Physik IV. Umweltphysik. 5.1 Einführung zu Grundwasser und Boden. 5. Grundwasser und Boden. Inhalte der Vorlesung. W. Aeschbach-Hertig.

Größe: px
Ab Seite anzeigen:

Download "Physik IV. Umweltphysik. 5.1 Einführung zu Grundwasser und Boden. 5. Grundwasser und Boden. Inhalte der Vorlesung. W. Aeschbach-Hertig."

Transkript

1 Physik IV Umweltphysik W. Aeschbach-Hertig Inhalte der Vorlesung 1. Einführung in die Umweltphysik: Das System Erde und seine Kompartimente, Statik der Geofluide. Strahlung und Klima: Strahlungsbilan, Treibhauseffekt und Strahlungstransport 3. Geophysikalische Fluiddynamik: Kontinuumsmechanik, Navier-Stokes-Gleichung und Turbulen, Transport 4. Strömungen in Atmosphäre und Oean: Geostrophische Näherung, globale Zirkulation, Grenschichten 5. Grundwasser und Boden: Laminare Strömungen und Transport in porösen Medien 6. Eis, Isotope und Paläoklima: Eisschilde, Isotopenmethoden,Klimaarchive und -geschichte Institut für Umweltphysik Physik IV Umweltphysik, 5. Grundwasser Universität Heidelberg 5. Grundwasser und Boden Laminare Strömungen in porösen Medien 1) Einführung u Grundwasser und Boden Beschreibung poröser Medien (Porosität, REV) ) Grundlagen der Hydrogeologie Typen von Aquiferen Hydraulisches Potential 3) Strömung im Grundwasser Hagen-Poiseuille und Darcy-Geset Transport: Dispersion 4) Strömung im Boden Richards-Gleichung Einführung u Grundwasser und Boden Motivation Grundwasser: mit Abstand größtes Reservoir an Süsswasser Grundlage der Trinkwasserversorgung Boden: Grundlage der Nahrungsmittelproduktion 4 Poröse Medien Porenraum eines natürlichen Bodens Repräsentatives Elementarvolumen (REV) und Porosität REV Porosität: Wassergehalt: θ= V Poren V V θ w = V Wasser 5 6

2 Zonen im Untergrund Ungesättigte Zone (vadose one): Bodenwasser und Bodenluft Gesättigte Zone (saturated one): Grundwasser Grene: Grundwasserspiegel (water table) und Kapillarsaum 7 Energiedichte, Potential Eine entrale Rolle bei der Beschreibung von Grund- und Porenwasser spielt die Energiedichte, auch Potential genannt. Referenustand ist freies, reines Wasser auf Höhe 0 (= 0). Das Potential wird auf drei äquivalente Arten ausgedrückt: Potential ψ: Energie Masse Energie Volumen 1 1 Jkg oder Jmol 3 Druck p: Jm = [ Pa] Energie Gewicht 1 Druckhöhe h: JN = [ m] 8 Zum Potential von Wasser im porösen Medium 5. Grundlagen der Hydrogeologie = 0 ψ g Referen p = 0 ψ p betrachtetes Vol.element poröses Medium p = p(,θ w, ), p Gesättigte Zone: Porenraum vollständig wassergefüllt Zwei-Phasen System: Wasser und Matrix Aquifer = Grundwasserleiter: wasserführende (durchlässige) Schicht Aquitard = Grundwasserstauer: wasserundurchlässige Schicht Zentrale Größen: Durchlässigkeit, bw. Leitfähigkeit k Pieometerhöhe (hydraulic head) h: Potential ψ g : Gravitationspotential ψ p : Druckpotential Grundwasser: p, ψ p > 0; Boden: p, ψ p < Definition der Pieometerhöhe h Hydraulischer Head und Aquifertypen Totale Energie auf Höhe : 1 E = pv+ mg + mv Energie pro Gewicht: E p h = mg = ρg + Messung mit "Pieometer": Wasserspiegel in offenem Standrohr. "Pieometerhöhe" engl.: hydraulic head soil aquifer soil aquitard aquifer pieometer permeable unsaturated permeable saturated pieometer impermeable = 0 = 0 p ρg p ρg h h Ungespannter (unconfined) Aquifer h = Höhe des Grundwasserspiegels Gespannter (confined) Aquifer h > Höhe GW-Spiegel (Potentiometrische Oberfläche) aus Fitts, 00. Groundwater Science, Academic Press 11 1

3 Schichtung & Aquifere in sedimentären Becken Artesischer Brunnen Potentiometrische Oberfläche in des gespannten Aquifers GW-Spiegel ungesättigte Zone ungespannter Sand-Aquifer Tonschicht, Aquitard gespannter Sand-Aquifer Tonschicht, Aquitard 5.3 Strömung im Grundwasser Dimensionsanalyse der Navier-Stokes-Gleichung für langsame, laminare Strömung in kleinräumigen Poren (Terme in ms - ) mit L h = L v = 10-4 m, u = w = 10-5 m/s, f = 10-4 s -1, ν = 10-6 m s -1 horiontal: u 1 p = ( ( v ) v) Ω( w cosϕ v sinϕ ) +ν u x ρ x vertikal: w 1 p = ( ( v ) v) g + Ωucosϕ+ν w ρ aus Fitts, Laminare Strömung durch horiontale Röhre Für stationäre Strömungen im Grundwasser gilt also vertikal: hydrostatisches Gleichgewicht horiontal: Druckgradientenkraft = Reibungskraft Modellproess: Strömung durch Kapillare r p/ x u(r) R x Symmetrie: u = u(r) 1 p = ν u ρ x Kräftegleichgewicht: p u u u =ρν + = η x y r Integration mit u(r) = 0: 1 p ur () = (R r) 4η x 15 Geset von Hagen-Poiseuille 1 p Parabolisches Geschwindigkeitsprofil: ur () = (R r) 4η x Integration über Querschnitt liefert Volumenfluss Q [m 3 /s]: 4 π R p Q = Hagen-Poisseuille'sches Geset 8η x Mittlere Volumenflussdichte q = Q/A [m/s]: Q R p mit p = ρgh Rg h q = = q = π R 8η x und η = ρν: 8 ν x Kapillarbündel als einfachstes Modell für poröses Medium: N Kapillaren mit Radius R NπR Porosität θ= A Q θ q = = A 8 ν x Rg h 16 Das Darcy-Geset Zum Darcy-Geset h q= K x Für Kapillarbündelmodell mit festem R gilt: g Allgemein lässt sich schreiben: K = k ν θrg K = 8ν Empirisch (Darcy 1856): Q h h q= = K = K A l l Darcy in 3-D: q= K h Darcy-Geschwindigkeit Head-Gradient, hydr. Gefälle hydraulische Leitfähigkeit (Tensor) 17 mit K = hydraulische Leifähigkeit [m/s] k = Permeabilität [m ]: Eigenschaft des porösen Mediums Darcy- oder Filtergeschwindigkeit q = Q/A ist nicht gleich Ausbreitungsgeschwindigkeit des Wassers w. Punkten Abstandsgeschwindigkeit: q Q Q v = θ = θa = A Poren 18

4 Hydraulische Eigenschaften verschiedener Medien Sediment /Gestein Korngröße [mm] Porosität θ [%] Hydr. Leitfähigkeit K [m s -1 ] Kies (gravel) > Sand Schluff (silt) Ton (clay) < Kalkstein Sandstein Kristallingestein Schieferton Strömungsgleichung für Grundwasser Kontinuität und Speicherung Massenbilan über Kontrollvolumen: Summe der Zu- und Abflüsse ist gleich der Änderung der Speicherung plus externe Zugabe-/Entnahmerate (Pumprate) J w : h div q = S + J 1 Vw S = V h w Der speifische Speicherkoeffiient S beschreibt die Änderung des Wasservolumens V w pro Einheitsvolumen V bei Änderung des hydraulischen Potentials h: 19 0 Strömungsgleichung für Grundwasser Kombination von Kontinuitätsgleichung und Darcy h q= S + Jw und q= K h h = ( K h) S Jw Speialfälle Stationäre Strömung ( h/ = 0) ohne Quellen und Speicherung: K h = 0 ( ) Grundwasserströmung um einen Brunnen Aufsicht Äquipotentiallinien Stromlinien Zusätlich K homogen und isotrop (eher unrealistisch): h= 0 1 aus Fitts, 00 Grundwasserströmung um einen Fluss Transportgleichung für Grundwasser Querschnitt Äquipotentiallinien Stromlinien Transportproesse für gelöste Stoffe im Grundwasser Stoffflüsse (Stoffmenge pro Fläche und Zeit): Advektion (Bewegung mit Grundwasserströmung) F = qc =θvc ad Molekulare Diffusion (stochastische Bewegung) F = θd c dif m Dispersion (Aufspreiung durch verschiedene Fliesswege) F = θd c dis Dispersionstensor Dispersion ist anisotrop mit D L (longitudinal) ~ 10 D T (transversal) 3 4

5 Dispersion Transportgleichung für Grundwasser Massenbilan über Kontrollvolumen: Änderung der Massendichte in V durch Zu- und Abfluss plus Quelle/Senke σ: ( c) θ = divf +σ = θ vc + θ D + c +σ ( ) ( ( 1 D) ) für θ = konst., ohne Quellen und mit D m << D L, D T : Advektions-Dispersions-Gleichung c = + ( vc) ( D c) Advektion Dispersion Völlig analog um Transport in turbulentem Strömungsfeld, nur mit Dispersion statt turbulenter Diffusion! m Strömung im Boden Bodenwasser: ungesättigte Zone 3-Phasen System: Wasser Luft Matrix d.h. θ = θ w + θ a usätliche, wichtige Variable: θ w (oft nur als θ beeichnet) Oberflächeneffekte an Wasser-Luft und Wasser-Matrix Grenflächen spielen eine Rolle Beschreibung mit Wasserpotential ψ [J kg -1, J mol -1 oder Pa] Oberflächenspannung σ Kräftegleichgewicht im Innern des Fluids Resutierende Kraft nach Innen an der Oberfläche Potentielle Energie E O b Oberflächenspannung E σ= O A Oberfläche wird minimiert 7 8 Oberflächenspannung und Druck Boden: Grenflächen Wasser Luft und Wasser Matrix An gekrümmten Oberflächen herrscht eine Druckdifferen p σ p= pw pa = r r: Krümmungsradius r > 0 r < 0 r, p > 0 wenn r in der Wasserphase liegt (Tropfen, hydrophobe p Luft Oberfläche) p Wasser r, p < 0 wenn r in der p Luft p Wasser Gasphase liegt p > 0 p < 0 (Blase, hydrophile Oberfläche) 9 Kapillarität Steighöhe h in Kapillare mit vollständiger Benetung Energiebetrachtung: Im Gleichgewicht de pot /dh = 0 p a R h p w = p a + ρg p w = p a - ρgh 0 = de = de + de = pot Oberfl. grav. =σ da + dm g h = R dh R dh g h = σ π +ρ π σ h = ρ gr Druckinterpretation: σ p= pw pa = = ρgh R Saugspannung 30

6 1 Bodenwasserpotentiale, Matrixpotential Totales Potential ψ t des Bodenwassers relativ u Referen: S1 HO Ψ0 Ψg = g ψ t = ψ g + ψ o + ψp Lösung S HO; P0, T0 STANDARD 0 Ψp betrachteter Punkt im Boden ψ g : Gravitationspotential (Hubarbeit auf Höhe ) ψ o : osmotisches Potential (Lösung von Salen) ψ p : Tensiometer-Druckpot. (Einfügen in Bodenmatrix) ψ p enthält Kapillarkräfte, Luftdruck, Kompression,... Inkompressible Matrix, konst. Luftdruck p 0 : ψ p = ψ m Matrixpotential (Oberflächenspannung) Beachte: ψ m < 0 (gebunden, Entwässern braucht Energie) 31 Wasserspannungskurve, Hysterese Änderung des Wassergehaltes θ w Änderung der Menisken (Krümmungsradien) Änderung des Matrixpotentials ψ m θ θ(ψ) für Benetung anders als für Entwässerung Erklärung: inhomogene Porengrösse -ψ Es gibt eine Beiehung θ(ψ) Wasserspannungskurve Zeigt Hysterese! 3 Bodenwasserströmung, Richards-Gleichung 1D-vertikale Strömung, Buckingham-Darcy-Geset q K( ) H Neu: K hängt nichtlinear von θ ab! = θ H: ales Potential als Druckhöhe Kontinuitätsgleichung (Wasserbilan) q θ = Speicherung = Änderung von θ Kombination Darcy + Kontinuität: Richards-Gleichung θ K ( ) H = θ Zusammenfassung Grundwasser ist wichtigste Wasserressource Gesättigte Zone: Grundwasser, Phasen Ungesättigte Zone: Bodenwasser + -luft, 3 Phasen Potential/Druckhöhe als entrale Größe (Buckingham-)Darcy: Potentialgradient treibt Strömung Hydraulische Leitfähigkeit im Boden abhängig vom Wassergehalt Transport: Dispersion statt turbulenter Diffusion 33 34

Physikalische Grundlagen der Klimaarchive Eis und Grundwasser

Physikalische Grundlagen der Klimaarchive Eis und Grundwasser Inhalt der heutigen Vorlesung Physikalische Grundlagen der Klimaarchive Eis und Grundwasser 6. Grundwasser: Dynamik, Transport von Spurenstoffen, Eignung als Archiv 1) Dynamik von Grundwasser Grundlagen

Mehr

WS 2013/2014. Vorlesung Strömungsmodellierung. Prof. Dr. Sabine Attinger

WS 2013/2014. Vorlesung Strömungsmodellierung. Prof. Dr. Sabine Attinger WS 2013/2014 Vorlesung Strömungsmodellierung Prof. Dr. Sabine Attinger 29.10.2013 Grundwasser 2 Was müssen wir wissen? um Grundwasser zu beschreiben: Grundwasserneubildung oder Wo kommt das Grundwasser

Mehr

6. Strömung und Transport im Grundwasser

6. Strömung und Transport im Grundwasser Werner Aeschbach-Hertig 6.1 2005/06 6. Strömung und Transport im Grundwasser 6.1 Einführung in die Hydrogeologie Grundwasser ist in vielen Teilen der Erde und besonders in ariden Zonen die wichtigste Quelle

Mehr

Aspekte der Angewandten Geologie

Aspekte der Angewandten Geologie Aspekte der Angewandten Geologie Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel 2-1 Wo ist das Grundwasser? 2-2 Hier 2-3 d 2-4 Das unterirdische Wasser befindet

Mehr

Modellieren in der Angewandten Geologie

Modellieren in der Angewandten Geologie Modellieren in der Angewandten Geologie Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel 3-1 Inhalt heute Inhalte Vorlesung 1) Allgemeine Bilanzgleichungen 3-2

Mehr

7 Strömung und Transport im Grundwasser 7.1 Einführung in die Hydrogeologie

7 Strömung und Transport im Grundwasser 7.1 Einführung in die Hydrogeologie 7 Strömung und Transport im Grundwasser 7.1 Einführung in die Hydrogeologie Grundwasser ist in vielen Teilen der Erde und besonders in ariden Zonen die wichtigste Quelle für Trinkwasser. Selbst in Ländern

Mehr

Rolf Mull Hartmut Holländer. Grundwasserhydraulik. und -hydrologie. Eine Einführung. Mit 157 Abbildungen und 20 Tabellen. Springer

Rolf Mull Hartmut Holländer. Grundwasserhydraulik. und -hydrologie. Eine Einführung. Mit 157 Abbildungen und 20 Tabellen. Springer Rolf Mull Hartmut Holländer Grundwasserhydraulik und -hydrologie Eine Einführung Mit 157 Abbildungen und 20 Tabellen Springer VI 1 Bedeutung des Grundwassers 1 2 Strukturen der Grundwassersysteme 4 2.1

Mehr

Prof Pr. Dr . Dr Christian W lk o er lk sdorfer Abriss der Hydrogeologie Abriss der Hydr Gesättigte und ungesättigte Zone V r Ve a r nstaltung

Prof Pr. Dr . Dr Christian W lk o er lk sdorfer Abriss der Hydrogeologie Abriss der Hydr Gesättigte und ungesättigte Zone V r Ve a r nstaltung Prof. Dr. Christian Wolkersdorfer Abriss der Hydrogeologie Gesättigte und ungesättigte Zone Veranstaltung im Wintersemester 2008/2009 Präsentation basiert auf Einführung Hydrogeologie Prof. Dr. habil Broder

Mehr

Prof Pr. Dr . Dr Christian W lk o er lk sdorfer Abriss der Hydrogeologie Abriss der Hydr W rum fließt Grundwasser? V r Ve a r nstaltung

Prof Pr. Dr . Dr Christian W lk o er lk sdorfer Abriss der Hydrogeologie Abriss der Hydr W rum fließt Grundwasser? V r Ve a r nstaltung Prof. Dr. Christian Wolkersdorfer Abriss der Hydrogeologie Warum fließt Grundwasser? Veranstaltung im Wintersemester 2008/2009 Präsentation basiert auf Einführung Hydrogeologie Prof. Dr. habil Broder J.

Mehr

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

8. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 8. Vorlesung EP I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik (Fortsetzung: Auftrieb) c) Oberflächenspannung und Kapillarität Versuche:

Mehr

Musterbeispiele Grundwasser

Musterbeispiele Grundwasser Aufgabe 1: Der Grundwasserspiegel liegt 1 m unter dem Bezugsniveau (OKT) und der gesättigte feinkörnige Boden hat ein Raumgewicht von γ g = 21 kn/m³. OKT h1 = 1 m 1) Wie gross ist die Druckhöhe, die Piezometerhöhe

Mehr

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016 Die Brücke ins Studium Vorkurs Physik Dr. Oliver Sternal Dr. Nils-Ole Walliser 19.-23. September 2016 2. Fluidmechanik 2. Fluidmechanik 2.1 Fluidstatik 2. Fluidmechanik 2.1 Fluidstatik 2.1.1 Druck in ruhenden

Mehr

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung

Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung 016.11.18. Prüfungsfrage Strömung der Flüssigkeiten Typen der Flüssigkeitsströmung. Die Reynolds-Zahl. Die Viskosität. Die Gesetzmäßigkeiten der Flüssigkeitsströmung: die Gleichung der Kontinuität, das

Mehr

Vorlesung #1 Grundwassermodellierung -Modellbildung-

Vorlesung #1 Grundwassermodellierung -Modellbildung- Vorlesung #1 Grundwassermodellierung -Modellbildung- Prof. Sabine Attinger Übersicht Motivation: Wasserkreislauf, Wasservorrat Warum Modelle?? Was sind Modelle? Modellierungsschritte Aufbau der Vorlesung:

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

6. Grundwasser und Aquifere 6.1 Grundwasser als Bestandteil des hydrologischen Kreislaufs

6. Grundwasser und Aquifere 6.1 Grundwasser als Bestandteil des hydrologischen Kreislaufs 6. Grundwasser und Aquifere 6.1 Grundwasser als Bestandteil des hydrologischen Kreislaufs Abb. 6.1: Der hydrologische Kreislauf (oben: Bear and Verruijt, 1987; unten, Watson and Burnet, 1995) FG Geohydraulik

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

Hydraulische Eigenschaften Wasserleitfähigkeit. Permeabilität (intrinsische Durchlässigkeit) Transmissivität. Hydraulische Leitfähigkeit

Hydraulische Eigenschaften Wasserleitfähigkeit. Permeabilität (intrinsische Durchlässigkeit) Transmissivität. Hydraulische Leitfähigkeit Hydraulische Leitfähigkeit Extended multistep outflow method for the accurate determination of soil hydraulic properties close to water saturation 5 Hydraulische Eigenschaften Wasserleitfähigkeit 1. Hydraulische

Mehr

Physik IV. Umweltphysik. 6. Eis, Isotope und Paläoklima. 6.1 Kryosphäre. Inhalte der Vorlesung. W. Aeschbach-Hertig. Motivation und Zusammenhang I

Physik IV. Umweltphysik. 6. Eis, Isotope und Paläoklima. 6.1 Kryosphäre. Inhalte der Vorlesung. W. Aeschbach-Hertig. Motivation und Zusammenhang I Physik IV Umweltphysik W. eschbach-ertig Inhalte der Vorlesung 1. Einführung in die Umweltphysik: Das System Erde und seine Kompartimente, Statik der Geofluide. Strahlung und Klima: Strahlungsbilanz, Treibhauseffekt

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Vorlesungsvertretung Übung zur Hydrogeologie I

Vorlesungsvertretung Übung zur Hydrogeologie I Institut für Geologie Lehrstuhl für Hydrogeologie 3. Vorlesung Hydrogeologie I Warum fließt das Grundwasser? und welche Parameter sind bestimmend? Prof. B. Merkel, Dipl.-Geoökol. M. Schipek Quelle: LfUG

Mehr

! " # # # $%&!& && % ' ( ) *++,-*++.

!  # # # $%&!& && % ' ( ) *++,-*++. ! " # # # $%&!& && % ' ( ) *++,-*++. /0 0. Literatur 1. Einführung 1.1 Aufgaben und Ziele der Geohydrologie 1.2 Anwendungsgebiete und Fragestellungen der Geohydraulik 1.3 Grundwasser und seine Bedeutung

Mehr

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

Übungen zu Physik I für Physiker Serie 10 Musterlösungen

Übungen zu Physik I für Physiker Serie 10 Musterlösungen Übungen zu Physik I für Physiker Serie Musterlösungen Allgemeine Fragen. Was versteht man unter dem Magnuseffekt? Nennen Sie Ihnen bekannte Beispiele, wo man ihn beobachten kann. Als Magnus-Effekt wird

Mehr

Protokoll zum Unterseminar Geomorphologie vom 10.12.2001

Protokoll zum Unterseminar Geomorphologie vom 10.12.2001 Unterseminar Geomorphologie Wintersemester 2001/2002 Dr. A. Daschkeit Protokollant: Helge Haacke Protokoll zum Unterseminar Geomorphologie vom 10.12.2001 Fluvialgeomophologie Fluvial ( lat. fluvius = Fluß

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase

600 Mechanik der Kontinua. 610 Feste Körper 620 Flüssigkeiten und Gase 600 Mechanik der Kontinua 60 Feste Körer 60 Flüssigkeiten und Gase um was geht es? Beschreibung on Bewegungen (hys. Verhalten) des nicht-starren Körers (elastisch, lastisch) Kontinuum Hydro- und Aerodynamik

Mehr

Physikalische Aspekte der Respiration

Physikalische Aspekte der Respiration Physikalische Aspekte der Respiration Christoph Hitzenberger Zentrum für Biomedizinische Technik und Physik Themenübersicht Physik der Gase o Ideale Gasgleichung o Atmosphärische Luft o Partialdruck Strömungsmechanik

Mehr

PAS I. Inhalt 3. Sitzung. Physik Aquatischer Systeme I. 3. Dichteschichtung ( ) ( ) Salzgehalt und Dichte

PAS I. Inhalt 3. Sitzung. Physik Aquatischer Systeme I. 3. Dichteschichtung ( ) ( ) Salzgehalt und Dichte PAS I Physik Aquatischer Systeme I 3. Dichteschichtung Inhalt 3. Sitzung Kap. 1. Physikalische Eigenschaften des Wassers 1.6 Gelöste Stoffe, Dichte, und elektrische Leitfähigkeit Dichte als Funktion des

Mehr

Hydrogeologie Klausur vom

Hydrogeologie Klausur vom Hydrogeologie Klausur vom 10.02.2009 Aufgabe 1 Sie wollen aus einer Grundwassermessstelle eine Wasserprobe (Altlasterkundung im Unterstrom eines Schwermetall-Schadensfalles) entnehmen. a) Aus welchem Material

Mehr

Modellieren in der Angewandten Geologie

Modellieren in der Angewandten Geologie Modellieren in der Angewandten Geologie Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU, Sommersemester 2008 7-1 Mehrphasenfliessen Im allgemeinen Fall einer

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 8. April 2009 Beachtenswertes Die Veranstaltung

Mehr

Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich

Mehr

Biophysik für Pharmazeuten

Biophysik für Pharmazeuten Transportprozesse II. III. Diffusion (Volumentransport) (Stofftransport) Biophysik für Pharmazeuten 11. 4. 016. Transportprozesse Elektrischer Strom en I. Elektrischer Strom (el. Ladungstransport) IV.

Mehr

Herleitung von Randbedingungen an einer gekrümmten Grenzfläche eines porösen Mediums und einer freien Flüssigkeit mit Hilfe von Homogenisierung

Herleitung von Randbedingungen an einer gekrümmten Grenzfläche eines porösen Mediums und einer freien Flüssigkeit mit Hilfe von Homogenisierung Kolloquium zur Diplomarbeit an eines porösen Mediums und freien Flüssigkeit mit Hilfe von Sören Dobberschütz 4092009 Motivation Worum geht es im Folgenden? Gliederung 1 2 Transformationsregeln Transformierte

Mehr

Dynamik der Atmosphäre. Einige Phänomene

Dynamik der Atmosphäre. Einige Phänomene Dynamik der Atmosphäre Einige Phänomene Extratropische Zyklone L L L = 1000 km U = 10 m/sec Tropische Zyklon, Hurrikan, Taifun L L = 500 km U = 50 m/sec Cumulonimbuswolke L L = 10-50 km U = 10-20 m/sec

Mehr

Einführung in die Physik I. Mechanik deformierbarer Körper 1. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Mechanik deformierbarer Körper 1. O. von der Lühe und U. Landgraf Einführung in die Physik I Mechanik deformierbarer Körer O. von der Lühe und U. Landgraf Deformationen Deformationen, die das olumen ändern Dehnung Stauchung Deformationen, die das olumen nicht ändern

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 8: Hydrodynamik, Grenzflächen Dr. Daniel Bick 01. Dezember 2017 Daniel Bick Physik für Biologen und Zahnmediziner 01. Dezember 2017 1 / 33 Übersicht 1 Mechanik

Mehr

Lösungen Aufgabenblatt 10

Lösungen Aufgabenblatt 10 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 1 Übungen E1 Mechanik WS 217/218 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

3. Grundwasser in Baugruben 3.1 Wasserhaltung

3. Grundwasser in Baugruben 3.1 Wasserhaltung 3.1 Wasserhaltung. 3. Grundwasser in Baugruben 3.1 Wasserhaltung Im Hinblick auf die unterschiedlichsten Erscheinungsformen des Wassers sind im Zusammenhang mit Baugruben im Wasser folgende Fälle zu unterscheiden:

Mehr

Gekoppelte thermisch-hydraulische Simulation einer Spülung zur Altlastensanierung

Gekoppelte thermisch-hydraulische Simulation einer Spülung zur Altlastensanierung Gekoppelte thermisch-hydraulische Simulation einer Spülung zur Altlastensanierung Dipl.-Ing. Michael Berger, BSc Univ.Prof. Dipl.-Ing. Dr.techn. Dietmar Adam Dipl.-Ing. Dr.techn. Roman Markiewicz Institut

Mehr

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit -

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Dies Mathematicus 211 25. November 211 Gliederung 1 Motivation: Mischvorgänge in einem Rührer 2 Mathematische Modellierung

Mehr

Dispersion, nicht-lineare Effekte, Solitonen

Dispersion, nicht-lineare Effekte, Solitonen Dispersion, nicht-lineare Effekte, Solitonen Als Beispiel für Dispersion und Effekte aufgrund von Nichtlinearität verwenden wir Oberflächenwellen auf Wasser. An der Wasseroberfläche wirken Kräfte aufgrund

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Kontinuierliche Systeme und diskrete Systeme

Kontinuierliche Systeme und diskrete Systeme Kontinuierliche Systeme und diskrete Systeme home/lehre/vl-mhs-1/inhalt/folien/vorlesung/1_disk_kont_sys/deckblatt.tex Seite 1 von 24. p.1/24 Inhaltsverzeichnis Grundbegriffe ingenieurwissenschaftlicher

Mehr

IV. Strömungen eines idealen Fluids

IV. Strömungen eines idealen Fluids IV. Strömungen eines idealen Fluids Dieses Kapitel befasst sich mit einigen Lösungen des Systems von Gleichungen (III.8), (III.18) und (III.4) für die Bewegung eines idealen Fluids. Dabei wird angenommen,

Mehr

Zur Erinnerung. Stichworte aus der 12. Vorlesung: Dehnung Scherung Torsion. Hysterese. Gleit-, Roll- und Haftreibung. Druck hydrostatischer Druck

Zur Erinnerung. Stichworte aus der 12. Vorlesung: Dehnung Scherung Torsion. Hysterese. Gleit-, Roll- und Haftreibung. Druck hydrostatischer Druck Stichworte aus der 12. Vorlesung: Zur Erinnerung Aggregatzustände: Dehnung Scherung Torsion Hysterese Reibung: fest, flüssig, gasförmig Gleit-, Roll- und Haftreibung Hydrostatik ideale Flüssigkeit Druck

Mehr

Hydromechanik. WS 10/11 4 SWS Vorlesung/Übungen Prof. Dr. rer.. nat. Manfred Koch

Hydromechanik. WS 10/11 4 SWS Vorlesung/Übungen Prof. Dr. rer.. nat. Manfred Koch Hydromechanik WS 10/11 4 SWS Vorlesung/Übungen Prof. Dr. rer.. nat. Manfred Koch kochm@uni-kassel.de Daniela Petzke dpetzke@uni-kassel.de Gebäude Technik III/2 Glaskasten 4. Etage Raum 4116 25.10.2010

Mehr

Oberflächenspannung. Abstract. 1 Theoretische Grundlagen. Phasen und Grenzflächen

Oberflächenspannung. Abstract. 1 Theoretische Grundlagen. Phasen und Grenzflächen Phasen und Grenzflächen Oberflächenspannung Abstract Die Oberflächenspannung verschiedener Flüssigkeit soll mit Hilfe der Kapillarmethode gemessen werden. Es sollen die mittlere Abstand der einzelnen Moleküle

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Einführung:. Was ist Physik?. Experiment - Modell - Theorie.3 Geschichte der Physik.4 Physik und andere Wissenschaften.5 Maßsysteme.6 Messfehler und Messgenauigkeit

Mehr

3D-Simulation von Wassertransport in strukturierten Böden. 3D-Simulation of Water Transportation in Structured Soil

3D-Simulation von Wassertransport in strukturierten Böden. 3D-Simulation of Water Transportation in Structured Soil 3D-Simulation von Wassertransport in strukturierten Böden 3D-Simulation of Water Transportation in Structured Soil Martin Thoma, Eckart Priesack Institut für Bodenökologie GSF Forschungszentrum für Umwelt

Mehr

Strömung im Grundwasser II - Potentialströmungen

Strömung im Grundwasser II - Potentialströmungen Strömung im Grundwasser II - Potentialströmungen Matthias Willmann, Joaquin Jimenez-Martinez, Wolfgang Kinzelbach HS2016 / Grundwasser 1 / Potentialströmung 1 Potentialströmungen Potentialströmung: v Stationäre

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2015, Beginn 16:30 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2015, Beginn 16:30 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik Frühjahr 205 5. März 205, Beginn 6:30 Uhr Taschenrechner (nicht programmierbar) Lineal und Schreibmaterial (nur dokumentenecht,

Mehr

V.2 Ähnlichkeitsgesetz

V.2 Ähnlichkeitsgesetz V2 Ähnlichkeitsgesetz Die inkompressible Strömung eines Fluids genügt der Kontinuitätsgleichung vt, r = 0 und der Navier Stokes-Gleichung III34 Um den Einfluss der Eigenschaften des Fluids ρ und η bzw

Mehr

7 Bodenwassersensorik Messung der Wasserspannung

7 Bodenwassersensorik Messung der Wasserspannung Extended multistep outflow method for the accurate determination of soil hydraulic properties close to water saturation Further Reading: Durner, W., and D. Or (2005): Chapter 73: Soil Water Potential Measurement,

Mehr

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren in ruhendem Fluid können keine tangentialen Spannungen

Mehr

3.4. Oberflächenspannung und Kapillarität

3.4. Oberflächenspannung und Kapillarität 3.4. Oberflächenspannung und Kapillarität Aus dem Experiment: Flüssigkeitsfaden, Moleküle der Flüssigkeit zeigen Zusammenhalt. Eigenschaften kondensierter Materie: Zwischen den Molekülen herrschen starke

Mehr

Einführung in die Strömungsmechanik

Einführung in die Strömungsmechanik Einführung in die Strömungsmechanik Rolf Radespiel Fluideigenschaften Grundlegende Prinzipien und Gleichungen Profile Windkanal und Druckmessungen BRAUNSCHWEIG, 5. JUNI 2002 Was versteht man unter Strömungsmechanik?

Mehr

Geoökologische Labormethoden WS 2011/12 Einführung in die bodenphysikalischen Methoden

Geoökologische Labormethoden WS 2011/12 Einführung in die bodenphysikalischen Methoden Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Geoökologische Labormethoden WS 2011/12 Einführung in die bodenphysikalischen Methoden Dr. Sascha Iden, Institut für Geoökologie, 24.11.2011

Mehr

Ökopedologie I + II Einführung Boden als Wasserspeicher Potentialkonzept

Ökopedologie I + II Einführung Boden als Wasserspeicher Potentialkonzept Ökopedologie I + II Einführung Boden als Wasserspeicher Potentialkonzept Verteilung von Niederschlägen und Bodenwasser Grundwasser 1 2 Der Boden als Dreiphasensystem Bodenmatrix Bodenwasser Bodenluft 1.

Mehr

Hydrodynamik y II - Viskosität

Hydrodynamik y II - Viskosität Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden

Mehr

VORLESUNGEN. Numerische. Diplomarbeit. Strömungsmechanik Kolleg

VORLESUNGEN. Numerische. Diplomarbeit. Strömungsmechanik Kolleg VORLESUNGEN Strömungslehre 5 Angewandte Strömungsmechanik Math. Methoden der Strömungslehre 6 Numerische Strömungsmechanik 7 Trainings-Kurs 8 Diplomarbeit Strömungsmechanik Kolleg Mathematische Methoden

Mehr

FE-Berechnungen in der Geotechnik (SS 2012)

FE-Berechnungen in der Geotechnik (SS 2012) FE-Berechnungen in der Geotechnik (SS 2012) Sickerströmung: ABAQUS 6.8-1 Beispiel (nach Abaqus 6.8-1; ABAQUS/Documentation) C. Grandas und A. Niemunis KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Hydrodynamik: bewegte Flüssigkeiten

Hydrodynamik: bewegte Flüssigkeiten Hydrodynamik: bewegte Flüssigkeiten Wir betrachten eine stationäre Strömung, d.h. die Geschwindigkeit der Strömung an einem gegebenen Punkt bleibt konstant im Laufe der Zeit. Außerdem betrachten wir zunächst

Mehr

Loiskandl, Schalko, Scholl, Strauss-Sieberth. Universität für Bodenkultur Wien Department für Wasser-Atmosphäre- Umwelt. Bodenwasserbewegung

Loiskandl, Schalko, Scholl, Strauss-Sieberth. Universität für Bodenkultur Wien Department für Wasser-Atmosphäre- Umwelt. Bodenwasserbewegung Loiskandl, Schalko, Scholl, Strauss-Sieberth Universität für Bodenkultur Wien Department für Wasser-Atmosphäre- Umwelt Bodenwasserbewegung Einleitung Was ist ein Boden? Das nicht verfestigte Material unmittelbar

Mehr

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben ETH-Aufnahmeprüfung Herbst 2015 Physik Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben U 1 V a) Betrachten Sie den angegebenen Stromkreis: berechnen Sie die Werte, die von den Messgeräten (Ampere-

Mehr

NTB Druckdatum: SC. typische Zeitkonstante für die Wärmeleitungsgleichung Beispiel

NTB Druckdatum: SC. typische Zeitkonstante für die Wärmeleitungsgleichung Beispiel SCIENTIFIC COMPUTING Die eindimensionale Wärmeleitungsgleichung (WLG) Begriffe Temperatur Spezifische Wärmekapazität Wärmefluss Wärmeleitkoeffizient Fourier'sche Gesetz Spezifische Wärmeleistung Mass für

Mehr

Geophysikalische Bohrlochmessverfahren

Geophysikalische Bohrlochmessverfahren Geophysikalische Bohrlochmessverfahren Elektrische und elektromagnetische Bohrlochmessungen Historie Beginn der geophysikalischen Bohrlochmessung mit elektrischen Messungen (Widerstands und Eigenpotentialmessungen)

Mehr

Prüfungsfragen und Prüfungsaufgaben

Prüfungsfragen und Prüfungsaufgaben Mathematische Modelle in der Technik WS 3/4 Prüfungsfragen und Prüfungsaufgaben Fragen - 9:. Modellieren Sie ein örtlich eindimensionales, stationäres Wärmeleitproblem (Integralbilanzformulierung, differentielle

Mehr

Experimentalphysik EP, WS 2011/12

Experimentalphysik EP, WS 2011/12 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/ Probeklausur (ohne Optik)-Nummer:. Februar 0 Hinweise zur Bearbeitung Alle benutzten

Mehr

Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank

Lehrstuhl für Fluiddynamik und Strömungstechnik Prof. Dr.-Ing. W. Frank Lehrstuhl für Fluiddynmik und Strömungstechnik Prof. Dr.-Ing. W. Frnk 3. Hydro- und Aerodynmik 3. Stromfdentheorie Stromfdentheorie = näherungsweise eindimensionle Untersuchung von zwei- oder dreidimensionlen

Mehr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr

Klausur Strömungsmechanik 1 Frühjahr März 2013, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Klausur Strömungsmechanik 1 Frühjahr 013 06. März 013, Beginn 15:00 Uhr Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Wellen, Dispersion, Brechnung, stehende Wellen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 7. Feb. 016 Bernoulli-Gleichung Die Reynoldszahl

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

Hydrologie und Flussgebietsmanagement

Hydrologie und Flussgebietsmanagement Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Gliederung der Vorlesung Statistische Grundlagen Extremwertstatistik

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about

Mehr

Transport im Grundwasser

Transport im Grundwasser Transport im Grundwasser Matthias Willmann, Joaquin Jimenez-Martinez, Wolfgang Kinzelbach HS 2016 Grundwasser I / Transport im Grundwasser 1 Motivation Mit Grundwasser werden auch gelöste Stoffe transportiert

Mehr

Hydrodynamische Wechselwirkung und Stokes Reibung

Hydrodynamische Wechselwirkung und Stokes Reibung Hydrodynamische Wechselwirkung und Stokes Reibung 9. Februar 2008 Problemstellung Kolloidsuspension aus Teilchen und Lösungsmittel Teilchen bewegen sich aufgrund von externen Kräften Schwerkraft Äußere

Mehr

15 Eindimensionale Strömungen

15 Eindimensionale Strömungen 97 Durch Druckunterschiede entstehen Strömungen, die sich auf unterschiedliche Weise beschreiben lassen. Bei der Lagrange schen oder materiellen Beschreibung betrachtet man das einelne Fluidteilchen, das

Mehr

Heinz Herwig. Strömungsmechanik. Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER

Heinz Herwig. Strömungsmechanik. Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER Heinz Herwig Strömungsmechanik Einführung in die Physik von technischen Strömungen Mit 83 Abbildungen und 13 Tabellen STUDIUM VIEWEG+ TEUBNER vii 0 Das methodische Konzept dieses Buches 1 A Einführung

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Foto: Fritsch. Übung 3: Bestimmung der gesättigten hydraulischen Leitfähigkeit (k f -Wert) - Ermittlung aus der Kornverteilungskurve -

Foto: Fritsch. Übung 3: Bestimmung der gesättigten hydraulischen Leitfähigkeit (k f -Wert) - Ermittlung aus der Kornverteilungskurve - Übung 3 Hydrogeologie I: Bestimmung der gesättigten hydraulischen Leitfähigkeit Dipl.-Geoökol. M. Schipek TU Bergakademie Freiberg, Institut für Geologie Lehrstuhl für Hydrogeologie Foto: Fritsch Kenngrößen

Mehr

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die

Mehr

Hydroinformatik II: Gerinnehydraulik

Hydroinformatik II: Gerinnehydraulik Hydroinformatik II: Gerinnehydraulik 1 Helmholtz Centre for Environmental Research UFZ, Leipzig Technische Universität Dresden TUD, Dresden Dresden, 17. Juni 016 1/9 Prof. Dr.-Ing. habil. Olaf Kolditz

Mehr

Luftüberschuss im Grundwasser als potentielles Paläoklimaproxy. Werner Aeschbach-Hertig Institut für Umweltphysik Universität Heidelberg

Luftüberschuss im Grundwasser als potentielles Paläoklimaproxy. Werner Aeschbach-Hertig Institut für Umweltphysik Universität Heidelberg Luftüberschuss im Grundwasser als potentielles Paläoklimaproxy Werner Aeschbach-Hertig Institut für Umweltphysik Universität Heidelberg Inhalt Klimaarchiv Grundwasser und Edelgase Luftüberschuss im Grundwasser

Mehr

Studiengang Bauingenieurwesen (Master) Fachhochschule Augsburg Skriptum Abschnitt Grundwasser

Studiengang Bauingenieurwesen (Master) Fachhochschule Augsburg Skriptum Abschnitt Grundwasser Studiengang Bauingenieurwesen (Master) Fachhochschule Augsburg Skriptum Abschnitt Grundwasser GW - J. Eberl 2010 1 Inhaltsübersicht Grundwasser 1. Wasser im Boden Definitionen Grundwasser 2. Fachbegriffe

Mehr

Vakuum und Gastheorie

Vakuum und Gastheorie Vakuum und Gastheorie Jan Krieger 9. März 2005 1 INHALTSVERZEICHNIS 0.1 Formelsammlung.................................... 2 0.1.1 mittlere freie Weglänge in idealen Gasen................... 3 0.1.2 Strömungsleitwerte

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439,, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de Reynoldszahl

Mehr

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz)

Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Versuch Nr. 58 Dynamische Viskosität von Gasen (Hagen-Poiseuille' sches Gesetz) Stichworte: Kinetische Gastheorie, ideales Gas, charakteristische Größen zur Beschreibung von Gasen (s.u.), Hagen-Poiseuille'sches

Mehr

2. Navier- Stokes- Gleichung

2. Navier- Stokes- Gleichung 2. Navier- Stokes- Gleichung Viskosität KonCnuumsbeschreibung eines Fluids 2. Newtonsches Gesetz für Fluide Navier- Stokes- Gleichung Beispiel: Fluss durch eine zylindrische Röhre 1 2. Navier- Stokes-

Mehr

Ergänzungen zur Physik I

Ergänzungen zur Physik I Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I U. Straumann, 14. Dezember 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Dynamik der Fluide 2 1.1 Kontinuitätsgleichung.................................

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 24. Januar 213 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m] =

Mehr

Dynamik. 4.Vorlesung EPI

Dynamik. 4.Vorlesung EPI 4.Vorlesung EPI I) Mechanik 1. Kinematik 2.Dynamik a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft 1 Das 2. Newtonsche Prinzip

Mehr