Vortrag: Symmetriebrechung & Musterbildung

Größe: px
Ab Seite anzeigen:

Download "Vortrag: Symmetriebrechung & Musterbildung"

Transkript

1 Seminar: Dynamische Modelle omplexer Systeme Vortrag: Symmetriebrechung & Musterbildung Dienstag, :15 Uhr, SR/GMG Referent: Philippe Bourdin Blattneratur eines tropischen Farns [3]

2 Definition: Symmetriebrechung & Musterbildung Musterbildung ist ein Prozeß, bei dem ein räumlich homogener Zustand instabil wird und einem inhomogenen Zustand, also einem Muster weicht. Meist wird eine solche spontane Symmetriebrechung durch Veränderung eines Parameters in einem nichtlinearen System erzielt. []

3 Definition: Symmetriebrechung & Musterbildung Musterbildung ist ein Prozeß, bei dem ein räumlich homogener Zustand instabil wird und einem inhomogenen Zustand, also einem Muster weicht. Meist wird eine solche spontane Symmetriebrechung durch Veränderung eines Parameters in einem nichtlinearen System erzielt. []

4 Definition: Symmetriebrechung & Musterbildung Musterbildung ist ein Prozeß, bei dem ein räumlich homogener Zustand instabil wird und einem inhomogenen Zustand, also einem Muster weicht. Meist wird eine solche spontane Symmetriebrechung durch Veränderung eines Parameters in einem nichtlinearen System erzielt. []

5 Inhalt: Symmetriebrechung & Musterbildung Ein bißchen Geschichte Zweidimensionale Muster Das Bénard-Experiment Komplexe Ginzburg-Landau-Gleichung (CGLE) Belouso-Zhabotinsy-Reation (BZ) Reations-Diffusions-Gleichungen (RD) Simulation: Der Brüsselator Weitere Muster in der Natur

6 Ein bißchen Geschichte Wie entstehen zweidimensionale Muster?

7 Ein bißchen Geschichte Wie entstehen zweidimensionale Muster? Ab 1965 erforscht u.a. on A. Gierer und H. Meinhardt (MPI) Einfaches Turing-Modell: System aus Atiator und Inhibitor beschreibbar durch zwei nichtlineare, partielle Differentialgleichungen

8 Zweidimensionale Muster Beispiel: Astwachstum am Süßwasserpolypen

9 Zweidimensionale Muster Beispiel: Astwachstum am Süßwasserpolypen Substrat nötig, Flutuation ( Samen ) startet für Zellwachstum Wachstum geht zur höchsten Substrat-Konzentration Inhibitor zieht weiter mit Atiator Ist Atiator weit genug entfernt, ann ein Abzweig entstehen, da der Inhibitor ebenfalls fehlt Zweig-Wachstumwieder zur höchsten Substrat-Dichte Wachstum geht weiter, bis Substrat aufgebraucht ist Kein zusammenwachsen []

10 Zweidimensionale Muster Beispiel: Astwachstum am Süßwasserpolypen Substrat nötig, Flutuation ( Samen ) startet für Zellwachstum Wachstum geht zur höchsten Substrat-Konzentration Inhibitor zieht weiter mit Atiator Ist Atiator weit genug entfernt, ann ein Abzweig entstehen, da der Inhibitor ebenfalls fehlt Zweig-Wachstumwieder zur höchsten Substrat-Dichte Wachstum geht weiter, bis Substrat aufgebraucht ist Kein zusammenwachsen []

11 Zweidimensionale Muster Beispiel: Astwachstum am Süßwasserpolypen Substrat nötig, Flutuation ( Samen ) startet für Zellwachstum Wachstum geht zur höchsten Substrat-Konzentration Inhibitor zieht weiter mit Atiator Ist Atiator weit genug entfernt, ann ein Abzweig entstehen, da der Inhibitor ebenfalls fehlt Zweig-Wachstumwieder zur höchsten Substrat-Dichte Wachstum geht weiter, bis Substrat aufgebraucht ist Kein zusammenwachsen []

12 Zweidimensionale Muster Beispiel: Astwachstum am Süßwasserpolypen Substrat nötig, Flutuation ( Samen ) startet für Zellwachstum Wachstum geht zur höchsten Substrat-Konzentration Inhibitor zieht weiter mit Atiator Ist Atiator weit genug entfernt, ann ein Abzweig entstehen, da der Inhibitor ebenfalls fehlt Zweig-Wachstumwieder zur höchsten Substrat-Dichte Wachstum geht weiter, bis Substrat aufgebraucht ist Kein zusammenwachsen []

13 Zweidimensionale Muster Beispiel: Astwachstum am Süßwasserpolypen Substrat nötig, Flutuation ( Samen ) startet für Zellwachstum Wachstum geht zur höchsten Substrat-Konzentration Inhibitor zieht weiter mit Atiator Ist Atiator weit genug entfernt, ann ein Abzweig entstehen, da der Inhibitor ebenfalls fehlt Zweig-Wachstumwieder zur höchsten Substrat-Dichte Wachstum geht weiter, bis Substrat aufgebraucht ist Kein zusammenwachsen []

14 Zweidimensionale Muster Simulation ersus Beobachtung: Wachstum on ZnSO 4 Dendritische Ablagerung simulierbar durch Zelluläre Automaten [6]

15 Das Bénard-Experiment Temperaturgradient sorgt für Wärmetransport

16 Das Bénard-Experiment Temperaturgradient sorgt für Wärmetransport Visosität der Flüssigeit bremst Konetion [4]

17 Das Bénard-Experiment Kritischer Temperaturgradient notwendig für ein Umschlagen Temperaturgradient steigt Konetionsrollen

18 Das Bénard-Experiment Aus: Naiér-Stoes-Gleichung, Bewegungsgleichungen, Kontinuitätsgleichung und Wärmeleitungs-Gleichung. Boussinesq-Approximation: α ( ( T )) ρ = ρ0 1 α T 0 (mit als thermischen Ausdehnungsoeffizient) Alle anderen Materialparameter onstant. Man erhält mit weiteren Näherungen und Vereinfachungen die spezielle Naier-Stoes-Gleichung: ρ u 0 i i + ρ0 u j ui = p + q t xi xi xi xi + gi ρ0 ( ρ ) (u: innere Energie q: transportierte Wärmemenge g: Graitation) u

19 Das Bénard-Experiment Damit lassen sich die Konetionsrollen erlären: [4] laminare Konetionsrollen Chaotisch bei höherem T.-Gradienten

20 Das Bénard-Experiment Offene Randbedingungen => Hexagonale Konetionszellen [4] Entspricht rein qualitati den Konetions-Granulen der Sonne =>

21 Komplexe Ginzburg-Landau-Gleichung (CGLE) Allgemeine Formulierung des Problems: X r t t = F i ( ) ({ X }, { X },λ ), i j j

22 Komplexe Ginzburg-Landau-Gleichung (CGLE) Allgemeine Formulierung des Problems: X r t t = F i ( ) ({ X }, { X },λ ), i j j Vereinfacht: dx ( t) dt = F( X,λ) Störungsrechnung: X ( t) = X S + x( t) mit F( X S, λ) = 0 X : Ruhezustand + x ( t): leine Störung S Taylor-Entwiclung: dx( t) 1. Ordnung = L λ x + h x, λ = L λ dt ( ) ( ) ( ) x Linearteil Nichtlinearität

23 Komplexe Ginzburg-Landau-Gleichung (CGLE) Differentialgleichung: Lösungs-Ansatz: => Eigenwertgleichung: dx 1. Ordnung ( t) = L( λ) x dt ω x t = u r e L ( ) t ( λ) u = ω u Stabilitätsbedingung: Wenn ( ) > 0 instabil ( ) < 0 stabil Re ω Re ω => Bifuration ( ω ) ω( λ ) Re Re( ) = 0 C = C ω T C T [1]

24 Komplexe Ginzburg-Landau-Gleichung (CGLE) Allgemeine Ausgangs-Gl.: Entwiclung um ritischen Punt: Taylor-Entwiclung für: und: t T x t ( r, t) In Systemen großer räumlicher Ausdehnung: x a Im( ωc ) + ε = L λ λ ( λ, ) x + h( x,,λ) C a εγ ( r t) a εx + ε x..., 1 + τ 1 + ε γ + r... a ε +... ρ man erhält: x t ( r, t) = L ( λ ) x + L ( λ) x + h(, λ) 0 1 x

25 Komplexe Ginzburg-Landau-Gleichung (CGLE) Einsetzen und Koeffizientenergleich in Ordnungen on : (analog zur linearen Analyse) In dritter Ordnung erhält man inhomogenes Gleichunssystem Lösbareitsriterium mittels Satz on Friedholm (ompliziert) ( ) ( ) ( ) 0 Im 1 0 = x L T O C C λ ω ε ε ( ) cc e u c x it + = ρ τ, 1 ( ) ( ) ( ) Im x x h x L T O xx C C = λ ω ε 0 p c cc e p c x T i + + =

26 Komplexe Ginzburg-Landau-Gleichung (CGLE) Man erhält schließlich (mit ε c a z ): z t = ( λ λ ) z + ( 1+ iα ) z + ( 1+ iβ ) z z C Die Komplexe Ginzburg-Landau-Gleichung (CGLE) Höhere Ordnungen on sind nicht enthalten. ε ε Entwiclung in auch für Bénard-Zelle möglich: => Newell-Whitehead-Segel-Gleichung (NWSE)

27 Die BZ-Reation Oszillierende Reation in einer Petrischale: Bromid und Cer 3+ / 4+

28 Die BZ-Reation Oszillierende Reation in einer Petrischale: Bromid und Cer 3+ / 4+ Inhibitor: Bromid Reation 1: erbraucht Bromid Reation : oxidiert Ce 3+ (Farbwechsel) Reation 3: bildet Ce 4+ und Bromid zurüc

29 Die BZ-Reation Oszillierende Reation in einer Petrischale: Bromid und Cer 3+ / 4+ Inhibitor: Bromid Reation 1: erbraucht Bromid Reation : oxidiert Ce 3+ (Farbwechsel) Reation 3: bildet Ce 4+ und Bromid zurüc

30 Reations-Diffusions-Gleichungen Allgemeine Formulierung für oszillierende Reationen:

31 Reations-Diffusions-Gleichungen Allgemeine Formulierung für oszillierende Reationen: B + X A 1 X Y + C 3 X + Y 3X (autoatalytisch) X 4 Brüsselator -Modell (Prigogine, Lefeer, Nicolis, Brorcmans: ) Quelle der Nicht-Linearität: autoatalytische Reation Reationsgeschwindigeiten D 1 4 => Ratengleichungen

32 Reations-Diffusions-Gleichungen Ratengleichungen: dx dt = 1A BX + 3X Y 4 X dy dt = BX 3 X Y Allgemein, mit Diffusionsterm (D: Diffusionsonstante): dx dt ( X, Y, ) + D X = F λ dy dt =... (analog) Lösung nur numerisch durch Zelluläre Automaten Zum Vergleich: Bénard-Zelle beschreibbar durch Lorenz-Gleichungen: dx dy dz dt = σ ( X Y ) dt = RX Y XZ dt = XY bz

33 Simulation: Der Brüsselator Ratengleichungen: dx dt = 1A BX + 3X Y 4 X dy dt = BX 3 X Y

34 Simulation: Der Brüsselator Ratengleichungen: dx dt = 1A BX + 3X Y 4 X dy dt = BX Numerische Simulation: (A=1, B=3, X 0 =Y 0 =1, 1 = = 4 =1) 3 X Y c X, Y c Y 8] T cx

35 Simulation: Der Brüsselator Die BZ-Reation Simulation ersus Beobachtung: [] Spiralwellen und Chaotische Oszillationen

36 [8] Simulation: Der Brüsselator Stabilitätsbetrachtung des Brüsselators: Stationäre Zustände: X S = 1 4 A ( dx dt = dy dt = 0) Mit A=1 und B=1,5 ergibt die Simulation: Y S = B A

37 Simulation: Der Brüsselator Stabilitätmatrix: Berechne Eigenwerte: Instabil für: S S X B X B A X B S + = + > ( ) + ± ± = Imaginärteil Realteil S S S X B X X B λ

38 Weitere Muster in der Natur

39 Weitere Muster in der Natur Schnecenmuster: Atiator, Inhibitor, Diffusionsterme, Zerfallsraten, Grundprodution x a D a r b b a s t a a a a + + = x b D b r sa t b b b + = [Amoria dampieria] [Natica Stercusmuscarum]

40 Weitere Muster in der Natur Musterbildung: Katalytische CO-Oxidation [5]

41 Zusammenfassung Wir sahen Muster in: der Natur, der Physi und der Chemie Theoretische Modelle bieten eine gute Beschreibung Simulationen zeigen teilweise gute Übereinstimmungen zwischen Theorie und der Beobachtung Trotz allem gibt es bisher eine eindeutigen Beweise, daß die Muster in der Natur tatsächlich durch diejenigen Prozesse entstehen, die in den theoretischen Modellen zugrunde gelegt worden sind. Es gibt noch iel zu tun

42 Literatur [1] G. Nicolis: Introduction to nonlinear science 1995, Cambridge Uniersity Press [] H. Meinhardt: Biological Pattern Formation [3] P. Prusiniewicz: Musterbildung [4] E. Jaobi: Vortrag Selbstorganisation 003, [5] M. Kim, M. Bertram, H. Rotermund: CO Oxidation 001, Science, 9: [6] Simulations-Software: The Virtual Laboratory [7] P. Meain: A new model for biological pattern formation 1986, Journal of Theoretical Biology, 118: [8] J. Krieger: Reations-Diffusions-Systeme

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Kopf- & Fußbildung der Hydra

Kopf- & Fußbildung der Hydra Kopf- & Fußbildung der Hydra Übersicht I. Die Biologie der Hydra II. Modellierung der Hydra III. Experiment vs. Theorie Übersicht I. Die Biologie der Hydra II. Modellierung der Hydra III. Experiment vs.

Mehr

Nichtlineare Prozesse in der Elektrochemie II

Nichtlineare Prozesse in der Elektrochemie II Nichtlineare Prozesse in der Elektrochemie II 5. Stabilität und Instabilität Neue (dissipative) Strukturen entstehen, wenn der bisherige stationäre Zustand, der den thermodynamischen Zweig repräsentiert,

Mehr

2. Einmassenschwinger. Inhalt:

2. Einmassenschwinger. Inhalt: . Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten

Mehr

Katalytische Hyperzyklen

Katalytische Hyperzyklen Katalytische Hyperzyklen Lara Münster 20.12.2011 Literatur: Hofbauer J., Sigmund K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press: Cambridge Katalytische Hyperzyklen 1

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t 5. Wechselwirkungen zwischen verschiedenen Spezies Allgemein kann man die zeitliche Entwicklung zweier Spezies N 1 und N 2 durch Ratengleichungen der Form d N 1 t d N 2 t = F 1 N 1 t, N 2 t, t = F 2 N

Mehr

Numerik und Simulation in der Geoökologie

Numerik und Simulation in der Geoökologie 1/49 Rekapitulation Das Euler-Verfahren für ODE-IVP Eigenschaften von Einschrittverfahren Numerik und Simulation in der Geoökologie Sylvia Moenickes VL 2 WS 2007/2008 2/49 Rekapitulation Das Euler-Verfahren

Mehr

y = A(x) y + b(x). (1) y = A(x) y (2)

y = A(x) y + b(x). (1) y = A(x) y (2) 73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Universität Bielefeld Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Matthieu Felsinger Universität Bielefeld Mathematisches Kolloquium, TU Clausthal 05. Februar 2014 1 Einleitung

Mehr

Gedämpftes Quantentunneln in makroskopischen Systemen

Gedämpftes Quantentunneln in makroskopischen Systemen Gedämpftes Quantentunneln in makroskopischen Systemen Kerstin Helfrich Seminar über konforme Feldtheorie, 27.06.06 Gliederung 1 Motivation 2 Voraussetzungen Allgemein Ungedämpfter Fall 3 Gedämpftes Tunneln

Mehr

Mathematik in der Biologie

Mathematik in der Biologie Erich Bohl Mathematik in der Biologie 4., vollständig überarbeitete und erweiterte Auflage Mit 65 Abbildungen und 16 Tabellen ^J Springer Inhaltsverzeichnis Warum verwendet ein Biologe eigentlich Mathematik?

Mehr

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010

Mitschrift zu Wärmetransportphänomene bei Prof. Polifke SoSe 2010 Inhalt 1. Einführung... 3 2. Grundbegriffe der Wärmeleitung... 3 2.1. Fourier sches Gesetz... 3 2.2. Fourier sche DGL... 3 3. Stationäre Wärmeleitung... 4 3.1. Wärmeleitung in einfachen Geometrien... 4

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Universität Heidelberg : Seminar Theoretische Mechanik (WS 08/09) Vortrag: Strukturbildung in der Biologie und Chemie (Carl Pölking)

Universität Heidelberg : Seminar Theoretische Mechanik (WS 08/09) Vortrag: Strukturbildung in der Biologie und Chemie (Carl Pölking) Universität Heidelberg : Seminar Theoretische Mechanik (WS 08/09) Vortrag: Strukturbildung in der Biologie und Chemie (Carl Pölking) The Big Picture Chance Necessity Lehre der Wechselwirkung von Elementen

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

1. Vorlesung Partielle Differentialgleichungen

1. Vorlesung Partielle Differentialgleichungen 1. Vorlesung Partielle ifferentialgleichungen Wolfgang Reichel Übersee-Vorlesung aus Oaxaca, Mexiko, 19. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National

Mehr

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1)

mit α 2 := F EI mit Federgesetz: F c = c F w l Q l + F sinγ + c F w l cosγ = 0 die Linearisierung ergibt dann: EIw l Fw l + c F w l = 0 (RB 1) Einsteinufer 5, 1587 Berlin 3.Übungsblatt - S. 1 Knicken SS 21 Aufgabe 1 Die (homogene) Knickdifferentialgleichung lautet: Ein geeigneter Ansatz zur Lösung lautet: w + α 2 w = mit α 2 := F (1) w = Acos(αx)

Mehr

Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung

Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung Vorlesung 15 II Wärmelehre 15. Wärmetransport und Stoffmischung a) Wärmestrahlung b) Wärmeleitung c) Wärmeströmung d) Diffusion 16. Phasenübergänge (Verdampfen, Schmelzen, Sublimieren) Versuche: Wärmeleitung

Mehr

Mathematik I für Chemie

Mathematik I für Chemie Mathematik I für Chemie Dr. Sebastian Franz WS 2012/13 sebastian.franz@tu-dresden.de Mathematik I 1 / 24 Physikalische und chemische Gesetzmäßigkeiten werden häufig mittels mathematischer Formeln beschrieben.

Mehr

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften MÜNSTER Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften Christoph Fricke, Natascha von Aspern, Carla Tameling 12.06.2012

Mehr

Motivation. Motivation 2

Motivation. Motivation 2 Grenzzyklen 1 Motivation Grenzzyklen modellieren von selbst oszillierende Systeme Stabile Grenzzyklen kleine Abweichungen in den Anfangsbedingungen gehen in Grenzzyklus über Beispiele: Van-der-Pol Schwingkreis

Mehr

6.2 Lineare Differentialgleichungen erster Ordnung

6.2 Lineare Differentialgleichungen erster Ordnung 98 6.2 Lineare Differentialgleichungen erster Ordnung Eine Differentialgleichung erster Ordnung heisst linear, wenn sie auf die Form y = p(x)y +q(x) (I) gebracht werden kann. Die DGL y = p(x)y (H) heisst

Mehr

Theory Swiss German (Liechtenstein) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst.

Theory Swiss German (Liechtenstein) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst. Q2-1 Nichtlineare Dynamik in Stromkreisen (10 Punkte) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst. Einleitung Bistabile nichtlineare halbleitende Komponenten (z.b.

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

(auch: Zellularautomaten, Polyautomaten, cellular automata, CA)

(auch: Zellularautomaten, Polyautomaten, cellular automata, CA) 4. Zelluläre Automaten Einordnung: Modell mit räumlich konstantem Medium, raumorientiert, diskret, mit fester Nachbarschaft der Zellen, mit kontextsensitiven Wachstumsregeln. Zelluläre Automaten (auch:

Mehr

Ljapunov Exponenten. Reiner Lauterbach

Ljapunov Exponenten. Reiner Lauterbach Ljapunov Exponenten Reiner Lauterbach 28. Februar 2003 2 Zusammenfassung n diesem Teil betrachten wir ein wichtiges Thema: sensitive Abhängigkeit. Zunächst hat man ja stetige Abhängigkeit, wie man sie

Mehr

14 Lineare Differenzengleichungen

14 Lineare Differenzengleichungen 308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Hydroinformatik II: Gerinnehydraulik

Hydroinformatik II: Gerinnehydraulik Hydroinformatik II: Gerinnehydraulik 1 Helmholtz Centre for Environmental Research UFZ, Leipzig Technische Universität Dresden TUD, Dresden Dresden, 17. Juni 016 1/9 Prof. Dr.-Ing. habil. Olaf Kolditz

Mehr

Musterlösungen Serie 9

Musterlösungen Serie 9 D-MAVT D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Serie 9 1. Frage 1 Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : x sin x als Lösung besitzt. Welche der folgenden

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439, Strömungsmechanik, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen

Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Ähnlichkeitstheorie Vergleich von experimentellen Ergebnissen mit realen Konfigurationen Verringerung der Anzahl der physikalischen Größen ( Anzahl der Experimente) Experimentelle Ergebnisse sind unabhängig

Mehr

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135

Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen Kapitel XI: Gew ohnliche Differentialgleichungen 135 Inhaltsverzeichnis Kapitel X: Funktionen von mehreren Variablen 1 x1. Differentialrechnung für Funktionen von mehreren Variablen....... 1 1.1 Einführung und Beispiele.............................. 1 1.2

Mehr

Wie Schnecken sich in Schale werfen

Wie Schnecken sich in Schale werfen Hans Meinhardt Wie Schnecken sich in Schale werfen Muster tropischer Meeresschnecken als dynamische Systeme Mit Beiträgen und Bildern von Przemyslaw Prusinkiewicz und Deborah R. Fowler Mit 120 Abbildungen,

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Zelluläre Automaten. Sommerakademie Ftan Daniel Abler

Zelluläre Automaten. Sommerakademie Ftan Daniel Abler Zelluläre Automaten Sommerakademie Ftan 2004 Daniel Abler Zelluläre Automaten 1.Merkmale komplexer Systeme bzw. zellulärer Automaten 2.Grundcharakteristika - Game of Life 3.Definition 4.Eigenschaften und

Mehr

1 Über die allgemeine komplexe und reelle Lösung

1 Über die allgemeine komplexe und reelle Lösung Lösen von Differentialgleichungen Inhaltsverzeichnis 1 Über die allgemeine komplexe und reelle Lösung 1 2 Integrierender Faktor 5 2.1 Eine Beispielrechnung.................... 5 2.2 Das allgemeine Vorgehen..................

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Seltsame Attraktoren

Seltsame Attraktoren 1 Seltsame Attraktoren Proseminar: Theoretische Physik Jonas Haferkamp 9. Juli 2014 Abbildung: Poincaré-Schnitt der Duffing-Gleichungen 2 3 Gliederung 1 Motivation 2 Was ist ein (seltsamer) Attraktor?

Mehr

Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller

Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller Erstellung von Simulationsmodellen In MATLAB/Simulink Christian Müller Vorlesung AFS, 06.06.007 1 Letzte Woche: Auslegung der Klimaanlage durch stationäre Gleichungen Berechnung des Gleichgewichtszustand

Mehr

Numerik und Simulation in der Geoökologie

Numerik und Simulation in der Geoökologie 1/25 Rekapitulation Simulation des Wärmetransportes Methode der finiten Volumen Numerik und Simulation in der Geoökologie Sylvia Moenickes VL 11 WS 2007/2008 2/25 Rekapitulation Simulation des Wärmetransportes

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Walter Strampp AUFGABEN ZUR WIEDERHOLUNG. Mathematik III

Walter Strampp AUFGABEN ZUR WIEDERHOLUNG. Mathematik III Walter Strampp AUFGABEN ZUR WIEDERHOLUNG Mathematik III Differenzialgleichungen erster Ordnung Aufgabe.: Richtungsfeld und Isoklinen skizzieren: Wie lauten die Isoklinen folgender Differenzialgleichungen:

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

7. Kritische Exponenten, Skalenhypothese

7. Kritische Exponenten, Skalenhypothese 7. Kritische Exponenten, Skalenhypothese 1 Kritische Exponenten, Universalitätsklassen 2 Beziehungen zwischen den kritischen Exponenten 3 Skalenhypothese für die thermodynamischen Potentiale G. Kahl (Institut

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

Punktprozesse. Andreas Frommknecht Seminar Zufällige Felder Universität Ulm

Punktprozesse. Andreas Frommknecht Seminar Zufällige Felder Universität Ulm Einführung in Beispiele für Andreas Seminar Zufällige Felder Universität Ulm 20.01.2009 Inhalt Einführung in Beispiele für Definition Markierte 1 Einführung in Definition Markierte 2 Beispiele für Homogener

Mehr

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest

Mehr

Lotka-Volterra-Gleichungen für mehr als zwei Populationen

Lotka-Volterra-Gleichungen für mehr als zwei Populationen Lotka-Volterra-Gleichungen für mehr als zwei Populationen Dennis Kunz 06.12.2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics Lotka-Volterra-Gleichungen für mehr als zwei

Mehr

Extrema von Funktionen mit zwei Variablen

Extrema von Funktionen mit zwei Variablen Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

FC3 - Duffing Oszillator

FC3 - Duffing Oszillator FC3 - Duffing Oszillator 4. Oktober 2007 Universität Paderborn - Theoretische Physik leer Autor: Stephan Blankenburg, Björn Lange Datum: 4. Oktober 2007 FC3 - Duffing Oszillator 3 1 Theorie komplexer Systeme

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Populations Modelle Das Lotka-Volterra Model. Robin Gwinner Seminarleiterin: Dr. Iryna Rybak

Populations Modelle Das Lotka-Volterra Model. Robin Gwinner Seminarleiterin: Dr. Iryna Rybak Populations Modelle Das Lotka-Volterra Model Robin Gwinner Seminarleiterin: Dr. Iryna Rybak 04.05.2016 Motivation Rote Liste: Motivation Rote Liste: Motivation Rote Liste: Motivation Motivation Motivation

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop

Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop 2. Februar 2011 Prof. Dr. Halfmann, Prof. Dr. Walser Quantenoptik und nichtlineare

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal Apl. Prof. Dr.. Herbort, Prof. Dr. M. Heilmann 28.8.212 Bergische Universität Wuppertal Modul: Mathematik 1b für Ingenieure, Bachelor Sicherheitstechnik (PO 211 Aufgabe 1 (2 Punkte a Berechnen Sie das

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Randwertbedingungen und Ghost Cells

Randwertbedingungen und Ghost Cells Randwertbedingungen und Ghost Cells Olaf Kern Universität Trier 16.Dezember 2010 Olaf Kern (Universität Trier) Seminar Numerik 1/23 16.Dezember 2010 1 / 23 Inhaltsverzeichnis 1 Einführung 2 Periodische

Mehr

Die Navier-Stokes Gleichung

Die Navier-Stokes Gleichung Die Navier-Stokes Gleichung Mathematisches Institut der Universität Basel 11. November 2009 Fluidstatik Fluiddynamik Die Strömungslehre befasst sich mit dem physikalischen Verhalten von Fluiden. Fluide

Mehr

Ludwig Pohlmann PC III - Elektrochemie SS Elektrodenkinetik. 2. Überspannung und Überspannungen. 3. Kinetik der Einschritt-Durchtrittsreaktion

Ludwig Pohlmann PC III - Elektrochemie SS Elektrodenkinetik. 2. Überspannung und Überspannungen. 3. Kinetik der Einschritt-Durchtrittsreaktion Ludwig Pohlmann P III - Eletrochemie SS 25 Eletrodenineti 1. Eletrischer Stromfluss und Eletrodenreationen 2. Überspannung und Überspannungen 3. Kineti der Einschritt-Durchtrittsreation 4. Theorie des

Mehr

Diagnostik, Simulation und Visualisierung eines ECR-Plasmas

Diagnostik, Simulation und Visualisierung eines ECR-Plasmas Institut für Experimentelle und Angewandte Physik Diagnostik, Simulation und Visualisierung eines ECR-Plasmas T. Brandt, T. Trottenberg und H. Kersten Institut für Experimentelle und Angewandte Physik

Mehr