Herleitung von Randbedingungen an einer gekrümmten Grenzfläche eines porösen Mediums und einer freien Flüssigkeit mit Hilfe von Homogenisierung

Größe: px
Ab Seite anzeigen:

Download "Herleitung von Randbedingungen an einer gekrümmten Grenzfläche eines porösen Mediums und einer freien Flüssigkeit mit Hilfe von Homogenisierung"

Transkript

1 Kolloquium zur Diplomarbeit an eines porösen Mediums und freien Flüssigkeit mit Hilfe von Sören Dobberschütz

2 Motivation Worum geht es im Folgenden?

3 Gliederung 1 2 Transformationsregeln Transformierte Stokes-Gleichung 3 Idee Transformiertes Darcy-Gesetz 4 Hilfsprobleme Ergebnisse 5

4 Bezeichnungen: u Geschwindigkeitsvektorfeld eines Fluids p Druck des Fluids f Gegebene Volumen-Kraft Stokes-Gleichung Inkompressible freie Strömung Kleine Reynolds-Zahl und niedrige Geschwindigkeit μ: Viskosität des Fluids μ u + p = f div(u) = 0

5 Bezeichnungen: u Geschwindigkeitsvektorfeld eines Fluids p Druck des Fluids f Gegebene Volumen-Kraft Darcy-Gesetz Inkompressibles langsames Fluid in porösem Medium Effektive Geschwindigkeit u = 1 μ K(f p) μ: Viskosität des Fluids K: Permeabilitätstensor div(u) = 0

6 Die Randbedingung von Beavers und Joseph v D Beachte: v v F Freies Fluid Poröses Medium v D ist eine effektive Geschwindigkeit Nur für gerade Σ Beavers/Joseph '67 Geschwindigkeit normal zu Σ ist stetig Geschwindigkeit tangential zu Σ erleidet einen Sprung mit (v F v D ) τ = 1 α K 1 2 ( vf ν) τ Vergrößerung

7 Ω₁ 0 Σ L 0 Σ ~ L Ω₂ ψ ~ Ω₁ ~ Ω₂ Transformationsregeln Transformierte Stokes-Gleichung g C (R) L-periodisch: Funktion, die Σ beschreibt ψ : Ω Ω ) ( ) ( ) x1 z = 1 z 2 x 2 z 2 + g(z 1 ) ( z1

8 Transformierte Differentialoperatoren F: Jacobimatrix der Transformation ψ, [ ] 1 0 F(z) = g (z 1 ) 1 Bezeichne Koordinaten in Ω mit x = (x 1, x 2 ), Koordinaten in Ω mit z = (z 1, z 2 ) Satz (Transformationsregeln) Sei c : Ω R, j : Ω R 2 glatt genug Setze c(z) := c(ψ(z)) und j(z) := j(ψ(z)), dann x c = F T z c div x ( j) = div z (F 1 j) Transformationsregeln Transformierte Stokes-Gleichung

9 Die transformierte Stokes-Gleichung Sei S Ω (fester Teil) Ω F = Ω\ S (flüssiger Teil) Stokes-Gleichung in Ω x ũ(x) + x p(x) = f(x) in Ω F div x (ũ(x)) = 0 in Ω F ũ(x) = 0 auf S Transformationsregeln Transformierte Stokes-Gleichung mit u(z) = ũ(ψ(z)), p(z) = p(ψ(z)) f(z) = f(ψ(z)) S = ψ 1 ( S) und Ω F = Ω\S

10 Die transformierte Stokes-Gleichung Sei S Ω (fester Teil) Ω F = Ω\ S (flüssiger Teil) Stokes-Gleichung in Ω div x ( xũ(x)) + x p(x) = f(x) in Ω F div x (ũ(x)) = 0 in Ω F ũ(x) = 0 auf S Transformationsregeln Transformierte Stokes-Gleichung mit u(z) = ũ(ψ(z)), p(z) = p(ψ(z)) f(z) = f(ψ(z)) S = ψ 1 ( S) und Ω F = Ω\S

11 Die transformierte Stokes-Gleichung Sei S Ω (fester Teil) Ω F = Ω\ S (flüssiger Teil) Transformierte Stokes-Gleichung in Ω mit div z (F 1 (z)f T (z) zu(z)) + F T (z) u(z) = ũ(ψ(z)), p(z) = p(ψ(z)) f(z) = f(ψ(z)) S = ψ 1 ( S) und Ω F = Ω\S zp(z) = f(z) in Ω F div z (F 1 (z)u(z)) = 0 in Ω F u(x) = 0 auf S Transformationsregeln Transformierte Stokes-Gleichung

12 Idee der periodischen anschaulich Erdboden Beton 2 verschiedene Skalen: Mikroskala Größenordnung nm mm Modellierung ist möglich Numerik ist kompliziert oder unmöglich Makroskala Größenordnung cm km Modellierung schwierig Numerik ist möglich Von Interesse: Übergang Mikro Makro durch geeignete Mittelungsprozedur Idee Transformiertes Darcy-Gesetz

13 Idee der periodischen mathematisch ε = 1 ε = 1 2 ε = 1 4 Wähle Folge von Skalierungsparametern ε > 0 Parkettiere Gebiet mit ε-skalierten Versionen Referenzzelle ε fest: Problem beschrieben durch L ε u ε = f Gesucht: u 0 und L 0, so dass u ε u 0 für ε 0 und L 0 u 0 = f Idee Transformiertes Darcy-Gesetz ε = 0? L ε, L 0 : Differentialoperatoren

14 Idee der periodischen mathematisch ε = 1 ε = 1 2 ε = 1 4 Wähle Folge von Skalierungsparametern ε > 0 Parkettiere Gebiet mit ε-skalierten Versionen Referenzzelle ε fest: Problem beschrieben durch L ε u ε = f Gesucht: u 0 und L 0, so dass u ε u 0 für ε 0 und L 0 u 0 = f Idee Transformiertes Darcy-Gesetz ε = 0? L ε, L 0 : Differentialoperatoren

15 der transformierten Stokes-Gleichung G R 2 : beschränktes Lipschitz-Gebiet G ε : Zugehöriges ε-periodisch parkettiertes Gebiet f L 2 (G) gegeben, u ε H 1 0(G ε ) 2, p ε L 2 (G ε ) Lösung von ε 2 div(f 1 F T u ε ) + F T p ε = f div(f 1 u ε ) = 0 u ε = 0 Satz (Transformiertes Darcy-Gesetz) Es gilt u ε u 0 in L 2 (G) 2, p ε p 0 in L 2 (G) mit u 0 = A(F T f u 0 F T ν = 0 auf G A(z) R 2 2 hängt von der der Geometrie der Referenzzelle ab p 0 ) div(f 1 u 0 ) = 0 in G in G in G ε in G ε auf G ε Idee Transformiertes Darcy-Gesetz

16 Ω1 Σ 0 L ε Ω2 ε Ansatz In Ω 1 : Transformierter Stokes-Fluss mit no-slip-bedingung auf Σ In Ω ε 2: Benutze Konstruktionen aus der ( transformiertes Darcy-Gesetz) Nicht ausreichend, da Verhalten um Σ nicht passt Daher: Konstruiere Hilfsfunktionen, die Geschwindigkeit um Σ korrigieren Ziel: Konvergenzaussagen für Geschwindigkeit und Druck Hilfsprobleme Ergebnisse

17 Übersicht über die Hilfsprobleme Cell Problem w i, π i Transformed Stokes Flow u 0, π 0 Correction of the Divergence Corrector γ i Corrector θ i Boundary Layer w i,bl (C i,bl ), π i,bl (C i π ) Counterflow u ik, π ik Correction of the Velocity Hilfsprobleme Counterflow Boundary Layer u ~ ik, π ~ ik γ i,bl ~ (C i,bl ~ ), π i,bl ~ (C i) π ~ Counterflow d ik, g ik Boundary Layer β i,bl (C β i,bl ), ω i,bl (C i ω ) Counterflow b ik, q ik Ergebnisse Correction of the Pressure Vergrößerung

18 Ergebnisse: Im Gebiet Ω₁ Σ 0 L Ω₂ In Ω 1 Geschwindigkeit der freien Flüssigkeit 2 u F = u 0 + u ik i,k=1 In Ω 2 Geschwindigkeit im porösen Medium Hilfsprobleme Ergebnisse u D = A(F T f u 0 : Transformierter Stokes-Fluss mit no-slip-bedingung auf Σ u ik : bekannte Funktionen, die u 0 um Σ korrigieren p)

19 Ergebnisse: Auf der In normaler Richtung ν Geschwindigkeit stetig in Richtung des transformierten Normalenvektors: F -T e u F (x) F T (x)e 2 = u D (x) F T (x)e 2 2 In tangentialer Richtung Sprung in Richtung des transformierten τ tangentialen Vektors: ( uf (x) u D (x) ) F(x)e 1 Hilfsprobleme Ergebnisse F e 1 = D 1 (x) + g (x 1 )D 2 (x) Funktionen D 1, D 2 explizit bestimmbar

20 Zusammenfassung und Ausblick Keine verallgemte Randbedingung von Beavers und Joseph Aber zumindest Hinweise auf ihre Gültigkeit Geometrie der scheint Einfluss auf Stärke des Sprungs zu besitzen Weitere Forschungsmöglichkeiten: Nur lokal wirkende Transformation Unabhängigkeit der Ergebnisse von der gewählten Transformation Technische Details der Arbeit

21 Zusammenfassung und Ausblick Keine verallgemte Randbedingung von Beavers und Joseph Aber zumindest Hinweise auf ihre Gültigkeit Geometrie der scheint Einfluss auf Stärke des Sprungs zu besitzen Weitere Forschungsmöglichkeiten: Nur lokal wirkende Transformation Unabhängigkeit der Ergebnisse von der gewählten Transformation Technische Details der Arbeit

22 Vielen Dank für die Aufmerksamkeit!

23 Die Randbedingung von Beavers und Joseph Freies Fluid v F v Σ Poröses Medium v D Zurück

24 Cell Problem w i, π i Transformed Stokes Flow u 0, π 0 Correction of the Divergence Corrector γ i Corrector θ i Boundary Layer w i,bl (C i,bl ), π i,bl (C i π ) Counterflow u ik, π ik Correction of the Velocity Counterflow Boundary Layer u ~ ik, π ~ ik γ i,bl ~ (C i,bl ~ ), π i,bl ~ (C i) π ~ Counterflow d ik, g ik Boundary Layer β i,bl (C β i,bl ), ω i,bl (C i ω ) Counterflow b ik, q ik Correction of the Pressure Zurück

0 + #! % ( ) % )1, !,

0 + #! % ( ) % )1, !, ! #! % ( ) % +!,../ 0 + #! % ( ) % )1,233 3 4!, 5 2 6 7 2 6 ( (% 6 2 58.9../ : 2../ ! # % & # ( ) + +, % ( ( + +., / (! & 0 + 1 2 3 4! 5! 6! ( 7 ) + 8 9! + : +, 5 & ; + 9 0 < 5 3 & 9 ; + 9 0 < 5 3 %!

Mehr

Strömungen in Wasser und Luft

Strömungen in Wasser und Luft Strömungen in Wasser und Luft Strömungssimulationen im UZWR Daniel Nolte März 2009 Mathematische Strömungsmodelle Navier Stokes Gleichungen (Massenerhaltung, Impulserhaltung, Energieerhaltung) ρ + (ρ U)

Mehr

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum: Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

Analysis II (FS 2015): Vektorfelder und Flüsse

Analysis II (FS 2015): Vektorfelder und Flüsse Analysis II (FS 215): Vektorfelder und Flüsse Dietmar A. Salamon ETH-Zürich 7. April 215 1 Der Fluss eines Vektorfeldes Sei U R n eine offene Menge und sei f : U R n eine lokal Lipschitz-stetige Abbildung.

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439,, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de Reynoldszahl

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck: Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren

Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht. Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren Hydrostatik Mechanik von Fluiden im statischen Gleichgewicht Fluide: Stoffe, die sich unter Einwirkung von Schubspannungen fortlaufend deformieren in ruhendem Fluid können keine tangentialen Spannungen

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ.

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ. Reguläre Ausdrücke Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (i) ist ein regulärer Ausdruck über Σ. (ii) ε ist ein regulärer Ausdruck über Σ. (iii) Für jedes a Σ ist a ein regulärer

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06)

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 7. Übung (KW 05/06) 7. Übung KW 05/06) Aufgabe 1 M 14.1 Venturidüse ) Durch eine Düse strömt Luft der Stromstärke I. Man berechne die Differenz der statischen Drücke p zwischen dem weiten und dem engen Querschnitt Durchmesser

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Mögliche Fehler beim Testen

Mögliche Fehler beim Testen Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

Beispiel: Evolution infizierter Individuen

Beispiel: Evolution infizierter Individuen Differentialgleichungen sind sehr nützlich in der Modellierung biologischer Prozesse, denn: damit kann man auch sehr komplizierte Systeme beschreiben die Mathematik liefert mit der gut entwickelten Theorie

Mehr

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Klausur H2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Wie wirkt sich eine

Mehr

2.4 Kontextsensitive und Typ 0-Sprachen

2.4 Kontextsensitive und Typ 0-Sprachen Definition 2.43 Eine Typ 1 Grammatik ist in Kuroda Normalform, falls alle Regeln eine der folgenden 4 Formen haben: Dabei: A, B, C, D V und a Σ. Satz 2.44 A a, A B, A BC, AB CD. Für jede Typ 1 Grammatik

Mehr

Aufgaben. zu Inhalten der 5. Klasse

Aufgaben. zu Inhalten der 5. Klasse Aufgaben zu Inhalten der 5. Klasse Universität Klagenfurt, Institut für Didaktik der Mathematik (AECC-M) September 2010 Zahlbereiche Es gibt Gleichungen, die (1) in Z, nicht aber in N, (2) in Q, nicht

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

! # % & & ( )! & & + &, % &. && & /, 0 % 0 + & 1, / 2 3 &40

! # % & & ( )! & & + &, % &. && & /, 0 % 0 + & 1, / 2 3 &40 ! # % & & ( )! & & + &, % &. && & / %, 0 % 0 + & 1, / 2 3 &40 ! # %! &! # % &! % ( ) & &! ( ) +, % +, +, +.. % / + 00 1 ), &! 2& ).& 2 +, + % 3 # +, + + # 4 0 5 ( % ). &2 4 6 7 ) ( % % 2 & 7 % 0,. ) %

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Lehrstuhl für Fluiddynamik und Strömungstechnik

Lehrstuhl für Fluiddynamik und Strömungstechnik Lehstuhl fü Fluiddynamik und Stömungstechnik Pof. D.-Ing. W. Fank Lösungen zu dem Aufgabenblatt Aufgabe 1 Gegeben: p =,981 ba (Duck fü z = ), T = 83 K (Tempeatu fü z = ), α = 6 1-3 K m -1, m = 9 kg/ kmol

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Von Fluss zu Abbildung und zurück

Von Fluss zu Abbildung und zurück Kapitel 3 Von Fluss zu Abbildung und zurück 3.1 Poincaré-Abbildungen Sei ϕ ein Fluss auf einer Mannigfaltigkeit M (insbesondere M = Ê n oder M = T n ). Das zugehörige Vektorfeld heiße f, d.h. f(x) = d

Mehr

Messung der Viskosität von Hochtemperatur-Metallschmelzen

Messung der Viskosität von Hochtemperatur-Metallschmelzen Messung der Viskosität von Hochtemperatur-Metallschmelzen G. Lohöfer Institut für Materialphysik im Weltraum, DLR, Köln AK Thermophysik, Graz, 03.-04.05.01 1 Probleme beim Prozessieren von Metallschmelzen

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches

Mehr

1 Nichtlineare analytische Geometrie, Integralrechung

1 Nichtlineare analytische Geometrie, Integralrechung Nr AUFGABEN 1 Nichtlineare analytische Geometrie, Integralrechung Ein Weinfass entsteht durch Rotation des Mittelteils einer Ellipse in erster Hauptlage um die x-achse. Der Spunddurchmesser (= größter

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

a und _ b und _ d nur die Bewegung vor zurück des Portals. b) _ _ b r _ 2 = ; linear unabhängig 1 2 ( 3) ; linear abhängig

a und _ b und _ d nur die Bewegung vor zurück des Portals. b) _ _ b r _ 2 = ; linear unabhängig 1 2 ( 3) ; linear abhängig Schülerbuchseite 8 0 Lösungen vorläufig Lineare Abhängigkeit und Unabhängigkeit von Vektoren S. 8 S. 0 a) Zum Fräsen der Spuren von a und c braucht man nur die Bewegung rechts links des Fräskopfs, da die

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 2 06.12.2013 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 27 15 15 3 60 Punkte Notenpunkte PT 1 2 3 4 5 6 7 8 P. (max 2 3 2 4 5 3 4 4 Punkte WT Ana a b Summe P. (max 8 7

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

=!'04 #>4 )-:!- / )) $!# & $ % # %)6 ) + # 6 0 %% )90 % 1% $ 9116 69)" %" :"6. 1-0 &6 -% ' 0' )%1 0(,"'% #6 0 )90 1-11 ) 9 #,0. 1 #% 0 9 & %) ) '' #' ) 0 # %6 ;+'' 0 6%((&0 6?9 ;+'' 0 9)&6? #' 1 0 +& $

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

1. Vorlesung Partielle Differentialgleichungen

1. Vorlesung Partielle Differentialgleichungen 1. Vorlesung Partielle ifferentialgleichungen Wolfgang Reichel Übersee-Vorlesung aus Oaxaca, Mexiko, 19. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem.Modul2

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem.Modul2 Probe-Klausur Mathematik f. Bau-Ing + Chem.Modul. (a) Durch die Punkte und gehe eine Ebene E, die auf der Ebene E : x + y z = 0 senkrecht steht. Bestimmen Sie die Gleichung der Ebene E. (b) Bestimmen Sie

Mehr

Metamaterialien mit negativem Brechungsindexeffekt. Vortrag im Rahmen des Hauptseminars SS2008 Von Vera Eikel

Metamaterialien mit negativem Brechungsindexeffekt. Vortrag im Rahmen des Hauptseminars SS2008 Von Vera Eikel Metamaterialien mit negativem Brechungsindexeffekt Vortrag im Rahmen des Hauptseminars SS8 Von Vera Eikel Brechungsindex n 1 n Quelle: http://www.pi.uni-stuttgart.de Snellius sches Brechungsgesetz: sin

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Berechenbare Funktionalanalysis und kompakte Operatoren

Berechenbare Funktionalanalysis und kompakte Operatoren Berechenbare Funktionalanalysis und kompakte Operatoren Volker Bosserhoff Oberseminar der Fakultät für Informatik, 22. Juli 2008 Typ-2-Berechenbarkeit Rechnen mit endlichen Objekten Σ := {0, 1}. f : Σ

Mehr

Elementäre Bausteine m = 10 micron. Blutzelle Atom 1800 D.N.A Elektron m = 0.1 nanometer Photon 1900

Elementäre Bausteine m = 10 micron. Blutzelle Atom 1800 D.N.A Elektron m = 0.1 nanometer Photon 1900 Was ist Physik? Das Studium der uns umgebenden Welt vom Universum bis zum Atomkern, bzw. vom Urknall bis weit in die Zukunft, mit Hilfe von wenigen Grundprinzipien. Diese gesetzmäßigen Grundprinzipien

Mehr

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt

Mehr

mentor Lernhilfe: Mathematik 10. Klasse Baumann

mentor Lernhilfe: Mathematik 10. Klasse Baumann mentor Lernhilfe: Mathematik 10. Klasse Geometrie: Winkelfunktionen, Trigonometrie, Additionstheoreme, Vektorrechnung von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 10. Klasse Baumann schnell

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Klausur zur Vorlesung Physikalische Chemie V Elektrochemie 6. bzw. 8. Fachsemester am , 10:00 bis 12:00 Uhr

Klausur zur Vorlesung Physikalische Chemie V Elektrochemie 6. bzw. 8. Fachsemester am , 10:00 bis 12:00 Uhr Universität Regensburg Institut für Physikalische und Theoretische Chemie Prof. Dr. G. Schmeer 18. Juli 27 Bitte füllen Sie zuerst dieses Deckblatt aus, das mit Ihren Lösungen abgegeben werden muss....

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

3.2 Extensive und intensive Größen. Mathematik. Zusammenfassung des physikalischen Teils:

3.2 Extensive und intensive Größen. Mathematik. Zusammenfassung des physikalischen Teils: 3. Extensive und intensive Größen. Mathematik 43 3. Extensive und intensive Größen. Mathematik Zusammenfassung des physikalischen Teils: Wir untersuchen, wie sich bestimmte Größen bei Kontakt B 1 B zweier

Mehr

Skript zur Vorlesung Partielle Differentialgleichungen, klassische Methoden

Skript zur Vorlesung Partielle Differentialgleichungen, klassische Methoden Skript zur Vorlesung Partielle Differentialgleichungen, klassische Methoden Christian Meyer basierend auf der Vorlesung Theorie partieller Differentialgleichungen von Prof. F. Tröltzsch, TU Berlin Material

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5.

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5. Formale Sprachen Spezialgebiet für Komplexe Systeme Yimin Ge 5ahdvn Inhaltsverzeichnis 1 Grundlagen 1 2 Formale Grammatien 4 Endliche Automaten 5 4 Reguläre Sprachen 9 5 Anwendungen bei Abzählproblemen

Mehr

Hochschule Bremerhaven Medizintechnik Mathcad Kapitel 6

Hochschule Bremerhaven Medizintechnik Mathcad Kapitel 6 6. Diagramme mit Mathcad In diesem Kapitel geht es um andere, als X Y Diagramme. 6.. Kreisdiagramme. Schritt: Die darzustellende Funktion muß zunächst als Funktion definiert werden, zum Beispiel f(x):=

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Lösung Arbeitsblatt Geometrie / Trigonometrie

Lösung Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen

Mehr

Stetigkeit von Funktionen

Stetigkeit von Funktionen 9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a

Mehr

Elemente von S n = Aut([1, n]) heißen Permutationen. Spezielle Permutationen sind Transpositionen und Zyklen. (Vergl. Skript S

Elemente von S n = Aut([1, n]) heißen Permutationen. Spezielle Permutationen sind Transpositionen und Zyklen. (Vergl. Skript S Begriffe Faser: Es sei f : M N eine Abbildung von Mengen. Es sei n N. Die Menge f 1 ({n}) M nennt man die Faser in n. (Skript Seite 119). Parallel: Zwei Vektoren v und w heißen parallel, wenn für einen

Mehr

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Teil V Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Zwei Sorten von Grammatiken Kontextsensitive Grammatik (CSG) (Σ, V, P, S), Regeln der Form αaβ αγβ α, β (Σ V ),

Mehr

Lösungen Prüfung Fachmaturität Pädagogik

Lösungen Prüfung Fachmaturität Pädagogik Fachmaturität Mathematik 7.0.009 Lösungen Prüfung Lösungen Prüfung Fachmaturität Pädagogik. (7 min,7.5 P.) Brüche Forme so um, dass im Ergebnis maximal ein Bruchstrich vorkommt und nicht mehr weiter gekürzt

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

1.1. SI-Handbuch Verständigung

1.1. SI-Handbuch Verständigung .1 Internationales ensystem 3.2 n 4.3 SI-Vorsatzzeichen und Umrechnungsbeispiele 7.4 Sonderzeichen 8.5 Umrechnungstabelle Druck 9.6 Umrechnungstabelle Energie, Arbeit 9.7 Umrechnungstabelle Leistung 10.8

Mehr

Numerical analysis of the influence of turbulence on the exchange processes between porous-medium and free flow

Numerical analysis of the influence of turbulence on the exchange processes between porous-medium and free flow Numerical analysis of the influence of turbulence on the exchange processes between porous-medium and free flow T. Fetzer Institut für Wasser- und Umweltsystemmodellierung Universität Stuttgart January

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

8. Relativistische Mechanik

8. Relativistische Mechanik 8. Relativistische Mechanik 8.1 Einleitung Einige experimentelle Tatsachen zeigen, dass die Galileiinvariante Mechanik nur begrenzte Gültigkeit haben kann. Konstanz der Lichtgeschwindigkeit Die Invarianz

Mehr

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1 6 Differentialgeometrie: Grundlagen Vorlesung Einleitung. Motivation.. Name of the game Geometer bezeichnet klassisch einen Landvermesser (heute ist eher Geodät gebräuchlich. Die klassische Differentialgeometrie

Mehr

x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass

x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass V. Geradengleichungen in Parameterform 5. Definition ---------------------------------------------------------------------------------------------------------------- x 3 v a x x x Definition und Satz :

Mehr

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker

Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen David Knötel Freie Universität Berlin, Institut für Informatik Seminar über Algorithmen Leitfaden Wiederholung

Mehr

Faraday-Rotation. I. Rückmann, H. Bieker, P. Kruse. Bad Honnef Universität Bremen

Faraday-Rotation. I. Rückmann, H. Bieker, P. Kruse. Bad Honnef Universität Bremen Faraday-Rotation I. Rückmann, H. Bieker, P. Kruse Universität Bremen Bad Honnef 2014 I. Rückmann, H. Bieker, P. Kruse (Uni-Bremen) Faraday-Rotation Bad Honnef 2014 1 / 18 Faraday-Rotation magnetfeldinduzierte

Mehr

Um bei p = const. und T = const. ein Mol der Substanz vom Ort x zum Ort x + dx zu transportieren, (3)

Um bei p = const. und T = const. ein Mol der Substanz vom Ort x zum Ort x + dx zu transportieren, (3) Stand: 9/7 II7 Diffusion von Gasen Ziel des Versuches Es ist die Druckabhängigkeit der Diffusionskonstanten D von NO in Luft eperimentell zu ermitteln Unter Benutzung der Zusammenhänge der kinetischen

Mehr

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)

WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1) OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit

Mehr

Ergänzungen zur Physik I: Wellen (Zusammenfassung)

Ergänzungen zur Physik I: Wellen (Zusammenfassung) Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I: Wellen (Zusammenfassung) U. Straumann, 28. Dezember 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Wellengleichung 2

Mehr

2.5 Aufgabe Aufgabe Aufgabe Aufgabe 8

2.5 Aufgabe Aufgabe Aufgabe Aufgabe 8 4 7 3 / 4 m 5 / 8 x (81) = 4 α f(x) = 3x 2 6x + 9 f(x) = x 2 10x + 9 (x + 2y) 2 =? ( 36m2 ) 9m 5n 2 (5x+y) (2+6) 4 / 7 7 / 7 336 = 4 7 x = 7 7 x 4 7 = 336 : 7 4 Kehrbruch! x = 588 3 / 4 m 5 / 8 x 5 / 8

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Tomographie eines Zweiniveau-Systems

Tomographie eines Zweiniveau-Systems Tomographie eines Zweiniveau-Systems Martin Ibrügger 15.06.011 1 / 15 Übersicht Motivation Grundlagen Veranschaulichung mittels Bloch-Kugel Beispiel / 15 Motivation Warum Tomographie eines Zweiniveau-Systems?

Mehr

1 Fouriersynthese und Fourieranalyse

1 Fouriersynthese und Fourieranalyse Schwingungslehre in Kursstufe 5/ 57 Ernst Schreier Fouriersynthese und Fourieranalyse. Stehende Wellen / Eigenschwingungen / Resonanz Bei einfacher Reflexion bildet sich immer eine stehende Welle vor der

Mehr