Teil 1 Grundlagen der Auslegung von Packungskolonnen für Gas/Flüssigkeitssysteme

Größe: px
Ab Seite anzeigen:

Download "Teil 1 Grundlagen der Auslegung von Packungskolonnen für Gas/Flüssigkeitssysteme"

Transkript

1 Teil 1 Grundlagen der Auslegung von Packungskolonnen für Gas/Flüssigkeitssysteme

2 Symbolverzeichnis zu Teil 1 Formelgrößen, lateinische Buchstaben a m m 3 geometrische volumenbezogene Füllkörperoberfläche einer beliebigen Schüttung bzw. Packung a m m 3 effektive volumenbezogene trockene Füllkörperoberfläche, die von Gas durchströmt wird a o m m 3 geometrische volumenbezogene Standard- Füllkörperoberfläche a e m m 3 effektive volumenbezogene Füllkörperoberfläche A, B, C Antoine-Konstanten zur Berechnung der Siededrücke reiner Stoffe. Mit Index l für die leichtersiedende Komponente und Index für die schwersiedende Komponente. A l m Oberfläche eines Füllkörpers A e m effektive Stoffaustauschfläche A F m Füllkörperoberfläche A i Konstante A w m Wandoberfläche A s m freier Kolonnenquerschnitt B dimensionslose Flüssigkeitsbelastung C, C i Konstanten C B s /3 m 1/3 Modellparameter zur Bestimmung des Druckverlustes der berieselten Schüttung bzw. Packung für Re > C B,0 Dimensionsloser Parameter in Gl. (4-41), C B,0 C B g 1/3, unterhalb der Staugrenze C B 0,856 C C,0 Dimensionsloser Parameter in Gl. (4-44), unterhalb der Staugrenze C C,0 1 C C s /3 m 1/3 Parameter zur Bestimmung des Druckverlustes der berieselten Schüttung bzw. Packung für Re <

3 4 Symbolverzeichnis zu Teil 1 C Fl Konstante zur Berechnung der Dampfgeschwindigkeit am Flutpunkt C Fl,0 universelle Flutpunktskonstante für Füllkörper und Packungen C H DM/t Heizdampfkosten C 0 Abreißfaktor C 0, C 0,B DM/h Betriebskosten einer Vakuumrektifizierkolonne bzw. einer Normaldruckrektifikation C P Konstante zur Bestimmung des Flüssigkeitsinhaltes von Packungen und Füllkörperschüttungen bei turbulenter Flüssigkeitsströmung C T Konstante d m Füllkörperdurchmesser d i m Innendurchmesser eines Füllkörpers d h m hydraulischer Durchmesser d p m Partikeldurchmesser d R m Rohrdurchmesser, innen d S m Kolonnendurchmesser d T m Tropfendurchmesser d* T dimensionsloser Partikeldurchmesser, Gl. (-5) D kgs 1 Destillatmenge Ḋ kmols 1 Destillatstrom D V, D m s 1 Diffusionskoeffizient der leichtersiedenden Komponente im Dampfgemisch bzw. in der Flüssigkeit E K kinetische Energie f, f i mit i 1, Funktion F kgs 1 Zulaufmenge Ḟ kmols 1 Zulaufstrom F p m 1 Packungsfaktor einer trockenen Schüttung F p a/ε 3 F P, exp m 1 experimentell ermittelter Packungsfaktor am Flutpunkt bei Zweiphasenströmung F P, 0 m 1 Packungsfaktor für die Standardschüttungsdichte, F P, 0 a 0 /ε3 0 F V ( m/s) kg/m 3 Pa 1/ m 1/ kg 1/ s 1 Gas- bzw. Dampfbelastungsfaktor F V, Fl ( m/s) kg/m 3 Dampfbelastungsfaktor am Flutpunkt Pa 1/ m 1/ kg 1/ s 1 F V, * FI ms 1 Flutbelastungsfaktor

4 Symbolverzeichnis zu Teil 1 5 F V, 0 ( m/s) kg/m 3 m 1/ kg 1/ s 1 Gas- bzw. Dampfbelastungsfaktor an der oberen Belastungsgrenze F V, U ( m/s) kg/m 3 Dampf- bzw. Gasbelastungsfaktor an der Pa 1/ unteren Belastungsgrenze m 1/ kg 1/ s 1 F V /F V, FI relative Gas- bzw. Dampfbelastung g ms Erdbeschleunigung G kg m 3 Füllkörpergewicht pro m 3 Bauvolumen h m Höhe eines einzelnen Füllkörpers h V /V S m 3 m 3 der gesamte Flüssigkeitsinhalt bezogen auf die leere Kolonne h0 m 3 m 3 Flüssigkeitsinhalt bezogen auf das freie Kolonnenvolumen, h 0 h /ε h,s m 3 m 3 Flüssigkeitsinhalt oberhalb der Staugrenze h 0,FI m 3 m 3 Flüssigkeitsinhalt am Flutpunkt, bezogen auf das freie Kolonnenvolumen h st, h d, h H m 3 m 3 statischer, dynamischer Flüssigkeitsinhalt, Haftinhalt Δh V kjkmol 1 Verdampfungsenthalpie H m Höhe einer Füllkörperschüttung bzw. Packung HETP m Höhe einer theoretischen Stufe HTU 0V m Höhe einer Übertragungseinheit bezogen auf die Dampfphase HTU m Höhe einer Übergangseinheit (ΔH) i m Höhe eines einzelnen Schüttungsabschnittes i Variable k Proportionalitätsfaktor K Wandfaktor K A N Auftriebskraft K g N Schwerkraft K ψ N Widerstandskraft K 0 N Oberflächenkraft K R N Abreißkraft K η N Viskositätskraft K 1, K Konstante K 1 und Exponent K zur Bestimmung des Widerstandsbeiwertes bei der Einphasenströmung des Gases in der Schüttung oder Packung für Re V < 100 und für Gl. (3-14) K 3, K 4 Zahlenwert von K 1 und K, für Re V 100 K P Parameter in Gl. von Teutsch [16], s. Kap. 4 K ρv Korrekturfaktor der Gasdichte kgs 1 Massenstrom der Flüssigkeit kmols 1 Molenstrom der Flüssigkeit kmolh 1

5 6 Symbolverzeichnis zu Teil 1 /V Moldurchsatzverhältnis m Exponent M kgkmol 1 Molgewicht n i Zahl der Messpunkte in Gl. (-31) n t theoretische Stufenzahl n t /H m 1 theoretische Trennwirkung, Anzahl der theoretischen Stufen je Meter Schüttungshöhe N, N 0 m 3 Schüttungsdichte einer beliebigen Füllkörperschüttung bzw. Standard-Schüttungsdichte gemäß Herstellerangaben NTU 0V Anzahl der Übertragungseinheiten p mbar Druck p T mm Hg Dampfdruck der reinen Komponente, Gl. (1-1) Δp Pa Druckverlust der berieselten Schüttung bzw. Packung Δp 0 Pa Druckverlust der unberieselten, trockenen Füllkörperschüttung bzw. Packung Δp/H Pam 1 auf die Schütthöhe H bezogener Druckverlust der berieselten Schüttung bzw. Packung Δp 0 /H Pam 1 auf die Schüttungshöhe H bezogener Druckverlust der unberieselten Schüttung bzw. Packung Δp/n t, Δp/NTU 0V Pa spezifischer Druckverlust Δp/Δp 0 Druckverlustquotient r /Ḋ Rücklaufverhältnis r min minimales Rücklaufverhältnis s m Wanddicke eines Füllkörpers t u T C ms 1 Temperatur effektive Fallgeschwindigkeit eines Einzeltropfens in der Schüttung u F ms 1 mittlere Filmgeschwindigkeit u 0 ms 1 effektive Gasgeschwindigkeit, bei der ein Tropfen in der Schüttung in Schwebe gehalten wird u T ms 1 reduzierte Geschwindigkeit eines Tropfens in der Schüttung u 0 ms 1 auf die leere Kolonne bezogene Gasgeschwindigkeit in der Schüttung am Flutpunkt für h 0,FI 0 u K ms 1 charakteristische Tropfengeschwindigkeit u m 3 m h 1 spezifische Flüssigkeitsbelastung bezogen auf m 3 m s 1 den freien Kolonnenquerschnitt u,u m 3 m p s 1 spezifische Flüssigkeitsbelastung an der unteren Belastungsgrenze

6 Symbolverzeichnis zu Teil 1 7 u V ms 1 Gas- bzw. Dampfgeschwindigkeit, bezogen auf den freien Kolonnenquerschnitt u V ms 1 effektive mittlere Dampf- bzw. Gasgeschwindigkeit u V, FI ms 1 Dampf- bzw. Gasgeschwindigkeit am Flutpunkt, bezogen auf den freien Kolonnenquerschnitt V kgs 1 Massenstrom des Dampfes V kmols 1 Molenstrom des Dampfes V m 3 s 1 Volumenstrom der Flüssigkeit V V m 3 s 1 Volumenstrom des Dampfes bzw. des Gases V F m 3 Füllkörpervolumen V m 3 Volumen der Flüssigkeit V S m 3 Volumen der leeren Kolonne V 1 m 3 Volumen eines einzelnen Füllkörpers W kmols 1 Molenstrom des Sumpfproduktes W kgs 1 Sumpfmengenstrom x kmolkmol 1 Molanteil der leichtersiedenden Komponente in der Flüssigkeit x Einschnürungsfaktor, Gl. (4-9) X Strömungsparameter am Flutpunkt y kmolkmol 1 Molanteil der leichtersiedenden Komponente im Dampf y m kmolkmol 1 mittlerer Molanteil des eichtersieders y * kmolkmol 1 Molanteil der leichtersiedenden Komponente im Dampf im Gleichgewichtszustand Z, Z FI Quotient,Z h,s /h Formelgrößen, griechische Buchstaben α deg Neigung der Strömungskanäle in der Packungsschicht s. Bild 1- α relative Flüchtigkeit Δρ kg m 1 Dichtedifferenz, Δρ ρ ρ V δ(i) % relativer Fehler, bezogen auf den experimentellen δ Wert der Größe i % mittlerer relativer Fehler δ m mittlere Filmdicke ε, ε 0 m 3 m 3 relatives ückenvolumen einer beliebigen Schüttung bzw. der Standardschüttung η mpas dynamische Viskosität kg m 1 s 1 λ Widerstandsbeiwert in Gl. (3-) λ Widerstandsbeiwert für Zweiphasenströmung, Gl. (4-1)

7 8 Symbolverzeichnis zu Teil 1 λ 0 Phasendurchsatzverhältnis am Flutpunkt, λ 0 (V /V V ) Fl μ Formfaktor ν m s 1 kinematische Viskosität ρ kg m 3 Dichte σ mnm 1 Oberflächenspannung der Flüssigkeit Nm 1 für Gas/Flüssig-Systeme τ s Kontaktzeit ψ Widerstandsbeiwert für die Einphasenströmung (Dampf bzw. Gasströmung) durch eine Schüttung, s. Gl. (3-8) ψ Fl Widerstandsbeiwert für die Einphasenströmung der Gasphase für die Betriebsbedingungen am Flutpunkt ψ R, ψ 0 Widerstandsbeiwert für den in uft fallenden Tropfenschwarm bzw. für den Einzeltropfen in der Füllkörperschüttung ψ V Widerstandsbeiwert für die Zweiphasenströmung ϕ Durchmesserverhältnis, d S /d Φ Nutzungsgrad der trockenen Schüttung Φ a /a Σ Summe Dimensionslose Kennzahlen B C Fr Fr Fl * 0 η ρ g ρ η σ3 4 g u V, Fl d T u ε g d u Fr g d u a Fr g u Re a ν u d Re ν ρv g Δρ 13 / u 1 ε ε ε dp Dimensionslose Flüssigkeitsbelastung Flüssigkeitskennzahl erweiterte Froude-Zahl Froude-Zahl der Flüssigkeit Froude-Zahl der Flüssigkeit Froude-Zahl der Flüssigkeit Reynolds-Zahl der Flüssigkeit Reynolds-Zahl der Flüssigkeit

8 Symbolverzeichnis zu Teil 1 9 Re uv d Re V ν V d u Wekrit σ We Fr T V u d T T Re T ν V uv dp ( 1 ε) ν T V ρv V ρ g ε dp σ 1 ε FV 09, FV, Fl K 8. Reynolds-Zahl der Tropfen modifizierte Reynolds-Zahl des Dampfes bzw. Gases Reynolds-Zahl des Dampfes bzw. Gases kritische Tropfen-Weber-Zahl Kennzahlverhältnis der Weber-Zahl zur Froude-Zahl Schubspannungskennzahl Indizes 1 leichtersiedende Komponente schwerersiedende Komponente ber. berechneter Wert A Abtriebsteil D Destillat e extrapolierter Wert exp. experimentell ermittelter Wert eff. effektiv F Zulauf Fl gilt für den Flutpunkt i Wert einer Variable, z.b. Δp/H, HTU 0V, Δp/n t, ρ,η V im Höhenabschnitt ΔH i, i 1 n j j 1 n krit. kritischer Wert Flüssigkeit m Mittelwert min minimaler Wert O obere (bei oberer Belastungsgrenze) 0 bezogen auf Standardschüttungsdichte N 0 P gilt für Packung S gilt für den Staubereich (oberhalb der Staugrenze und unterhalb der Flutgrenze) T Kopf u, U unten; untere Grenze V Dampf bzw. Gas W Sumpf bei Molanteilen x, y bzw. gilt für Wasser bei Stoffwerten ρ, η, σ

9 10 Symbolverzeichnis zu Teil 1 Mathematische Operatorzeichen liegt im Bereich ( ) partielles Differential Abkürzungen A, [ ] Autor bzw. andere Quellen der Messdaten Abb. Abbildung BR Białeckiring BR-S geordnete Packung von Białeckiringen Fi interne Messungen TU-Wrocław, S. Filip Gl., Gln. Gleichung, Gleichungen Kap. Kapitel u interne Messungen TU-Wrocław, Z. Ługowski max. Re gültig bis zu einer maximalen Reynoldszahl der Flüssigkeit, vgl. Tabellen 4-4 zu Kap. 4 und 5-1a-c zu Kap. 5 Mc interne Messungen TU-Wrocław,J.Maćkowiak mk mit Kragen MP Messpunkt Nr. NSW Füllkörper der Fa. Norddeutsche Seekabelwerke ok ohne Kragen PR Pallring RA Randabweiser RK Rohrkolonne mit fluchtend angeordneten Füllkörpern RR Raschigring S geordnete Füllkörperschichten s. siehe TSB Tropfen-Schwebebett-Modell Werkstoffkennzeichnung K M P PE PP PVDF Keramik (Steinzeug oder Porzellan) Metall Porzellan Polyethylen Polypropylen Polyvinylidenfluorid

Unterscheide: Behältersieden (w 0 m/s) und Strömungssieden (w > 0 m/s)

Unterscheide: Behältersieden (w 0 m/s) und Strömungssieden (w > 0 m/s) 6 Sieden 1 Verdampfung von Flüssigkeiten Unterscheide: Behältersieden (w 0 m/s) und Strömungssieden (w > 0 m/s) Wärmeübergang beim Sieden hängt ab von - Heizflächenbeschaffenheit (Material, Rauhigkeit,

Mehr

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Klausur H2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Wie wirkt sich eine

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

Misch- und Rührtechnik. 12. Mai 2017, Lunch & Learn, Frankfurt am Main (B598)

Misch- und Rührtechnik. 12. Mai 2017, Lunch & Learn, Frankfurt am Main (B598) Misch- und Rührtechnik 12. Mai 2017, Lunch & Learn, Frankfurt am Main (B598) siemens.de/ec Welche Bedeutung hat die Mischtechnik auf die Funktionalität des Reaktors? Ausgleich von Konzentrations- und Temperaturunterschieden

Mehr

Symbol Bedeutung Dimension

Symbol Bedeutung Dimension Institut für Umeltverfahrenstechnik Universität Bremen FB4 / F14 Leobener Str. UFT 28359 Bremen Prof. Dr.-Ing. N. Räbiger Diese Liste fasst die ichtigsten Formelzeichen und Indizes aus dem Bereich der

Mehr

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002 Universität Duisburg-Essen Standort Duisburg Fachbereich Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Prüfer: Fluiddynamik / Hauptstudium II Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D.

Mehr

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten.

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4 Freie Konvektion Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4. Vertikale Platte Wärmeabgabe einer senkrechten beheizten Platte Thermische Grenzschichtdicke

Mehr

Dru. Gleicher Nennweiten- und Strömungsgeschwindigkeitsbereich, jedoch mit 6-fach höherer Rauigkeit k = 30 mm

Dru. Gleicher Nennweiten- und Strömungsgeschwindigkeitsbereich, jedoch mit 6-fach höherer Rauigkeit k = 30 mm 0,09 0,0 0,07 0,0 0,0 0,0 0,03 0,0 0,01 0,01 0,01 0,01 0,010 0,009 0,00 0,007 hydraulisch rau (k >0) d/k = 0 λ = 0 Re Grenzkurve 00 00 laminar turbulent 0 000 A 000 10 000 0 000 0 000 hydraulisch glatt

Mehr

1. Beispiel - Druckluftspeicher

1. Beispiel - Druckluftspeicher 1. Beispiel - Druckluftspeicher Gewebefilter mit Druckstoßabreinigung (für 180000 Nm³/h Abgas)- Druckluftspeicher Druckluftdruck Betrieb (max) p 0,6 MPa Erforderliches Speichervolumen V s 2 m³ Gesucht:

Mehr

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0

... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre ρ L0 ...... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 03. 08. 007 1. Aufgabe (10 Punkte) Ein mit elium gefüllter Ballon (Volumen V 0 für z = 0) steigt in einer Atmosphäre mit der Gaskonstante R

Mehr

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten.

4 Freie Konvektion Vertikale Platte. Freie Konvektion entsteht durch Dichteunterschiede infolge eines Temperaturgradienten. 4 Freie Konvektion Freie Konvektion entsteht durch Dichteunterschiede infolge eines emperaturgradienten. 4. Vertikale Platte Wärmeabgabe einer senkrechten beheizten Platte hermische enzschichtdicke hydraulische

Mehr

Tabelle el. Leistung P [W] = f (η, DN, l) Seite 1

Tabelle el. Leistung P [W] = f (η, DN, l) Seite 1 Tabelle el. Leistung P [W] = f (η, DN, l) Seite 1 Dokumentation Tabelle el. Leistung P [W] = f (η, DN, l) I) Spalten 1) Druckverlust Erdwärmesonde {B} {C} {D} Sondenfluid Konz: Konzentration in [Vol.-%]

Mehr

DRUCKABFALL IN SCHÜTTSCHICHTEN

DRUCKABFALL IN SCHÜTTSCHICHTEN DRUCKABFALL IN SCHÜTTSCHICHTEN Reaktoren, die mit körnigem Packungsmaterial gefüllt sind, werden in der chemischen Industrie häufig verwendet. Bei einhasiger Arbeitsweise bezweckt man dabei den Kontakt

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt.

Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgaben Hydraulik I, 26. August 2010, total 150 Pkt. Aufgabe 1: Luftdichter Behälter (17 Pkt.) Ein luftdichter Behälter mit der Querschnittsfläche A = 12 m 2 ist teilweise mit Wasser gefüllt. Um Wasser

Mehr

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # %

! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # % ! #! #!! % & ( )!! +, +,# #!.. +, ) + + /)!!.0. #+,)!## 2 +, ) + + 3 4 # )!#!! ), 5 # 6! # &!). ) # )!#! #, () # # ) #!# #. # ) 6 # ) )0 4 )) #, 7) 6!!. )0 +,!# +, 4 / 4, )!#!! ))# 0.(! & ( )!! 8 # ) #+,

Mehr

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3

Stoffdaten von Diphyl: λ = 0,083 W/(m K), c p = 2,57 kj/(kg K), η = 1, Pa s, ϱ = 717 kg/m 3 Lösung 4.1 4.1/1 Gegeben: Rechteckkanal, von Diphyl durchströmt w = 0,2 m/s, t i = 400 o C Stoffdaten von Diphyl: λ = 0,083 /(m K), c p = 2,57 kj/(kg K), η = 1, 405 10 4 Pa s, ϱ = 717 kg/m 3 Modellkanal

Mehr

TankBspNov2016. Inhaltsverzeichnis. Inhalt Seiten

TankBspNov2016. Inhaltsverzeichnis. Inhalt Seiten Inhaltsverzeichnis Inhalt Seiten 1 Ermittlung der Wärmeverluste von Lagertanks 2 2 Stoffwerte Umgebungsluft 6 Stoffwerte von Luft 3 Wärmeübergang außen, Dach 7 Wärmeübertragung bei der Strömung längs einer

Mehr

Hydrodynamische Untersuchungen in einer Packungskolonne

Hydrodynamische Untersuchungen in einer Packungskolonne RUHR-UNIVERSITÄT BOCHUM Lehrstuhl für Fluidverfahrenstechnik Prof. Dr.-Ing. M. Grünewald Hydrodynamische Untersuchungen in einer Packungskolonne Fachlabor UTRM SS 017 Felix van Holt, M. Sc. Mark Hapke,

Mehr

Versuch V1 - Viskosität, Flammpunkt, Dichte

Versuch V1 - Viskosität, Flammpunkt, Dichte Versuch V1 - Viskosität, Flammpunkt, Dichte 1.1 Bestimmung der Viskosität Grundlagen Die Viskosität eines Fluids ist eine Stoffeigenschaft, die durch den molekularen Impulsaustausch der einzelnen Fluidpartikel

Mehr

Die Förderhöhe einer Pumpe errechnet sich wie folgt: Sie setzt sich also zusammen aus: dem zu überwindenden Höhenunterschied

Die Förderhöhe einer Pumpe errechnet sich wie folgt: Sie setzt sich also zusammen aus: dem zu überwindenden Höhenunterschied Zum Verständnis der folgenden Kapitel werden wir zuerst die in dieser Broschüre verwendeten Fachbegriffe der definieren und erläutern. Im Stichwortverzeichnis finden Sie diese Begriffe alphabetisch geordnet

Mehr

Vorlesung STRÖMUNGSLEHRE Zusammenfassung

Vorlesung STRÖMUNGSLEHRE Zusammenfassung Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung

Mehr

Beginn: 9.00 Uhr, Treffpunkt: IB 5/46

Beginn: 9.00 Uhr, Treffpunkt: IB 5/46 RUHR-UNIVERSITÄT BOCHUM Lehrstuhl für Fluidverfahrenstechnik Prof. Dr.-Ing. M. Grünewald Abgasreinigung durch Absorption in einer Füllkörperkolonne Fachlabor UTRM SS 2009 Dipl.-Ing. Yvonne Algayer Raum:

Mehr

Musterlösung: Partikelbewegung im Fluid

Musterlösung: Partikelbewegung im Fluid Musterlösung: Partikelbewegung im Fluid 0. Januar 016 Wiederholung Ein Ausschnitt notwendiger Grundlagen für die Berechnung stationärer Sinkgeschwindigkeiten von Partikeln im Fluid. Annahmen: Partikel

Mehr

Grundpraktikum M6 innere Reibung

Grundpraktikum M6 innere Reibung Grundpraktikum M6 innere Reibung Julien Kluge 1. Juni 2015 Student: Julien Kluge (564513) Partner: Emily Albert (564536) Betreuer: Pascal Rustige Raum: 215 Messplatz: 2 INHALTSVERZEICHNIS 1 ABSTRACT Inhaltsverzeichnis

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Prüfungsordnung 2002

Prüfungsordnung 2002 Universität Duisburg-Essen Fachbereich für Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Fluiddynamik/Strömungsmaschinen Prüfer: Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel Datum der

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr

Vorlesung: Mechanische Verfahrenstechnik Seminar - Siebklassierung

Vorlesung: Mechanische Verfahrenstechnik Seminar - Siebklassierung Vorlesung: Mechanische Verfahrenstechnik Seminar - Siebklassierung Aufgabe 1: Auslegung eines Kreiswuchtschwingsiebes Aufgabenstellung: Für die Klassierung eines trockenen Kieses der Schüttgutdichte ρ

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Exergie. Aufgabe 1: Berechnen Sie: a) die Eintrittstemperatur T Dampf,ein des gesättigten Dampfes, b) den Exergieverluststrom ĖV des Prozesses und

Exergie. Aufgabe 1: Berechnen Sie: a) die Eintrittstemperatur T Dampf,ein des gesättigten Dampfes, b) den Exergieverluststrom ĖV des Prozesses und Übung 1 Exergie Aufgabe 1: Flüssiges Wasser (15 C) wird durch Einmischen von Dampf in einer Mischkammer erwärmt. Das Wasser tritt mit einem Massenstrom von ṁ W asser = 1 kg/s in die Kammer ein, der Dampf

Mehr

Inhaltsverzeichnis. Aufgaben Druckverlust. Aufgaben Druckverlust 2 Aufgaben Dimensionierung 5 Aufgaben Ventile 10 Aufgaben hydraulischer Abgleich 12

Inhaltsverzeichnis. Aufgaben Druckverlust. Aufgaben Druckverlust 2 Aufgaben Dimensionierung 5 Aufgaben Ventile 10 Aufgaben hydraulischer Abgleich 12 Wärmeverteilung Inhaltsverzeichnis 2 Aufgaben Dimensionierung 5 Aufgaben Ventile 10 Aufgaben hydraulischer Abgleich 12 24.06.2015 Prof. Werner Betschart 1 Aufgabe 1: Druckverlust Lambda Durch ein Heizungsrohr

Mehr

8.4.5 Wasser sieden bei Zimmertemperatur ******

8.4.5 Wasser sieden bei Zimmertemperatur ****** 8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti Ulf Wiedwald 16. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 16. 07. 2007

Mehr

Hydrodynamik y II - Viskosität

Hydrodynamik y II - Viskosität Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden

Mehr

V. Ähnlichkeitsgesetze und dimensionslose Kennwerte

V. Ähnlichkeitsgesetze und dimensionslose Kennwerte V. Ähnlichkeitsgesetze und dimensionslose Kennwerte Die Entwicklung großer hydraulischer Strömungsmaschinen wird am Modell durchgeführt. Weitere Beispiel: Ausnahme: Autos, Flugzeuge, Schiffe Kleine Maschinen,

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und

KLAUSUR STRÖMUNGSLEHRE. Studium Maschinenbau. und Univ.-Prof. Dr.-Ing. Wolfram Frank 14.10.2005 Lehrstuhl für Fluiddynamik und Strömungstechnik Aufgabe Name:... Matr.-Nr.:... Vorname:... HS I / HS II / IP / WI (Punkte) Frage 1)... Frage 2)... Beurteilung:...

Mehr

Flüssigkeitsteilchen sind frei gegeneinander verschiebbar. Flüssigkeitsoberfläche stets senkrecht zur wirkenden Kraft. F G

Flüssigkeitsteilchen sind frei gegeneinander verschiebbar. Flüssigkeitsoberfläche stets senkrecht zur wirkenden Kraft. F G 2.9.3 Flüssigkeiten Flüssigkeitsteilchen sind frei gegeneinander verschiebbar. Flüssigkeitsoberfläche stets senkrecht zur wirkenden Kraft. F Abbildung 2.46: Kräfte bei Rotation von Flüssigkeiten F Z =

Mehr

Druckabfall in Schüttschichten

Druckabfall in Schüttschichten Druckabfall in Schüttschichten Bericht für das Praktikum Chemieingenieurwesen I WS06/07 Zürich, 15. Januar 2007 Studenten: Francisco José Guerra Millán fguerram@student.ethz.ch Andrea Michel michela@student.ethz.ch

Mehr

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006

Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 26. Juli 2006 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 7 nummerierte Seiten; Die Foliensammlung, Ihre Mitschrift der Vorlesung

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439,, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de Reynoldszahl

Mehr

Thermodynamik II Klausur SS 2006

Thermodynamik II Klausur SS 2006 Thermodynamik II Klausur SS 0 Prof. Dr. G. Wilhelms Aufgabenteil / 00 Minuten / Blatt Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern

Mehr

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995) Universität - Gesamthochschule Kassel Fachgebiet Geohydraulik und Ingenieurhydrologie Prof. Dr. rer. nat. Manfred Koch GhK WS 2001/2002 Studienbegleitende Prüfung (DPO 1983)/Studienleistung (DPO 1995)

Mehr

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 20. August 2009

Kraft- und Arbeitsmaschinen. Klausur zur Diplom-Hauptprüfung, 20. August 2009 Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Kraft- und Arbeitsmaschinen Klausur zur Diplom-Hauptprüfung, 20. August 2009 Bearbeitungszeit:

Mehr

Klausur Strömungsmechanik 1 Herbst Lösung. 13. August 2013, Beginn 15:30 Uhr

Klausur Strömungsmechanik 1 Herbst Lösung. 13. August 2013, Beginn 15:30 Uhr Klausur Strömungsmechanik Herbst 203 3. August 203, Beginn 5:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar TFD-Formelsammlung (ohne handschriftliche

Mehr

Zur Erinnerung. Stichworte aus der 12. Vorlesung: Dehnung Scherung Torsion. Hysterese. Gleit-, Roll- und Haftreibung. Druck hydrostatischer Druck

Zur Erinnerung. Stichworte aus der 12. Vorlesung: Dehnung Scherung Torsion. Hysterese. Gleit-, Roll- und Haftreibung. Druck hydrostatischer Druck Stichworte aus der 12. Vorlesung: Zur Erinnerung Aggregatzustände: Dehnung Scherung Torsion Hysterese Reibung: fest, flüssig, gasförmig Gleit-, Roll- und Haftreibung Hydrostatik ideale Flüssigkeit Druck

Mehr

M 7 Innere Reibung von Flüssigkeiten

M 7 Innere Reibung von Flüssigkeiten M 7 Innere Reibung von Flüssigkeiten 1. Aufgabenstellung 1.1 Bestimmen Sie die dynamische Viskosität von Glyzerin bei Zimmertemperatur nach der Kugelfallmethode. 1.2 Überprüfen Sie, ob für die verwendeten

Mehr

Fluiddynamik eines Flüssigkeitsfilms an einem vertikalen Draht

Fluiddynamik eines Flüssigkeitsfilms an einem vertikalen Draht 1 EINLEITUNG Fluiddynamik eines Flüssigkeitsfilms an einem vertikalen Draht Jochen Grünig*, Matthias Kraume und Alexey Shilkin Einem vertikalen Draht wird kontinuierlich Flüssigkeit zugeführt, welche als

Mehr

Phasengleichgewicht. 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. A fl. A g

Phasengleichgewicht. 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. A fl. A g Physikalisch-Chemische Praktika Phasengleichgewicht Versuch T-2 Aufgaben 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. 2. Ermittlung der Phasenumwandlungsenthalpie

Mehr

Vorlesung Physik für Pharmazeuten PPh Hydrostatik Grenzflächenspannung Hydrodynamik

Vorlesung Physik für Pharmazeuten PPh Hydrostatik Grenzflächenspannung Hydrodynamik Vorlesung Physik für Pharmazeuten PPh - 05 Hydrostatik Grenzflächenspannung Hydrodynamik 21.05.2007 Ruhende lüssigkeiten (Hydrostatik) Der hydrostatische Druck : P = A A [P]=N/m 2 = Pa(scal) 1 bar=10 5

Mehr

Vergleich Auslaufbecher und Rotationsviskosimeter

Vergleich Auslaufbecher und Rotationsviskosimeter Vergleich Auslaufbecher und Rotationsviskosimeter Die Viskositätsmessung mit dem Auslaufbecher ist, man sollte es kaum glauben, auch in unserer Zeit der allgemeinen Automatisierung und ISO 9 Zertifizierungen

Mehr

Inhalt. http://d-nb.info/831228555

Inhalt. http://d-nb.info/831228555 Inhalt 1.1.1 Bezeichnungen, Größen und Einheiten 1.1.2 Indizes für Formelzeichen in der Technischen Gebäudeausrüstung 1.1.3 Einheiten-Umwandlung 1.1.4 Umrechnung englischer und amerikanischer Einheiten

Mehr

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung 016.11.18. Prüfungsfrage Strömung der Flüssigkeiten Typen der Flüssigkeitsströmung. Die Reynolds-Zahl. Die Viskosität. Die Gesetzmäßigkeiten der Flüssigkeitsströmung: die Gleichung der Kontinuität, das

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2015, Beginn 16:30 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2015, Beginn 16:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik Frühjahr 205 5. März 205, Beginn 6:30 Uhr Taschenrechner (nicht programmierbar) Lineal und Schreibmaterial (nur dokumentenecht,

Mehr

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe:

Fluidmechanik. Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen. -Laborübung- 3. Semester. Namen: Datum: Abgabe: Strömungsanlage 1 Fachhochschule Trier Studiengang Lebensmitteltechnik Fluidmechanik -Laborübung-. Semester Thema Erfassung der Druckverluste in verschiedenen Rohrleitungselementen Namen: Datum: Abgabe:

Mehr

Klausur Strömungsmechanik 1 WS 2009/2010

Klausur Strömungsmechanik 1 WS 2009/2010 Klausur Strömungsmechanik 1 WS 2009/2010 03. März 2010, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

E 3. Ergänzungen zu Kapitel 3

E 3. Ergänzungen zu Kapitel 3 E 3. Ergänzungen zu Kapitel 3 1 E 3.1 Kritisches Verhalten des van der Waals Gases 2 E 3.2 Kritisches Verhalten des Ising Spin-1/2 Modells 3 E 3.3 Theorie von Lee und Yang 4 E 3.4 Skalenhypothese nach

Mehr

Kontinuumsmechanische Simulation von Granulaten mit der Anwendung pneumatischer Transport

Kontinuumsmechanische Simulation von Granulaten mit der Anwendung pneumatischer Transport Kontinuumsmechanische Simulation von Granulaten mit der Anwendung pneumatischer Transport Fraunhofer Institut für Industrie- und Wirtschaftsmathematik (ITWM), Kaiserslautern Sebastian Rau Sebastian Schmidt

Mehr

0tto-von-Guericke-Universität Magdeburg

0tto-von-Guericke-Universität Magdeburg 0tto-von-Guericke-Universität Magdeburg Institut für Strömungstechnik und Thermodynamik, Lehrstuhl Strömungsmechanik und Strömungstechnik Übungsaufgaben Fluidenergiemaschinen Aufgabe 1.01 In einer Bewässerungsanlage

Mehr

7. Kritische Exponenten, Skalenhypothese

7. Kritische Exponenten, Skalenhypothese 7. Kritische Exponenten, Skalenhypothese 1 Kritische Exponenten, Universalitätsklassen 2 Beziehungen zwischen den kritischen Exponenten 3 Skalenhypothese für die thermodynamischen Potentiale G. Kahl (Institut

Mehr

Zur Erinnerung Stichworte aus der 12. Vorlesung:

Zur Erinnerung Stichworte aus der 12. Vorlesung: Stichworte aus der 12. Vorlesung: Zur Erinnerung Aggregatzustände: Dehnung Scherung Torsion Hysterese Reibung: fest, flüssig, gasförmig Gleit-, Roll- und Haftreibung Experimentalphysik I SS 2008 13-1 Hydrostatik

Mehr

Versuch Eichung und Linearisierung eines Hitzdrahtes Wirbelbildung am quer angeströmten Kreiszylinder (Kármánsche Wirbelstraße)

Versuch Eichung und Linearisierung eines Hitzdrahtes Wirbelbildung am quer angeströmten Kreiszylinder (Kármánsche Wirbelstraße) Versuch 7 + 8 Eichung und Linearisierung eines Hitzdrahtes Wirbelbildung am quer angeströmten Kreiszylinder (Kármánsche Wirbelstraße) Strömungsmechanisches Praktikum des Deutschen Zentrums für Luft- und

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

Volumenstrom und Druckverlust im Gas-Netzanschlu. Netzanschluß (ND) bzw. Nennweitenermittlung udeanschluß)

Volumenstrom und Druckverlust im Gas-Netzanschlu. Netzanschluß (ND) bzw. Nennweitenermittlung udeanschluß) Volumenstrom und Druckverlust im Gas-Netzanschlu Netzanschluß (ND) bzw. Nennweitenermittlung (Haus- bzw. Gebäudeanschlu udeanschluß) DVGW-Arbeitsblatt GW 303-1 1 und G 600 (TRGI) 1 Angebotsanfrage für

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Mechanik Teil 3 - Versuche M1 Dichte und Hydrodynamik: Bestimmung der Dichte eines zylindrischen

Mehr

3. Innere Reibung von Flüssigkeiten

3. Innere Reibung von Flüssigkeiten IR1 3. Innere Reibung von Flüssigkeiten 3.1 Einleitung Zwischen den Molekülen in Flüssigkeiten wirken anziehende Van der Waals Kräfte oder wie im Falle des Wassers Kräfte, die von sogenannten Wasserstoffbrückenbindungen

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller

Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller Vorlesung AFS, 06.06.007 1 Letzte Woche: Auslegung der Klimaanlage durch stationäre Gleichungen Berechnung des Gleichgewichtszustand

Mehr

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002

Fluiddynamik / Strömungsmaschinen Hauptstudium II. Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D. Hänel. Nach Prüfungsordnung 2002 Universität Duisburg-Essen Standort Duisburg Fachbereich Ingenieurwissenschaften Abteilung Maschinenbau Fachprüfung: Prüfer: Fluiddynamik / Hauptstudium II Prof. Dr.-Ing. F.-K. Benra Prof. Dr.-Ing. D.

Mehr

f) Ideales Gas - mikroskopisch

f) Ideales Gas - mikroskopisch f) Ideales Gas - mikroskopisch i) Annahmen Schon gehabt: Massenpunkte ohne Eigenvolumen Nur elastische Stöße, keine Wechselwirkungen Jetzt dazu: Wände vollkommen elastisch, perfekte Reflektoren Zeitliches

Mehr

Klausur Fluidenergiemaschinen Fragen H Lösung:

Klausur Fluidenergiemaschinen Fragen H Lösung: Klausur Fluidenergiemaschinen (mit Lösungen).0.00 Fragen. Wasser soll mit einer Pumpe von einem unteren Becken in ein oberes Becken gefördert werden. Beide Becken sind offen. a) Stellen Sie qualitativ

Mehr

Labor zur Vorlesung Physik

Labor zur Vorlesung Physik Labor zur Vorlesung Physik 1. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Viskosität, Innere Reibung von üssigkeiten, Stokeskraft, Auftrieb, laminare Strömung, Inkompressibilität

Mehr

Hydromechanik. /2009 Studienbegleitende Prüfung in den Studiengängen Bauingenieurwesen (DPO 1995 und 2004) Wirtschaftsingenieurwesen WS 2008/200

Hydromechanik. /2009 Studienbegleitende Prüfung in den Studiengängen Bauingenieurwesen (DPO 1995 und 2004) Wirtschaftsingenieurwesen WS 2008/200 Bauingenieurwesen Universität Kassel- D-09 Kassel I nstit ut für Geot ec hnik und Geohydraulik Prof. Dr. rer. nat. Manfred Koch Universität Kassel Kurt-Wolters-Str. 5 Kassel kochm@uni-kassel.de fon + 9-56

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

V.2 Ähnlichkeitsgesetz

V.2 Ähnlichkeitsgesetz V2 Ähnlichkeitsgesetz Die inkompressible Strömung eines Fluids genügt der Kontinuitätsgleichung vt, r = 0 und der Navier Stokes-Gleichung III34 Um den Einfluss der Eigenschaften des Fluids ρ und η bzw

Mehr

Transportkoeffizienten von Alkoholen und Wasser: Molekulare Simulation und Messungen mit der Taylor-Dispersions Methode

Transportkoeffizienten von Alkoholen und Wasser: Molekulare Simulation und Messungen mit der Taylor-Dispersions Methode ProcessNet Jahrestagung, 8 - September 9, Mannheim Transportkoeffizienten von Alkoholen und Wasser: Molekulare Simulation und Messungen mit der Taylor-Dispersions Methode Gabriela Guevara-Carrión, Jadran

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

Thermodynamik 1 Klausur 02. August 2010

Thermodynamik 1 Klausur 02. August 2010 Thermodynamik 1 Klausur 02. August 2010 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung: 6 nummerierte Seiten Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als

Mehr

Übungen zu Physik I für Physiker Serie 10 Musterlösungen

Übungen zu Physik I für Physiker Serie 10 Musterlösungen Übungen zu Physik I für Physiker Serie Musterlösungen Allgemeine Fragen. Was versteht man unter dem Magnuseffekt? Nennen Sie Ihnen bekannte Beispiele, wo man ihn beobachten kann. Als Magnus-Effekt wird

Mehr

Messung turbulenter Rohrströmung

Messung turbulenter Rohrströmung Fachlabor Strömungs- und Wärmetechnik Messung turbulenter Rohrströmung Bearbeiter: Gruppe: Name :... Vorname :... Matrikel-Nr. :... Tag des Versuchs :... Teilnahme am Versuch :... Korrekturhinweis : Endtestat

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018)

Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) Versuch 4 Messung der dynamischen Viskosität mit dem Rotationsviskosimeter (Grundlagen DIN 53018) 4.1 Begriff

Mehr

Rektifikative Aufarbeitung von Lösungsmittelgemischen

Rektifikative Aufarbeitung von Lösungsmittelgemischen RUHR-UNIVERSITÄT BOCHUM Lehrstuhl für Fluidverfahrenstechnik Prof Dr-Ing M Grünewald Rektifikative Aufarbeitung von Lösungsmittelgemischen Rektifikation eines binären Gemisches in einer Labor-Batch-Rektifikationskolonne

Mehr

Kennlinien eines 4-Takt Dieselmotors

Kennlinien eines 4-Takt Dieselmotors HTBL Wien 1 Kennlinien eines Dieselmotors Seite 1 von 5 DI Dr. techn. Klaus LEEB klaus.leeb@schule.at Kennlinien eines 4-Takt Dieselmotors Didaktische Inhalte: Kennfeld und Kennlinien eines Dieselmotors;

Mehr

Hilfe. Excel Makros. Version /2007. Josef BERTSCH Gesellschaft m.b.h & Co. Kessel und Energietechnik Apparatebau Nahrungsmittelanlagen

Hilfe. Excel Makros. Version /2007. Josef BERTSCH Gesellschaft m.b.h & Co. Kessel und Energietechnik Apparatebau Nahrungsmittelanlagen Stoffdaten für Luft Excel Makros Hilfe Version 1.7-01/2007 Josef BERTSCH Gesellschaft m.b.h & Co Kessel und Energietechnik Apparatebau Nahrungsmittelanlagen Zentrale: A-6700 Bludenz, Herrengasse 23 Tel.:

Mehr

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe (60 Punkte, TTS & TTD) Bitte alles LESBAR verfassen!!!. In welcher Weise ändern sich intensive und extensive Zustandsgrößen bei der Zerlegung eines Systems in Teilsysteme?. Welche Werte hat der

Mehr

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016 Die Brücke ins Studium Vorkurs Physik Dr. Oliver Sternal Dr. Nils-Ole Walliser 19.-23. September 2016 2. Fluidmechanik 2. Fluidmechanik 2.1 Fluidstatik 2. Fluidmechanik 2.1 Fluidstatik 2.1.1 Druck in ruhenden

Mehr

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit 1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der

Mehr

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 8. Vorlesung EP I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik (Fortsetzung: Auftrieb) c) Oberflächenspannung und Kapillarität Versuche:

Mehr

3 Erzwungene Konvektion 1

3 Erzwungene Konvektion 1 3 Erzwungene Konvektion 3. Grunlagen er Konvektion a) erzwungene Konvektion (Strömung angetrieben urch Pumpe oer Gebläse) b) freie Konvektion (Dichteunterschiee aufgrun von Temperaturunterschieen) c) Konensation

Mehr

Nach Prüfungsordnung 1989

Nach Prüfungsordnung 1989 Fachprüfung: Prüfer: Kolben und Strömungsmaschinen Hauptstudium II Prof. Dr. Ing. H. Simon Prof. Dr. Ing. P. Roth Tag der Prüfung: 10.08.2001 Nach Prüfungsordnung 1989 Vorgesehene Punkteverteilung: Strömungsmaschinen:

Mehr

Rohrhydraulik. apl.prof. Dr.-Ing.habil. Th. Hackensellner

Rohrhydraulik. apl.prof. Dr.-Ing.habil. Th. Hackensellner Rohrhydraulik apl.prof. Dr.-Ing.habil. Th. Hackensellner Begleitmaterial ausschließlich zur Vorlesung Brauereianlagen. Veröffentlichung und Vervielfältigung nur mit Genehmigung des Verfassers. Alle Rechte

Mehr

Spannungen mit griechischen Kleinbuchstaben

Spannungen mit griechischen Kleinbuchstaben B. Wietek, Faserbeton, DOI 10.1007/978-3-658-07764-8_2, Springer Fachmedien Wiesbaden 2015 2.2 Zeichen 15 Spannungen mit griechischen Kleinbuchstaben E c... Elastizitätsmodul von Beton [N/mm 2 ] E s...

Mehr

Modellierung der Rektifikation viskoser Systeme in Packungskolonnen

Modellierung der Rektifikation viskoser Systeme in Packungskolonnen Abschlussbericht für die Max Buchner Forschungsstiftung Forschungsprojekt 2842 Förderzeitraum 01.07.2009 30.06.2011 Modellierung der Rektifikation viskoser Systeme in Packungskolonnen Dipl. Ing. Anna Janzen,

Mehr

Oberflächenspannung. Abstract. 1 Theoretische Grundlagen. Phasen und Grenzflächen

Oberflächenspannung. Abstract. 1 Theoretische Grundlagen. Phasen und Grenzflächen Phasen und Grenzflächen Oberflächenspannung Abstract Die Oberflächenspannung verschiedener Flüssigkeit soll mit Hilfe der Kapillarmethode gemessen werden. Es sollen die mittlere Abstand der einzelnen Moleküle

Mehr

Betrachtung der Stoffwerte und ihrer Bezugstemperatur. Von Franz Adamczewski

Betrachtung der Stoffwerte und ihrer Bezugstemperatur. Von Franz Adamczewski Betrachtung der Stoffwerte und ihrer Bezugstemperatur Von Franz Adamczewski Inhaltsverzeichnis Einleitung... 3 Bezugstemperatur... 4 Eintrittstemperatur des Kühlmediums 4 Austrittstemperatur des Kühlmediums

Mehr

= Energiedichte Volumen G V, Kapillarkraft zwischen einer starren Ebene und einer Kugel FK r

= Energiedichte Volumen G V, Kapillarkraft zwischen einer starren Ebene und einer Kugel FK r ormelsammlung Kontaktmechanik & eibungsphysik WS 8/9 Prof Popov Elementare Behandlung des Kontaktproblems Elastische Energiedichte G ε, (G ist Schubmodul, ε - Scherdeformation) ε Elastische Energie Eel

Mehr