten Im vorangegangenen Kapitel haben Sie verschieene Formatierungsmöglichkeiten kennen gelernt, welche Ihnen erlauben, ie Zeichen zu veränern, Absätze

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls un Drehimpuls es elektromagnetischen Feles 8.1 Energie In Abschnitt.5 hatten wir em elektrostatischen Fel eine Energie zugeornet, charakterisiert urch ie Energieichte ω el ɛ 0 E. (8.1

Mehr

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte

1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte 1.4 LEMMA: Resonanz un Güte Stehwellenresonatoren Definition: Koppelt man zwei schwingungsfähige Systeme, inem as eine System (Erreger) as anere System (Resonator) zum Mitschwingen zwingt, kann Resonanz

Mehr

C Entwicklung der Prozessautomatisierung

C Entwicklung der Prozessautomatisierung Gunter olch Universität Erlangen-Nürnberg Informatik 4, 2003 -Entwicklungfm 2003-04-07 1141 1 Reprouktion jeer rt oer Verwenung ieser Unterlage, außer zu Lehrzwecken an er Universität Erlangen-Nürnberg,

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfung 013 an en Realschulen in ayern athematik II usterlösung Lösung iese Lösung wure erstellt von ornelia anzenbacher. ie ist keine offizielle Lösung es ayerischen taatsministeriums für Unterricht

Mehr

Übungen zur Einführung in die Physik II (Nebenfach)

Übungen zur Einführung in die Physik II (Nebenfach) Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen

Mehr

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in

Mehr

Grundkurs Physik (2ph2) Klausur Kurshalbjahr 12/1 Blatt 1 von 2

Grundkurs Physik (2ph2) Klausur Kurshalbjahr 12/1 Blatt 1 von 2 Kurhalbjahr 12/1 Blatt 1 von 2 1. Ein kugelförmige Öltröpfchen mit Raiu r = 1, 1 10 6 m chwebt in einem horizontal gelagerten Plattenkonenator mit Plattenabtan = 0, 50 cm. Die Konenatorpannung beträgt

Mehr

Das Ohmsche Gesetz (Artikelnr.: P )

Das Ohmsche Gesetz (Artikelnr.: P ) Lehrer-/Dozentenblatt Gedruckt: 22.08.207 0:42:56 P372400 Das Ohmsche Gesetz (Artikelnr.: P372400) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Elektrizitätslehre

Mehr

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

623 Wärmeleitung. Arbeitsauftrag. Anwendung

623 Wärmeleitung. Arbeitsauftrag. Anwendung 63 Wärmeleitung Die Zusammenhänge bei er Wärmeämmung eines Hauses sin im üblichen gymnasialen Physikunterricht ein relatives Stiefkin. Wenn man ie Literatur zu ieser Thematik liest, muss man en Einruck

Mehr

Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt

Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt Lösungsvorschlag Theoretische Physik A Elftes Übungsblatt Prof. Dr. Schön un Dr. Eschrig Wintersemester 004/005 Aufgabe 38 6 Punkte Für ϕ = 0 gilt: e ϑ = e x cos ϑ e z sin ϑ un e r = e x sin ϑ + e z cos

Mehr

29 Weitere Formatierungsmöglichkeiten Im vorangegangenen Kapitel haben Sie verschieene Formatierungsmöglichkeiten kennen gelernt, welche Ihnen erlauben, ie Zeichen zu veränern, Absätze zu gestalten un

Mehr

Lösungen für Klausur A

Lösungen für Klausur A Lösungen für Klausur A Aufgabe Skizze es Zelts im Querschnitt: h. (a) Aus sin folgt cos un aher h tan, also h. (b) Aus 9 4 4 folgt urch Wurzelziehen. Einsetzen von m in ie Beziehung aus (a) liefert h 6

Mehr

2.6 Elektrische Felder und Ladungen in Materie

2.6 Elektrische Felder und Ladungen in Materie 2.6. ELEKTRISCHE FELDER UND LADUNGEN IN MATERIE 37 2.6 Elektrische Feler un Laungen in Materie Aus Erfahrung wissen wir, ass unterschieliche Materialien unterschielich auf externe Feler reagieren. Klassifizierung

Mehr

Aufgabensammlung zu Kapitel 2

Aufgabensammlung zu Kapitel 2 Aufgabensammlung zu Kapitel 2 Aufgabe 2.1: Ein Plattenkondensator (quadratische Platten der Kantenlänge a=15cm, Plattenabstand d=5mm) wird an eine Gleichspannungsquelle mit U=375V angeschlossen. Berechnen

Mehr

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1 Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

b) Der von den Schleifen umschlossene Fluss darf sich nicht ändern. Daraus folgt: B u = B r /2 = B o. c) 1. Zeitbereich: Φ u = B u b (a vt)+b r b ( Br

b) Der von den Schleifen umschlossene Fluss darf sich nicht ändern. Daraus folgt: B u = B r /2 = B o. c) 1. Zeitbereich: Φ u = B u b (a vt)+b r b ( Br Elektromagnetische Feler I Lösung zur Klausur vom 8. Februar 014 1. a gra ( a r = a b rot ( a r = a c iv ( e r = /r α/ 180 10 5 40 70 α/ ra π 7π/6 5π/4 4π/3 3π/ sinα 0 1/ / 3/ 1 cosα 1 3/ / 1/ 0 tanα 0

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Lösung - Serie 20. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 20. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MVT/D-MTL nalysis II FS 8 Dr. nreas Steiger Lösung - Serie MC-ufgaben (Online-bgabe). Es sei ie Einheitskugel um en Ursprung. Für welches er Vektorfeler (x, y, z) v(x, y, z) arf er Divergenzsatz für

Mehr

Inhaltsverzeichnis: Letzte Änderung: Seite 4-1

Inhaltsverzeichnis: Letzte Änderung: Seite 4-1 Inhaltsverzeichnis: Thema Bereiche Seite Brückenschaltung Prinzip - Viertelbrücke - Halbbrücke - Vollbrücke - Übersicht Ausschlagmessbrücken -3 Messen nichtelektrischer Größen Prinzip - aktive Messwertaufnehmer

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung

Abschlussprüfung Berufliche Oberschule 2013 Mathematik 12 Nichttechnik - A II - Lösung Abschlussprüfung Berufliche Oberschule 03 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Der Graph G f einer ganzrationalen Funktion f mit er Definionsmenge D f = IR berührt ie bei x = un schneiet

Mehr

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem

Mehr