Herleitung der Bessel-Funktionen mit dem Integral-Iterationsverfahren

Größe: px
Ab Seite anzeigen:

Download "Herleitung der Bessel-Funktionen mit dem Integral-Iterationsverfahren"

Transkript

1 Herleitung der Bessel-Funktionen mit dem Integral-Iterationsverfahren Dr. rer. nat. Kuang-lai Chao Göttingen, den 3. Februar 009 Abstract Derivation of Bessel functions with the integral iterative method An integral iterative method for the Bessel equation will be introduced in order to derive Bessel functions in a very simple way. Übersicht Für die Bessel-Gleichung wird ein Integral-Iterationsverfahren vorgestellt, um die Bessel-Funktionen auf einfachste Weise herzuleiten. Internet Dieser Artikel ist online abrufbar unter: Anschrift des Verfassers Dr. rer. nat. Kuang-lai Chao Auf der Lehmbünde Göttingen Germany info@satzansatz.de

2 Inhaltsverzeichnis Einleitung 3 Integral-Iterationsverfahren für die Bessel-Gleichung 4 3 Bessel-Funktion zweiter Gattung 6 4 Bessel-Funktion für n = Zusammenfassung Literatur

3 Einleitung Im Jahr 986 hatte ich ein Integral-Iterationsverfahren erstmalig vorgestellt, um eakte Lösungen für die nichtlinearen partiellen Differentialgleichungen für die transsonische Strömung sowohl im kartesischen als auch im Zylinder- Koordinatensystem herzuleiten ]. Durch Anwendung dieses Integral-Iterationsverfahrens im Jahr 007 wurden viele eakte Lösungen für die folgenden linearen partiellen Differentialgleichungen gefunden: Laplace-Gleichung, Poisson-Gleichung, biharmonische Gleichung sowie biharmonische Poisson- Gleichung ]. In diesem Artikel wird dieses Verfahren auf die lineare gewöhnliche Differentialgleichung erweitert. Im Abschnitt formulieren wir das Integral- Iterationsverfahren für die Bessel-Gleichung. Im Abschnitt 3 zeigen wir ausführlich die Herleitung der Bessel-Funktion zweiter Gattung. Die Bessel- Funktion für n = 0 zeigen wir im Abschnitt 4. Die Auffindung der Bessel-Funktionen ist dadurch zu einer ganz elementaren und sehr leichten Aufgabe geworden. Für die Verbesserung der Tete und für die mühevolle Anfertigung und Veröffentlichung dieser Arbeit möchte ich meinem jüngsten Sohn, Ingo Chao, herzlich danken. 3

4 Integral-Iterationsverfahren für die Bessel- Gleichung Die Bessel-Gleichung d y d + dy d + ( n )y = 0 (.) ist eine lineare gewöhnliche Differentialgleichung zweiter Ordnung 3, 5]. Dabei ist n eine reelle Konstante, positiv oder negativ, ganzzahlig oder nicht ganzzahlig. Eine andere Darstellung der Bessel-Gleichung ist d n d n+ d ( ) ] d y + y = 0. (.) n Man bestätigt dies durch Differenzieren: d n+ d ( ) ] n d d y = d y n d + dy d n y. (.3) Der Operator auf die Funktion y, F (y) = d n d n+ d ( ) ] d y, (.4) n hat eine Inverse y = n n+ n F (y) d d. (.5) Sie ist entstanden nach der Regel der inversen Bildungen: Dividieren durch Multiplizieren, Differenzieren durch Integrieren und umgekehrt, und zwar nach der Reihenfolge von links nach rechts. Wir führen eine neue Bezeichnung ein: B = y + y n y + y. (.6) B ist nichts anderes als der Bessel-Ausdruck aus (.) mit y y = d y. d = dy d und 4

5 Unser Iterationsverfahren beginnt mit dem ersten Lösungsansatz y = y 0. Dabei ist y 0 = n oder y 0 = n. Wir berechnen und erhalten Wir berechnen weiter B 0 = y 0 + y 0 n y 0 + y 0 (.7) y = y 0 n n+ n B 0 d d. (.8) B = y + y n y + y (.9) und leiten y her: y = y n n+ n B d d. (.0) Wir rechnen so weiter und erhalten nach dem k-ten Schritt y k. Mit y k berechnen wir B k : B k = y k + y k n y k + y k. (.) Wir haben viele Beispiele getestet bei vorgegebenem n und stellen fest, dass B k gleich mal das letzte Glied von y k ist. Man braucht y k und y k sowie (.) nicht auszurechnen. Wir zeigen dies noch im nächsten Abschnitt. Mit y k und B k berechnen wir y k+ : y k+ = y k n n B n+ k d d (.) usw. 5

6 3 Bessel-Funktion zweiter Gattung Wir betrachten zunächst den Fall für y 0 = n mit einer positiven ganzen Zahl n : B 0 = y 0 + y 0 n y 0 + y 0 = n+. (3.) Mit y 0 und B 0 berechnen wir y nach (.8): y = y 0 n n n+ d d n+ = y 0 n d d n+ = y 0 n n+ d = y 0 n n+ d = n n n+ ( n + ) = n + n+ (n ) Wir berechnen weiter B mit y nach (.9): B = n+4 (n ). (3.). (3.3) B ist gleich mal das letzte Glied von y. Wir berechnen weiter y = y n n n+4 d d n+ (n ) = n + n+ (n ) + n+4. (3.4) (n ) 4(n 4) Um die Formel zu vereinfachen, führen wir neue Bezeichnungen ein: b 0 =, b =, b =, (n ) (n ) 4(n 4) b 3 =,, (n ) 4(n 4) 6(n 6) b k =,, (n ) 4(n 4) k(n k) b n = n (n )! ]. (3.5) 6

7 In (3.4) steht y. Wir rechnen weiter bis auf k = n : y n = b 0 n + b n+ + b n b n n. (3.6) Wie wir gesagt haben, B n ist gleich mal das letzte Glied von y n : B n = b n n. (3.7) Danach entsteht bei jedem weiteren Schritt die Logarithmusfunktion ln. Mit y n und B n berechnen wir y n ausführlich: y n = y n n n b n+ n n d d = y n b n n n d d n+ = y n b n n n n+ n d = y n b n n n d = y n b n n n ln = y n c n ln. (3.8) Dabei haben wir eine neue Bezeichnung eingeführt: c = n (n )! n n!. (3.9) Mit y n berechnen wir B n : B n = c n+ ln. (3.0) Ausführlich berechnen wir weiter y n+ mit der Formel: m ln d = m+ m + ln m+, m. (3.) (m + ) 7

8 y n+ = y n n n c n+ ln ] d d n+ = y n + c n n+ ln d d n+ ] = y n + c n n+ n+ n + ln n+ d (n + ) = y n + cn ln ] d n + n + ] = y n + cn ln n + (n + ) = y n c n ln + cn+ (n + ) ln n + Das letzte Glied aus (3.) mal liefert uns B n+ = cn+4 ln (n + ) ] n + Mit y n+ und B n+ erhalten wir y n+ : cn+ y n+ = y n c n ln + (n + ) c n+4 (n + ) 4(n + 4) k=0 ln n + ln n + 4 n + 4 ] ]. (3.). (3.3) ]. (3.4) Weitere Schritte zeigen, dass die Lösung eine unendliche Reihe ist. Ein Teil der Konstante c ist. Wir erkennen sofort, dass der Ausdruck vor n n! ln die Bessel-Funktion erster Gattung ist: J n () = ] n n+ n n! (n + ) + n+4 (n + ) 4(n + 4) ( ) ( ) k n+k =. (3.5) k!(n + k)! Wir multiplizieren die ganze Reihe mit n (n )! und erhalten nach einigen Umformungen die Bessel-Funktion zweiter Gattung: Y n () = J n () ln n ( ) n+k k= ( ) k k!(n + k)! k=0 ( (n k )! k! ) n+k k ( 8 m= m + n + m ). (3.6)

9 Wir möchten darauf hinweisen, dass k von (nicht von 0) bis bei der zweiten Summation ist, weil n nur mit ln zusammen erscheint. Es gibt kein alleinstehendes n. Unsere Y n () enthält J n () nicht. Es ist interessant zu beobachten, wie die Konstante Schritt für Schritt n n! entstanden ist. 9

10 4 Bessel-Funktion für n = 0 Unser Integral-Iterationsverfahren liefert uns auch die richtigen Ergebnisse der Bessel-Funktionen erster Gattung. Bei y 0 = n für ganzzahliges n und für positiv und negativ nicht ganzzahliges n ist die Herleitung der Bessel- Funktionen sehr einfach. Wir möchten dies nicht mehr zeigen. Stattdessen betrachten wir nur den Fall für n = 0. Mit y 0 = 0 = erhalten wir B 0 = y 0 + y 0 + y 0 =. (4.) Mit y 0 und B 0 berechnen wir y nach (.8): y = d d =. (4.) Weiter ist B gleich mal das letzte Glied von y : Danach bekommen wir y : y = y Wir machen einen Schritt weiter: und erhalten schließlich B = 4. (4.3) ( ) 4 d d = (4.4) y 3 = , (4.5) J 0 () = y = k=0 ( ) k (k!) ( ) k. (4.6) Mit der Methode der Reihenentwicklung hat man nur die Bessel-Funktion erster Gattung hergeleitet. Die zweite Lösung muss anderweitig gefunden werden. Eine solche Aufgabe gestaltet sich sehr kompliziert 3, 4]. Unser Integral-Iterationsverfahren liefert uns beide Lösungen mit einer erstaunlichen Einfachheit. Mit dieser Feststellung beenden wir diese Arbeit. 0

11 5 Zusammenfassung Nachdem viele eakte Lösungen für die partiellen Differentialgleichungen mit dem Integral-Iterationsverfahren gefunden wurden, haben wir dieses Verfahren auf die linearen gewöhnlichen Differentialgleichungen erweitert. In diesem Artikel wird ein Iterationsverfahren für die Bessel-Gleichung eingeführt. Damit haben wir die alten bekannten Bessel-Funktionen, insbesondere die Bessel-Funktion zweiter Gattung, in einer ganz einfachen Weise hergeleitet.

12 Literatur ] Kuang-lai Chao Analytische Lösungen der nichtlinearen partiellen Differentialgleichungen für die transsonische Strömung in physikalischen Räumen DFVLR - FB 86-4 Translation: Analytical solutions of the nonlinear partial differential equations for transonic flow in physical spaces ESA-TT-009, December 986 ] Kuang-lai Chao Integral-Iterationsverfahren und die eakten Lösungen der partiellen Differentialgleichungen Internet, ] Frederick S. Woods Advanced Calculus Ginn and Company, Boston 96 4] E. L. Ince Die Integration gewöhnlicher Differentialgleichungen Bibliographisches Institut, Mannheim Hochschultaschenbücher-Verlag, Band 67, 956 5] Milton Abramowitz and Irene A. Stegun (Editor) Handbook of Mathematical Functions Dover Publications, New York 964

Integral-Iterationsverfahren und die exakten Lösungen der partiellen Differentialgleichungen

Integral-Iterationsverfahren und die exakten Lösungen der partiellen Differentialgleichungen Integral-Iterationsverfahren und die exakten Lösungen der partiellen Differentialgleichungen Dr. rer. nat. Kuang-lai Chao Göttingen, den 16. Juni 2007 Abstract The integral iterative ethod and exact solutions

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Informatiker, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Dritte,

Mehr

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme Kapitel 1: Rechnen mit Zahlen 1.1 Rechnen mit reellen Zahlen 1.2 Berechnen von Summen und Produkten 1.3 Primfaktorzerlegung 1.4 Größter gemeinsamer Teiler 1.5 Kleinstes gemeinsames Vielfaches 1.6 n-te

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Oberstufenmathematik leicht gemacht

Oberstufenmathematik leicht gemacht Peter Dörsam Oberstufenmathematik leicht gemacht Band 1: Differential- und Integralrechnung 5. überarbeitete Auflage mit zahlreichen Abbildungen und Beispielaufgaben PD-Verlag Heidenau Inhaltsverzeichnis

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Springers Mathematische Formeln

Springers Mathematische Formeln г Lennart Rade Bertil Westergren Springers Mathematische Formeln Taschenbuch für Ingenieure, Naturwissenschaftler, Wirtschaftswissenschaftler Übersetzt und bearbeitet von Peter Vachenauer Inhaltsverzeichnis

Mehr

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 13. September 2003

Die Fakultät. Thomas Peters Thomas Mathe-Seiten  13. September 2003 Die Fakultät Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 3. September 2003 Dieser Artikel gibt die Definition der klassischen Fakultät und führt von dort aus zunächst zu der Anwendung in Taylor-Reihen

Mehr

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis

MATHEMATIK. Lehr- und Übungsbuch. Fachbuchverlag Leipzig im Carl Hanser Verlag. Band 2. Analysis i Lehr- und Übungsbuch MATHEMATIK Band 2 Analysis Mit 164 Bildern, 265 Beispielen und 375 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Grundlagen 11 1.1 Abbildungen

Mehr

Lernziel: verallgemeinerbare Interpretation des Begriffs 'Ableitung einer Funktion' am Punkt

Lernziel: verallgemeinerbare Interpretation des Begriffs 'Ableitung einer Funktion' am Punkt C: Calculus C1: Differenzieren (Ableiten) 1-dimensionaler Funktionen Lernziel: verallgemeinerbare Interpretation des Begriffs 'Ableitung einer Funktion' C1.1 Def. der Ableitung sei glatte Funktion. 'Ableitung

Mehr

2-stündige Ergänzungsvorlesung im Wintersemester 2016/2017 D-moduln und Distributionen. D. van Straten Mittwochs, Uhr,Raum

2-stündige Ergänzungsvorlesung im Wintersemester 2016/2017 D-moduln und Distributionen. D. van Straten Mittwochs, Uhr,Raum 2-stündige Ergänzungsvorlesung im Wintersemester 2016/2017 D-moduln und Distributionen. D. van Straten Mittwochs, 10-12 Uhr,Raum 04-426 D-moduln sind Moduln über den nicht-kommutativen Ring D = C[x 1,

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 4. Juni 203 *Aufgabe. Bestimmen Sie die allgemeinen Lösungen der Differentialgleichungen (a) y 2y + y2 = (b) y + ( 2 y)y = 0 Lösung: (a) Bei dieser Differentialgleichung

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Band 2: Differential- und Integralrechnung für Funktionen mehrerer Variablen, gewöhnliche und partielle Differentialgleichungen, Fourier-Analysis Mit

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

Polynome und ihre Nullstellen

Polynome und ihre Nullstellen Polynome und ihre Nullstellen 29. Juli 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Explizite Berechnung der Nullstellen 2.1 Polynome vom Grad 0............................. 2.2 Polynome vom Grad 1.............................

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.

Mehr

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage

Mathematik 2. 4y Springer Vieweg. Lehrbuch für ingenieurwissenschaftliche Studiengänge. Albert Fetzer Heiner Fränkel. 7. Auflage Albert Fetzer Heiner Fränkel Mathematik 2 Lehrbuch für ingenieurwissenschaftliche Studiengänge 7. Auflage Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer

Mehr

Die schwingende Membran

Die schwingende Membran Die schwingende Membran Michael Beer 1. Februar 2001 Inhaltsverzeichnis 1 Die Differentialgleichung der homogenen schwingenden Membran 1 2 Die allgemeine Lösung 2 3 Spezialfälle 4 3.1 Die rechteckige Membran.............................

Mehr

Folien zur Vorlesung Mathematik Plus: Ergänzugen Mathematik I

Folien zur Vorlesung Mathematik Plus: Ergänzugen Mathematik I Bachelor Informatik Mathematik Plus Titel Folien zur Vorlesung Mathematik Plus: Ergänzugen Mathematik I Hochschule Stralsund Fakultät Elektrotechnik und Informatik Prof. Dr. W. Kampowsky Bachelor Informatik

Mehr

Mathematische Probleme lösen mit Maple

Mathematische Probleme lösen mit Maple Mathematische Probleme lösen mit Maple Ein Kurzeinstieg Bearbeitet von Thomas Westermann überarbeitet 2008. Buch. XII, 169 S. ISBN 978 3 540 77720 5 Format (B x L): 15,5 x 23,5 cm Weitere Fachgebiete >

Mehr

Exkurs: Method of multiple scales (Mehrskalen Methode)

Exkurs: Method of multiple scales (Mehrskalen Methode) Exkurs: Method of multiple scales (Mehrskalen Methode) dr. karin mora* Im folgenden betrachten wir nichtlineare dynamische Systeme (NDS) mit sogenannten kleinen nichtlinearen Termen. Viele mathematische

Mehr

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2 Kapitel :»Rechnen«Übung.: Multiplizieren Sie die Terme so weit wie möglich aus. a /5 a 5 Versuchen Sie, vorteilhaft zu rechnen. Übung.2: Berechnen Sie 9% von 2573. c 3 c 4 b 5 c 4 ( b 2 c 2 ) (2x + 3)

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Zweidimensionale Exploration mittels Gravimetrie

Zweidimensionale Exploration mittels Gravimetrie Zweidimensionale Exploration mittels Gravimetrie Dipl. Math. Sandra Möhringer TU Kaiserslautern Fraunhofer ITWM Geothermiekongress 2012 Karlsruhe 13. November 2012 Sicht der Mathematik: Kaiserslauterer

Mehr

Höhere Mathematik für Naturwissenschaftler und Ingenieure

Höhere Mathematik für Naturwissenschaftler und Ingenieure Günter Bärwolff Höhere Mathematik für Naturwissenschaftler und Ingenieure unter Mitarbeit von Gottfried Seifert ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spekt rum K-/1. AKADEMISCHER VERLAG AKADEMISC Inhaltsverzeichnis

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of

Mehr

Die Euler-Mascheroni-Konstante

Die Euler-Mascheroni-Konstante Die Euler-Mascheroni-Konstante Niloufar Rahi Ausarbeitung zum Vortrag in Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Wenn von der

Mehr

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

20. Partielle Differentialgleichungen Überblick

20. Partielle Differentialgleichungen Überblick - 1-0. Partielle Differentialgleichungen Überblick Partielle Differentialgleichungen (PDE = partial differential equation) sind Differentialgleichungen mit mehreren unabhängigen Variablen (und einer abhängigen

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

1.9 Ungleichungen (Thema aus dem Gebiet Algebra)

1.9 Ungleichungen (Thema aus dem Gebiet Algebra) 1.9 Ungleichungen (Thema aus dem Gebiet Algebra) Inhaltsverzeichnis 1 Ungleichungen 2 2 Intervalle 2 3 Äquivalenzumformungen bei Ungleichungen 3 4 Doppelungleichungen 5 4.1 Verfahren, um Doppelungleichungen

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

Differenzialgleichungen erster Ordnung

Differenzialgleichungen erster Ordnung Differenzialgleichungen erster Ordnung Fakultät Grundlagen Mai 2011 Fakultät Grundlagen Differenzialgleichungen erster Ordnung Übersicht Grundsätzliches 1 Grundsätzliches Geometrische Deutung Numerik 2

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsæter Peter Hammond mit Arne Strøm Übersetzt und fachlektoriert durch Dr. Fred Böker

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

10.6. Implizite ebene Kurven und Tangenten

10.6. Implizite ebene Kurven und Tangenten 0.6. Implizite ebene Kurven und Tangenten Im Gegensatz zu expliziten Darstellungen sind weder implizite noch Parameterdarstellungen einer Kurve eindeutig. Der Übergang von impliziten zu expliziten Darstellungen

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

8. 2A. Integration von Potenzreihen

8. 2A. Integration von Potenzreihen 8. 2A. Integration von Potenzreihen Wie wir schon mehrfach sahen, sind Potenzreihen ein unentbehrliches Werkzeug für viele Berechnungen in der Ingenieurmathematik. Glücklicherweise darf man Potenzreihen

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

mindestens zweiten Grades 1. Teil:

mindestens zweiten Grades 1. Teil: mindestens zweiten Grades (Eine kompakte Darstellung zur Wiederholung). Teil: Quadratische Gleichungen Biquadratische und ähnliche Gleichungen mit und ohne Substitution Eine ausführlichere Behandlung quadratischer

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Folie 1. Taylor-Reihen

Folie 1. Taylor-Reihen Folie 4 e!!! 4! Taylor-Reihen Im Zusammenhang mit der Berechnung von Tangenten hatten wir den Begriff der Linearisierung eingeführt. Dies bedeutet, dass eine Funktion in einem Teilbereich durch eine Tangente

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Polynome. Jörn Loviscach. Versionsstand: 22. November 2009, 15:10

Polynome. Jörn Loviscach. Versionsstand: 22. November 2009, 15:10 Polnome Jörn Loviscach Versionsstand: 22. November 2009, 5:0 Begriffe, Verlauf Ein Ausdruck der Art heißt Polnom [polnomial] in. Die Variable darf nur in ganzen Potenzen ab 0 aufwärts erscheinen. Vor den

Mehr

Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide

Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide Daniel Janocha Aus der Reihe: e-fellows.net stipendiaten-wissen e-fellows.net (Hrsg.) Band 1064 Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide Weak solution of the Stokes equations

Mehr

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet. unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug Das Übungsbuch ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney

Mehr

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr

Teil 2. Ganzrationale und Gebrochen rationale Funktionen. Unbestimmte Integrale und Stammfunktionen auch mit Substitution

Teil 2. Ganzrationale und Gebrochen rationale Funktionen. Unbestimmte Integrale und Stammfunktionen auch mit Substitution Teil Ganzrationale und Gebrochen rationale Funktionen ANALYSIS Einführung in die Integralrechnung Unbestimmte Integrale und Stammfunktionen auch mit Substitution Kurze Theorie und dann Viel Praxis Datei

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Mathematik für Physiker 1

Mathematik für Physiker 1 Klaus Weltner Mathematik für Physiker 1 Basiswissen für das Grundstudium der Experimentalphysik 14. überarbeitete Auflage mit 231 Abbildungen und CD-ROM verfasst von Klaus Weltner, Hartmut Wiesner, Paul-Bernd

Mehr

Lineare Differenzengleichungen und Polynome. Franz Pauer

Lineare Differenzengleichungen und Polynome. Franz Pauer Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-600 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at Vortrag beim ÖMG-LehrerInnenfortbildungstag

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Frederick H.Young Grundlagen der Mathematik Eine Einführung in die mathematischen Methoden Verlag Chemie John Wiley& Sons Inhalt 1. Die historische Entwicklung 1 1.1. Die Anfänge 1 1.2. Die antike Geometrie

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Algebraische Gleichungen. Martin Brehm February 2, 2007

Algebraische Gleichungen. Martin Brehm February 2, 2007 Algebraische Gleichungen Martin Brehm February, 007 1. Der Begriff Algebra Algebraische Gleichungen Durch das herauskristalisieren von mehreren Teilgebieten der Algebra ist es schwer geworden eine einheitliche

Mehr

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135 Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen 1 x1. Differentialrechnung für Funktionen von mehreren Variablen....... 1 1.1 Einführung und Beispiele.............................. 1 1.2

Mehr

Meyers Handbuch über die Mathematik

Meyers Handbuch über die Mathematik Meyers Handbuch über die Mathematik Herausgegeben von Herbert Meschkowski in Zusammenarbeit mit Detlef Laugwitz 2. erweiterte Auflage BIBLIOGRAPHISCHES INSTITUT MANNHEIM/WIEN/ZÜRICH LEXIKONVEK.1AG INHALT

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Fourier-Transformation

Fourier-Transformation Fourier-ransformation Im Folgenden werden die schon bekannten Eigenschaften der Fourier-Reihen zur Darstellung periodischer Funktionenn zusammengefasst und dann auf beliebige Funktionen verallgemeinert.

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Teil 1. Differenzial Unbestimmtes Integral Stammfunktionen (unbestimmte und bestimmte)

Teil 1. Differenzial Unbestimmtes Integral Stammfunktionen (unbestimmte und bestimmte) ANALYSIS Einführung in die Integralrechnung Teil Differenzial Unbestimmtes Integral Stammfunktionen (unbestimmte und bestimmte) Einfache Theorie wie im Unterricht Mit vielen Beispielen und Übungsaufgaben

Mehr

Partielle Differentialgleichungen Kapitel 11

Partielle Differentialgleichungen Kapitel 11 Partielle Differentialgleichungen Kapitel Die Laplace- und Poisson- Gleichungen Die Struktur bei elliptischen Gleichungen zweiter Ordnung ist nicht wesentlich verschieden bei Operatoren mit konstanten

Mehr

MATHEMATISCHE METHODEN DER PHYSIK 1

MATHEMATISCHE METHODEN DER PHYSIK 1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen

Mehr

Polynomgleichungen. Gesetzmäßigkeiten

Polynomgleichungen. Gesetzmäßigkeiten Polynomgleichungen Gesetzmäßigkeiten Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable x nur in der 1. Potenz, so spricht

Mehr

Seminarvortrag. Euler-Approximation. Marian Verkely TU Dortmund

Seminarvortrag. Euler-Approximation. Marian Verkely TU Dortmund Seminarvortrag Euler-Approximation Marian Verkely TU Dortmund 03.12.14 1 / 33 Inhaltsverzeichnis 1 Motivation 2 Simulierte Prozesse 3 Euler-Approximation 4 Vasicek-Prozess: Vergleich analytische Lösung

Mehr

- 1 - zum Extremum macht, wenn y(x) eine bestimmte, genau charakterisierte Funktionenklasse ( n

- 1 - zum Extremum macht, wenn y(x) eine bestimmte, genau charakterisierte Funktionenklasse ( n - 1 - Variationsrechnung Die Variationsrechnung spielt in der Physik eine entscheidende Rolle. So kann man die Grundgleichungen der Newtonschen Mechanik aus einem Lagrangeschen Variationsprinzip herleiten.

Mehr

Klausurvorbereitung Höhere Mathematik Lösungen

Klausurvorbereitung Höhere Mathematik Lösungen Klausurvorbereitung Höhere Mathematik Lösungen Yannick Schrör Christian Mielers. Februar 06 Ungleichungen Bestimme die Lösungen für folgende Ungleichungen. x+ > x + x + Fall : x, x + > x + 6 Lösung im

Mehr

Der Taylorsche Satz Herleitung und Anwendungen

Der Taylorsche Satz Herleitung und Anwendungen Der Taylorsche Satz Herleitung und Anwendungen Joachim Schneider Juni 2004 Zusammenfassung Es wird ein enfacher Beweis des Taylorsche Satz über die lokale Approximierbarkeit hinreichend glatter Funktionen

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014.

Enrico G. De Giorgi. Mathematik. 2. Auflage Lehrstuhl für Mathematik Universität St.Gallen. Diese Version: August 2014. Enrico G. De Giorgi Mathematik 2. Auflage 2014 Lehrstuhl für Mathematik Universität St.Gallen Diese Version: August 2014. c 2014, Enrico De Giorgi, Universität St.Gallen, alle Rechte vorbehalten. Die Vervielfältigung

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

5.4 Uneigentliche Integrale

5.4 Uneigentliche Integrale 89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

Einführung in die Laplace Transformation

Einführung in die Laplace Transformation Einführung in die aplace Transformation Peter Riegler 17. Oktober 2 Zusammenfassung Dieser Text gibt Ihnen eine kurze Einführung in das Werkzeug der aplace Transformation. Es zeigt Ihnen, wo und warum

Mehr

Mathematik. Carl-von-Ossietzky-Gymnasium Bonn schulinternes Curriculum. Jahrgang 5. Jahrgang 6. Materialhinweise: Unterrichtsvorhaben:

Mathematik. Carl-von-Ossietzky-Gymnasium Bonn schulinternes Curriculum. Jahrgang 5. Jahrgang 6. Materialhinweise: Unterrichtsvorhaben: Jahrgang 6 Jahrgang 5 UV 1: Natürliche Zahlen und Größen UV 2: Geometrische Figuren UV 3: Rechnen mit natürlichen Zahlen UV 4: Flächen UV 5: Brüche und Anteile UV 6: Körper Fundamente der 5 (Cornelsen

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Einführung in die Mathematik. für Biologen und Chemiker

Einführung in die Mathematik. für Biologen und Chemiker Einführung in die Mathematik für Biologen und Chemiker Einführung in die Mathematik für Biologen und Chemiker Von Prof. Dr. Ijeonor Michaelis Privatdozent an der Universität Berlin 1\Iit!JG Textfiguren

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik

Christian B. Lang / Norbert Pucker. Mathematische Methoden in der Physik Christian B. Lang / Norbert Pucker Mathematische Methoden in der Physik Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung xv 1 Unendliche Reihen 1 1.1 Folgen und Reihen 1 1.1.1

Mehr

Mathematik für Physiker und Ingenieure 1

Mathematik für Physiker und Ingenieure 1 Klaus Weltner Mathematik für Physiker und Ingenieure 1 Basiswissen für das Grundstudium - lnit n1ehr als 1400 Aufgaben und Lösungen anline unter Mitwirkung von Hartmut Wiesner, PauI-Bemd Heinrich, Peter

Mehr