(6) View Transformation. Vorlesung Computergrafik T. Grosch

Größe: px
Ab Seite anzeigen:

Download "(6) View Transformation. Vorlesung Computergrafik T. Grosch"

Transkript

1 (6) Vie Transformation Vorlesng Comptergrafik T. Grosch

2 Wiederholng Transformationen Translation, Rotation, Skalierng Matrien OpenGL: Modelie Matri Hete Kamera seten (Vie Transformation) Transformation ischen Koordinatensstemen t Hierarchische Transformationen T. Grosch - 2 -

3 OpenGL Transformationen Jeder OpenGL Befehl eregt eine Matri, die on rechts an die Modelie Matri mltipliiert ird Die Pnkte erden on rechts an die aktelle Modelie Matri mltipliiert glloadidentit(); glscalef(.5,,); gltranslatef(.2,,); glrotatef(3,,,); gltwireteapot(...); E S S T S T R p S T R p OpenGL Programme erden on nten nach oben gelesen ber: Das Programm läft on oben nach nten! T. Grosch - 3 -

4 Kamera: Position nd Orientierng C Weltkoordinatensstem: die Welt, in der sich die Objekte beegen Kameradefinition:.B. gpnkt, Centerpnkt C, Vektor nach oben p T. Grosch - 4 -

5 Kamerakoordinatensstem C C C C Im llgemeinen ist Die Kamera blickt in Richtng der negatien -chse, die -chse eigt dann nach oben nd die -chse nach rechts (OpenGL) Es handelt sich m ein Rechtssstem Umandlng Weltkoordinaten Kamerakoordinaten Was passiert, enn man nach oben (-chse) sieht? T. Grosch - 5 -

6 Koordinatentransformation Wie komme ich on einem Koordinatensstem in ein anderes? (.B. gegeben ist P nd gescht ist P ) P Bekannt ist: das Koordinatensstem der Pnkt P in -Koordinaten der Ursprng des neen Koordinatensstems in Koordinaten die normierten chsen nd in Koordinaten T. Grosch - 6 -

7 Koordinatentransformation Wie komme ich on einem Koordinatensstem in ein anderes? (.B. gegeben ist P nd gescht ist P ) P p Gescht ist: der Pnkt P in -Koordinaten p Wenn ich in Pnkt starte, elche Schritte mss ich ich entlang der chsen nd gehen, damit ich bei P ankomme? T. Grosch - 7 -

8 Koordinatentransformation Wie komme ich on einem Koordinatensstem in ein anderes? (.B. gegeben ist P nd gescht ist P ) P p Verschiedene Lösngsmöglichkeiten Man kann es sich.b. so orstellen: Die Koordinate entlang einer chse entspricht der senkrechten Projektion af die chse Skalarprodkt p p p ( P ( P ) o ) o T. Grosch - 8 -

9 Koordinatentransformation Wie komme ich on einem Koordinatensstem in ein anderes? (.B. gegeben ist P nd gescht ist P ) P p Man kann die Transformation ach als Matri angeben Schritt : Translation Schritt 2 : Projektion af chsen p p p ( P ( P ) o ) o T. Grosch - 9 -

10 Koordinatentransformation Wie komme ich on einem Koordinatensstem in ein anderes? (.B. gegeben ist P nd gescht ist P ) P p p Schritt : Translation -: T. Grosch - -

11 Koordinatentransformation Wie komme ich on einem Koordinatensstem in ein anderes? (.B. gegeben ist P nd gescht ist P ) P p Schritt 2: Projektion af -chsen: Vkt Zil Mti hib Die -Vektoren erden als Zeilen in die Matri geschrieben Matri*Vektor entspricht Skalarprodkt p T. Grosch - -

12 Koordinatentransformation Wie komme ich on einem Koordinatensstem in ein anderes? (.B. gegeben ist P nd gescht ist P ) P p p Insgesamt ergibt sich P P T. Grosch - 2 -

13 Matri asmltipliieren Matri asmltipliieren M o o o Wenn man die Transformation in einer Matri angibt, dann -Vektoren als Zeilen der negatie Translationsektor ist in -Koordinaten (!) T. Grosch - 3 -

14 Beispiel Gegeben: ; Beispiel Gegeben: ; 4 ; 3 ; 3 5 ; 4 5 ; P P / 5 3/ ) ( o o P p p p P / 5 4 / ) ( o o P p p p p p P 5 5 3/ ls Matri: (hier keine Translation) p p T. Grosch (hier keine Translation)

15 Vie Transformation gllookt(gldoble,,, C, C, C,,, ); P P C Eine Kamera ird in OpenGL mit gllookt( ) definiert s den Parametern, C, (from, at, p) ird ein Kamera-Koordinatensstem,, konstriert (siehe Folie Kamerakoordinatensstem) Die Weltkoordinaten erden dann in Kamerakoordinaten mgerechnet p p p ( P ( P ( P ) o ) o ) o Kamera Welt T. Grosch - 5 -

16 Vie Transformation Vie Transformation gllookt(gldoble,,, C, C, C,,, ); C OpenGL berechnet eine Matri V ( Vie) für diese Transformation V (Vie) für diese Transformation Die V Matri ird on rechts an die Modelie Matri mltipliiert Wo steht gllookt im Programm? Basisektoren als Zeilen g g T. Grosch - 6 -

17 Nate Robin projection.ee T. Grosch - 7 -

18 Rotation m beliebige chse Es soll im Uhreigersinn m den Winkel α m eine beliebige chse (hier Vektor a) gedreht erden α a Wie geht das? Idee: Rückführng af bekannte Rotationen ti a T. Grosch - 8 -

19 Rotation m beliebige chse Es soll im Uhreigersinn m den Winkel α m eine beliebige chse (hier Vektor a) gedreht erden a Rotation R so, dass a in Richtng der Z-chse eigt α Rotation R (α) m α im Uhreigersinn m -chse γ α Dann ieder rück rotieren, R - β Wie berechnet man R? R ( γ ) R ( β ) R ( α ) R ( β ) R ( γ ) m -chse drehen, so dass a in -Ebene liegt m -chse drehen, so dass a af liegt T. Grosch - 9 -

20 Rotation m beliebige chse a cosγ sin γ a sin γ cosγ a m -chse drehen, so dass a in -Ebene liegt γ a sin γ Wie groß ist der Rotationsinkel ti i γ? a tan γ γ a a a a a a cos γ 2 a + a + a 2 T. Grosch - 2 -

21 Rotation m beliebige chse cos β sin β a a sin β cos β a β a m -chse drehen, so dass a af liegt a Wie groß ist der Rotationsinkel ti i? a tan β a sin β β a a β a a a cos β T. Grosch - 2 -

22 Rotation m beliebige chse α Insgesamt ergibt sich also a folgende Transformation: α β γ R ( γ ) R ( β ) R ( α ) R ( β ) R ( γ ) cos β sin β cosα sinα cos β sin β cosγ sin γ sinα cosα cosγ sin γ sin γ cosγ sin β cos β sin β cos β sin γ cos γ Das geht ach einfacher. T. Grosch

23 lternatie Rotation lternatie Rotation Bestimme ein beliebiges Bestimme ein beliebiges, rechtshändiges, ortho-normiertes Koordinatensstem mit a (siehe Kamerakoord sstem) (siehe Kamerakoord.sstem). Transformation ins -Sstem 2. Rotation m -chse a α 3. Rücktransformation ins -Sstem cos sin sin cos α α α α T. Grosch

24 lternatie Rotation Die Lage der Vektoren nd ist beliebig, solange a α lle Vektoren normiert nd senkrecht Ein rechtshändiges Koordinatensstem entsteht korrekte Rotationsrichtng a Eine Möglichkeit a a T. Grosch

25 lternatie Rotation lternatie Rotation Für eine orthonormale Matri gilt T M M Denn der Eintrag m_ij entspricht dem Skalarprodkt on Zeile i mit Spalte j lso Skalarprodkt orthonormaler Vektoren o o T. Grosch

26 Hierarchien

27 Beispiel: to Karosserie Räder Transformationen Radgeometrie Vorgehen beim Rendern Zeichne die Karosserie Merke dir o d bist Transformation m rechten Vorderrad Zeichne das Rad nd erfe die lette Transformation eg (also rück m Ursprng der Karosserie) Merke dir o d bist Transformation m linken Vorderrad Radgeometrie ist m den Ursprng modelliert T. Grosch

28 Matrienstack Die bisher aktelle aktelle Matri genannte Matri ist tatsächlich als Stack implementiert. Oft benötigt man einen Zischenspeicher für Matrien Lösng: Matristack glpshmatri(); kopiert die oberste Matri ( merke dir o d bist ) glpopmatri(); entfernt die oberste Matri ( gehe dahin rück, o d arst ) Psh nd Pop bilden qasi Klammern m Transformationen der Matristack kann min. 32 Einträge fassen T. Grosch

29 Matrienstack glpshmatri(); kopiert die oberste Matri merke dir o d bist Modelie af Stack ablegen Modelie bleibt nerändert C B C C B : M MODELVIEW glpopmatri(); D C B C B entfernt die oberste Matri gehe dahin rück, o d arst Obere Matri om Stack entnehmen nd in Modelie kopieren T. Grosch

30 Beispiel: to Karosserie m den Ursprng mit Breite 2, Höhe.5 nd Tiefe Schreiben sie ein Programm, das die Karosserie as einem Einheitsürfel eregt (Bereich (-.5,.5) mit gltwirecbe(.)) Sete die Räder (Kgeln mit Radis.) in die Ecken mit gltwiresphere(.,,); Breite: 2 Höhe:.5 Tiefe: T. Grosch - 3 -

31 ls Senengraph Trafo to 2.5 to Tiefe: Trafo Trafo Trafo Trafo Trafo Karosserie Rad Rad 2 Rad 3 Rad 4 T. Grosch - 3 -

32 Beispiel-Code.5 2 glpshmatri(); glscalef(2,.5,); gltwirecbe(.); glpopmatri(); glpshmatri(); gltranslatef(-,-.25,-.5); 25 5); gltwiresphere(.,,); glpopmatri(); glpshmatri(); gltranslatef(,-.25,-.5); l 25 5) gltwiresphere(.,,); glpopmatri(); glpshmatri(); gltranslatef(,-.25,.5); gltwiresphere(.,,); glpopmatri(); glpshmatri(); gltranslatef(-,-.25,.5); gltwiresphere(.,,); glpopmatri(); T. Grosch

33 Interpretation der Transformationen I α Weltkoordinaten Interpretiere die Koordinaten der Objekte als Weltkoordinaten Nimm das Objekt (die Weltkoordinaten) nd drehe es m den Winkel α T. Grosch

34 Interpretation der Transformationen II α Lokale Koordinatenssteme Interpretiere die Koordinaten der Objekte in ihrem eigenen lokalen Koordinatensstem m nfang ist tdas lokale l Sstem mit itdem Weltkoordinaten t identisch Drehe das Koordinatensstem m den Winkel α Zeichne Objekt in lokales Koordinatensstem Interessant: Mit der Vorstellng lokaler Koordinatenssteme kann man OpenGL Programme on oben nach nten lesen T. Grosch

35 glrotatef (45.,.,.,.); gltranslatef (2.,.,.); gltwirecbe(.); Die 2 Sichten g (,, ); globale Sicht l l l l lokale Sicht T. Grosch

36 Hierarchische Transformationen Matri Stack ird erendet bei hierarchischen Transformationen Hier eignet es sich besser, das OpenGL Programm on oben nach nten lesen Idee: erende lokales Koordinatensstem Wende Transformationen af lokales Koordinatensstem an Translation entlang lokaler chsen Rotation m aktellen Ursprng Zeichne am Ende Objekt in lokales Koordinatensstem T. Grosch

37 Hierarchische Transformationen Beispiel: rmbeegng Ober- nd Unterarm seien drch Qader mit den angegebenen sdehnngen modelliert Schreiben sie ein Programm, das den rm an dem Schltergelenk (s) nd dem Ellbogen (e) drch Eingabe der Werte im Wertebereich beegt Verenden sie da als einige geometrische Primitie Würfel im Bereich (-.5,.5) mit gltwirecbe(.) 2.5 s 9 e 9.4 T. Grosch

38 Trafo rechter rm Rechter rm Lokale Koordi- natenssteme glrotatef ((GLfloat) -sholder,.,.,.); Oberarm gltranslatef (.,.,.); glscalef (2.,.4,.); gltranslatef (2.,.,.); glrotatef ((GLfloat) elbo,.,.,.); Unterarm gltranslatef (.75,.,.); glscalef (.5,.4,.); T. Grosch

39 Beispiel Code glclear (GL_COLOR_BUFFER_BIT); glcolor3f(,,); glloadidentit(); gllookt(,,,,,,,,); Rechter rm Trafo rechter rm glrotatef ((GLfloat) -sholder,.,.,.); glrotatef ((GLfloat) -sholder,.,.,.); glpshmatri(); gltranslatef (.,.,.); glscalef (2.,.4,.); gltwirecbe (.); glpopmatri(); Oberarm gltranslatef (.,.,.); glscalef (2.,.4,.); gltranslatef (2.,.,.); glrotatef ((GLfloat) elbo,.,.,.); gltranslatef (2.,.,.); glrotatef ((GLfloat) elbo,.,.,.); gltranslatef (.75,.,.); glscalef (.5,.4,.); gltwirecbe (.); glflsh(); Unterarm gltranslatef (.75,.,.); glscalef (.5,.4,.); T. Grosch

40 Zsammenfassng Vie Transformationen Koordinatenssteme Hierarchien Nächste Woche Projektionen bbildng 3D 2D T. Grosch - 4 -

(10) View Transformation

(10) View Transformation () Vie Transformation Vorlesng Comtergrahik I S. üller KOBLENZ LNDU KOBLENZ LNDU S. üller - - Wiederholng I ffine Transformationen atrienmltilikation ist assoiati, aber nicht kommtati. Transformationsmatrien

Mehr

Computergrafik Sommersemester 2004 Übungen

Computergrafik Sommersemester 2004 Übungen Sommersemester 4 Freiwillige Zusatzübung Aufgabe 6: Transformationen im zweidimensionalen aum Berechnen Sie die Transformationsmatri, die eine Szene zuerst um 3 Grad um den Ursprung dreht und anschließend

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

3 Koordinatentransformationen

3 Koordinatentransformationen 8 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 3 Koordinatentransformationen Für die Darstellung von dreidimensionalen Objekten wird grundsätlich eine Reihe von Transformationen ausgeführt, die von den

Mehr

3 Flächen und Flächenintegrale

3 Flächen und Flächenintegrale 3 Flächen Flächen sind im dreidimensionalen Ram eingebettete zweidimensionale geometrische Objekte In der Mechanik werden zb Membranen nd chalen als Flächen idealisiert In der Geometrie treten Flächen

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 2012-05-30 Korrektur: Kugelkoordinaten II r und θ konstant: Rand einer Kreisscheibe parallel zur xy Ebene z θ fest y θ konstant, r R : Kegel, ausgehend

Mehr

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem 2.3. Rechtshändiges und linkshändiges Koordinatensstem Die Koordinatenachsen im dreidimensionalen Raum lassen sich auf wei verschieden Arten anordnen: Linkshändig und Rechtshändig (s. Abbildung 2.9). Um

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Kurze Zusammenfassung (Stand: 3 Juli 2) Prof Dr V Stahl Copyright 28 by Volker Stahl All rights reserved V Stahl Lineare Algebra und Computer Grafik Zusammenfassung

Mehr

Vorgehen zur Kalibrierung von Kamerabildern

Vorgehen zur Kalibrierung von Kamerabildern Vorgehen r Kalibrierng von Kamerabildern Prof. Dr.-Ing. Bernhard Lang, 06.04.2013 3 Kalibrierng von Kamerabildern 3.1 Hintergrnd Eine reale Kamera lässt sich geometrisch drch eine Lochkamera modellieren.

Mehr

8 (z.b.) (1 P.) z. (0.5 P.) (0.5 P.) x. (z.b.) (0.5 P.) z

8 (z.b.) (1 P.) z. (0.5 P.) (0.5 P.) x. (z.b.) (0.5 P.) z Gymnasim Bämlihof Matritätsprüfngen 9 Seite 1 on 1 fgabe 1 Ramgeometrie 15 P. a) k CS CS CS 4 4 9 7 CS ( 4) 7 74 8.65... 8.6 1.5 P. b) c) Variante: Direkt in Distanzformel einsetzen. x 6 g : y 4 s 4 4

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

Blatt 12: Satz von Gauss, Satz von Stokes

Blatt 12: Satz von Gauss, Satz von Stokes Fakltät für Physik Jan on Delft, Katharina Stadler, Frake Scharz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepages.physik.ni-menchen.de/~ondelft/lehre/3t0/ Blatt 2: Satz on Gass, Satz on Stokes

Mehr

3D Programmierpraktikum: Geometrische Transformationen, Materialien und Beleuchtung

3D Programmierpraktikum: Geometrische Transformationen, Materialien und Beleuchtung 3D Programmierpraktikum: Geometrische Transformationen, Materialien und Beleuchtung Praktikum 3D Programmierung Sebastian Boring, Otmar Hilliges Donnerstag, 8. Mai 26 LMU München Medieninformatik Boring/Hilliges

Mehr

Rauten-Mitten-Kegelschnitte zu vier Geraden. Eckart Schmidt. 1. Vorbemerkungen

Rauten-Mitten-Kegelschnitte zu vier Geraden. Eckart Schmidt. 1. Vorbemerkungen Raten-Mitten-Kegelschnitte z ier Geraden 1 Vorbemerkngen Eckart chmidt Z ier Geraden g 1, g, g 3, g 4 erden Raten R 1 R R 3 R 4 betrachtet, deren Ecken entsprechend der Indizierng af den orgegebenen Geraden

Mehr

Geometrie und Topologie von Flächen

Geometrie und Topologie von Flächen SoSe 06 Geometrie nd Topologie on Flächen Lösng der Afgaben on Blatt 6 Prof. Dr. Thomas Vogel Dr. Jonathan Bowden Afgabe. a) Wir wählen die Parametrisierng ϕ : V S, ϕx, y) x, y, ϕx, y)). Nach Definition

Mehr

Blatt 14.2: Integralsätze von Gauß und Stokes

Blatt 14.2: Integralsätze von Gauß und Stokes Fakltät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan on Delft Übngen: Benedikt Brognolo, Dennis Schimmel, Frake Scharz, Lkas Weidinger http://homepages.physik.ni-menchen.de/~ondelft/lehre/5r/

Mehr

Übungsstunde 5 zu Computergrafik 1

Übungsstunde 5 zu Computergrafik 1 Institut für Computervisualistik Universität Koblenz 19. un 20. November 2012 Inhaltsverzeichnis 1 Transformationen Translation Skalierung Rotation 2 Reihenfolge von Transformationen Beispiele 3 Programmieraufgabe

Mehr

7.1. Aufgaben zu Vektoren

7.1. Aufgaben zu Vektoren 7.. Afgben z Vektoren Afgbe : Vektoren in der Ebene ) Zeichne die folgenden Vektoren ls Ortsvektoren in eine pssende Koordintenebene (x -x -Ebene, x -x -Ebene oder x - x -Ebene) des krtesischen Koordintensystems.,,,

Mehr

7.3 Lorentz Transformation

7.3 Lorentz Transformation 26 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE 7.3 Lorent Transformation In diesem Abschnitt sollen die Transformationen im 4-dimensionalen Minkowski Raum betrachtet werden. Dabei wollen wir uns auf solche

Mehr

Technische Mechanik I. Vektorrechnung Eine Einführung

Technische Mechanik I. Vektorrechnung Eine Einführung Uniersität Stttgart Institt für Mechanik Prof. Dr.-Ing. W. Ehlers www. mechba. ni-stttgart. de Ergänzng zr Vorlesng Technische Mechanik I Vektorrechnng Eine Einführng WS 2015/16 Lehrsthl für Kontinmsmechanik,

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngsssteme Lineare Gleichngsssteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; m Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

Programmierpraktikum 3D Computer Grafik

Programmierpraktikum 3D Computer Grafik Prof. Andreas Butz Dipl.Inf. Otmar Hilliges Programmierpraktikum 3D Computer Grafik Grundlagen der Computergrafik: Affine Transformationen Beleuchtung in OpenGL. Organisatorisches & Zeitplan Bearbeitungszeitraum

Mehr

x y Kenner der Kegelschnitte werden hier eine Ellipse erkennen, deren Hauptachsen aber nicht mit der Richtung der Koordinatenachsen zusammenfallen.

x y Kenner der Kegelschnitte werden hier eine Ellipse erkennen, deren Hauptachsen aber nicht mit der Richtung der Koordinatenachsen zusammenfallen. Matrizen / ensoren - eil ensoren - zweidimensionales Beispiel um das Eigenwertproblem zu verdeutlichen hier als Beispiel ein zweidimensionales Problem die entsprechenden Matrizen und Determinanten haben

Mehr

Was ist Robotik? Robotik heute:

Was ist Robotik? Robotik heute: Grundlagen Was ist Robotik? Das Wort Robot / Roboter entstand 92 in einer Geschichte von Karel Ċapek und geht auf das tschechische Wort robota (rbeit, Fronarbeit) zurück. Dessen Ursprung ist das altkirchenslawische

Mehr

Repräsentation und Transformation von geometrischen Objekten

Repräsentation und Transformation von geometrischen Objekten Repräsentation und Transformation von geometrischen Objekten Inhalt: Grundlagen Überblick Einfache Transformationen in der Ebene Homogene Koordinaten Einfache Transformationen in der Ebene mit homogenen

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil SIEGFRIED PETRY Nefassng vom.jni 016 I n h a l t 1 Mehr über Tensoren. Stfe Darstellng eines Tensors in einer Basis 4 Beispiele nd Übngen 5 4 Lösngen 1 1 1 Tensoren.

Mehr

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems Transformation - 1 1. Allgemeines 2. Zwei durch eine Translation verknüpfte gleichartige Basissysteme 3. Zwei durch eine Translation verknüpfte verschiedenartige Basissysteme (noch gleiche Orientierung)

Mehr

Allgemeine Mechanik Musterlösung 1.

Allgemeine Mechanik Musterlösung 1. Allgemeine Mechanik Musterlösung. HS 24 Prof. Thomas Gehrmann Übung. Kraftfelder und Linienintegrale. a) Gegeben sei das Kraftfeld F, 2 ). Berechnen Sie das Linienintegral von r, ) nach r 2 2, ) entlang

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt Michael Bhlmann Mathematik > Vektorrechnng > Krezprodkt Einleitng a Für zwei Vektoren a a nd gelten im dreidimensionalen reellen Vektorram a neen der Addition Vektoraddition) nd der Mltiplikation mit einer

Mehr

3.5 Transformationen im Raum

3.5 Transformationen im Raum 3.5 Transformationen im Raum Translation Die Verschiebung eines Punktes (,,) T um den Translationsvektor (t,t,t ) T ergibt den Punkt (,, ) T mit 1 t 1 t 1 t 1 + t + t = = + t 1 1 1 T(t,t,t ) Computergrafik

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, II

KOMPETENZHEFT ZUR TRIGONOMETRIE, II KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

und der Kosinussatz cos(γ) = a2 + b 2 c 2 2 a b Sinussatz sin(β) = a b

und der Kosinussatz cos(γ) = a2 + b 2 c 2 2 a b Sinussatz sin(β) = a b Blatt Nr 1906 Mathematik Online - Übungen Blatt 19 Dreieck Geometrie Nummer: 41 0 2009010074 Kl: 9X Aufgabe 1911: (Mit GTR) In einem allgemeinen Dreieck ABC sind a = 18782, c = 1511 und β = 33229 gegeben

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Computergrafik 1 Übung

Computergrafik 1 Übung Prof. Dr. Andreas Butz Dipl.-Medieninf. Hendrik Richter Dipl.-Medieninf. Raphael Wimmer Computergrafik Übung Wiederholung Lineare Algebra: Vektoren, Matrizen, Transformationen in D und 3D Computergrafik

Mehr

die Zielgröße. Für diesen gilt A = u v.

die Zielgröße. Für diesen gilt A = u v. VII Unterschng on Fnktionen 7 ptimieren Legen Sie mit gena 6 Streichhölzern möglichst iele erschiedene Rechtecke. Ermitteln Sie jeweils den Flächeninhalt ( LE = Streichholzlänge). Stellen Sie die Seitenlängen

Mehr

Transformation - 3. Für "übliche" Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche

Transformation - 3. Für übliche Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche Transformation - 3 Wiederholung und spezielle Angaben im Zusammenhang mit Kreis-Berechnungen 1. Problemstellung Im Zusammenhang mit der Berechnung von Schnittflächen kann es sinnvoll sein, die Berechnung

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Vortrag Gmnasium Birkenfeld Von der mathematischen Spielerei zur technischen Anwendung Vortrag Gmnasium Birkenfeld. Vektoren und Matrizen Wir betrachten einen Punkt P (, ) in der Ebene eines rechtwinklig

Mehr

Radgetriebene Systeme

Radgetriebene Systeme Radgetriebene Systeme Mobilität, Räder Räder benötigen weniger Energie und erlauben eine schnellere Fortbewegung (auf entsprechendem Terrain) Benötigen Kinematische Gleichungen, d.h. Beschreibungen wie

Mehr

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen 6. Vektorra Ein Vektorra oder linearer Ra ist eine algebraische Strktr die in fast allen Zweigen der Matheatik erwendet wird. Eingehend betrachtet werden Vektorräe in der Linearen Algebra. Die Eleente

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 212-5-7 Noch Kapitel III: Transformationen 2D Rotation um freies Rotationszentrum y α P(p x, p y ) Ziel: Rotiere Punkte r i um Winkel α um P und erhalte

Mehr

Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der Resultierenden F 5

Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der Resultierenden F 5 Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der esultierenden Aufgabe: Belasteter Balken F 5 F 1 F 2 F 3 F 4 F 5 55 110 a a a a a Gegeben: F1 = 20 N F2 = 15 N F3 = 30 N F4 = 10 N F5 = 45 N a

Mehr

Programmierpraktikum 3D Computer Grafik

Programmierpraktikum 3D Computer Grafik Dipl.Inf. Otmar Hilliges Programmierpraktikum 3D Computer Grafik Grundlagen der Computergrafik: Affine Transformationen Beleuchtung in OpenGL. Organisatorisches & Zeitplan Bearbeitungszeitraum für aktuelles

Mehr

2. Zentrale Kraftsysteme

2. Zentrale Kraftsysteme 2. Zentrale Kraftsysteme Definition: Ein Kraftsystem, bei dem sich die Wirkungslinien aller Kräfte in einem Punkt schneiden, wird als zentrales Kraftsystem bezeichnet. Die Kräfte dürfen entlang ihrer Wirkungslinie

Mehr

3. Erweiterung der trigonometrischen Funktionen

3. Erweiterung der trigonometrischen Funktionen 3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x

Mehr

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 3 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick gsheldr@shelx.uni-ac.gwdg.de Das Gitter Kristalle bestehen

Mehr

Inhaltsverzeichnis. 1 Hardwaregrundlagen

Inhaltsverzeichnis. 1 Hardwaregrundlagen Inhaltsverzeichnis 1 Hardwaregrundlagen 2.1 Koordinatentransformationen 2.2 Transformationen in der Ebene 2.3 Transformationen im Raum 3 Repräsentation und Modellierung von Objekten 4 Rasterung 5 Visibilität

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält.

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält. 5 0. Die Kgel 0. Die Kgelgleichng Def. Unter der Kgel k mit Mittelpnkt M nd adis verstehen wir die Menge aller Pnkte P, die vom Mittelpnkt M einen vorgegebenen abstand haben, für die also gilt: MP MP oder

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen Kapitel 2 Lineare Algebra II 21 Lineare Abbildungen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 21 Definition Eine

Mehr

a) Wie hoch ist die Leiter? b) Wie weit stehen die beiden Fußpunkte auseinander? Abbildung 1: Eine Stehleiter

a) Wie hoch ist die Leiter? b) Wie weit stehen die beiden Fußpunkte auseinander? Abbildung 1: Eine Stehleiter 1. Berechnen Sie die jeweils fehlenden Größen (Winkel α, β und γ, Seiten a, b und c) in den folgenden Dreiecken: a) a = 5 cm, b = 9 cm, γ = 90 b) c = 9 cm, a = 6 cm, γ = 56, 3 (Überlegen Sie zuerst, wo

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren Vorlesung: Analsis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Koordinatenssteme, klassische Differentialoperatoren Polarkoordinaten = cos() = sin() = 2 + 2 =(,) tan() = für 0. Winkel

Mehr

Elementare Geometrie Vorlesung 18

Elementare Geometrie Vorlesung 18 Elementare Geometrie Vorlesung 18 Thomas Zink 26.6.2017 1.Bild eines Vektors bei einer affinen Abbildung Es sei f : E E eine affine Abbildung von Ebenen. Es sei v ein Vektor der Ebene E, d.h. eine Translation.

Mehr

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4)

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4) Lösung zur Übung 1 Aufgabe 1 In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom im Zentrum des Würfels liegt. Wie groß ist der Tangens des halben H-C-H Bindungswinkels?

Mehr

Th. Risse, HSB: MAI WS05 1

Th. Risse, HSB: MAI WS05 1 Th. Risse, HSB: MAI WS05 1 Einige Übungsaufgaben zur analytischen Geometrie & linearen Algebra viele weitere Übungsaufgaben mit Lösungen z.b. in Brauch/Dreyer/Haacke, Papula, Stingl, Stöcker, Minorski

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngssysteme Lineare Gleichngssysteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; zm Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

Trainingsaufgaben Teil 1 (Sie müssen nicht alle Aufgaben bearbeiten. Eine Auswahl der Lösungen wird in der letzten VL und Ü des Semesters besprochen)

Trainingsaufgaben Teil 1 (Sie müssen nicht alle Aufgaben bearbeiten. Eine Auswahl der Lösungen wird in der letzten VL und Ü des Semesters besprochen) Trainingsaufgaben Teil 1 (Sie müssen nicht alle Aufgaben bearbeiten. Eine Auswahl der Lösungen wird in der letzten VL und Ü des Semesters besprochen) Aufgabe 1 Fassen Sie soweit möglich zusammen: 54 3

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2.

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2. Aufgabe (8 Punkte (a der Realteil von z +i 4 i zu bestimmen. z + i ( + i(4 + i + i 4 i + i.,5 Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält Re (z Im (z.,5 (b (b

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I cript zr Vorlesng om 090620000 Angefertigt on: Matrikel-Nr: 702781 Woraf rde in dieser Vorlesng eingegangen? 1 Eingehen af die orherigen Vorlesng 1 2 ystematische Konstrktion

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 8. Der Kreis lässt sih drh seinen Mittelpnkt nd seinen Radis darstellen. Man benötigt die Distanz om Masklikpnkt zm Kreismittelpnkt. Wenn diese kleiner (oder gleih) dem Radis ist, trifft der Masklikpnkt

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

Computergrafik 1 Transformationen

Computergrafik 1 Transformationen Computergrafik 1 Transformationen Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin Überblick Repräsentationen, Primitiven Transformationen in 2D Skalierung Translation Rotation Scherung

Mehr

Affine Koordinatentransformationen

Affine Koordinatentransformationen Affine Koordinatentransformationen Medieninformatik IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Wintersemester 017/18 Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen

Mehr

MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE. Marko HeRBERTZ

MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE. Marko HeRBERTZ MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE Marko HeRBERTZ Wiederholung: Objekt-, Welt- und Kamerakoordinaten Kugelkoordinaten in kartesische Mögliche Schwierigkeiten Kameralinse Lage der Festung Lagerichtige

Mehr

Trainingsaufgaben Teil 1

Trainingsaufgaben Teil 1 Trainingsaufgaben Teil 1 Update am 13.02.2015 mit reduziertem Aufgabenumfang und Ergebnisangaben Bitte bei Bedarf auch die ausführlich beschriebenen Lösungsverfahren in den Skripten ansehen. Bei vielen

Mehr

Kinematik des Puma 200

Kinematik des Puma 200 Kinematik des Puma 200 1 2 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 2 Denavit-Hartenberg-Konfiguration 5 3 Mehrdeutigkeiten 7 4 Direkte Kinematik 10 5 Inverse Kinematik 13 6 Orientierung des

Mehr

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y 4 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 4 Projektionen 4. Parallelprojektion (a) Senkrechte Projektion auf eine Koordinatenebene Wir wählen als Projektionsebene die Ebene, d. h. in den Beeichnungen

Mehr

Hans Delfs. Übungen zu Mathematik III für Medieninformatik

Hans Delfs. Übungen zu Mathematik III für Medieninformatik Hans Delfs Übungen zu Mathematik III für Medieninformatik 1 RÄUMLICHE DARSTELLUNGEN VON OBJEKTEN 1 1 Räumliche Darstellungen von Objekten Der Einheitswürfel ist der achsenparallele Würfel in A 3, der von

Mehr

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend?

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend? D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie.. Welche der folgenden Funktionen (, R sind strikt monoton wachsend? (a (b (c + 3 (d e (e (f arccos Keine. Auf (, 0] ist strikt monoton

Mehr

Waagbalkenuhr BUCO 1320

Waagbalkenuhr BUCO 1320 Waagbalkenhr BUCO 130 Waagbalkenhr BUCO 130 Berechnng - 1 - Waagbalkenhr BUCO 130 1 INHALTVERZEICHNIS 1 Inhaltverzeichnis... Einleitng...3 3 Berechnngen...4 3.1 Drehbewegng des Waagbalkens...4 1. Schwingngsamplitde...4

Mehr

Projektion. Ebene geometrische Projektionen

Projektion. Ebene geometrische Projektionen Projektion - 1 - Ebene geometrische Projektionen Die ebenen geometrischen Projektionen sind dadurch charakterisiert, daß mit Projektionsstrahlen konstanter Richtung, d.h. entlang von Geraden, auf Ebenen

Mehr

Klausur Robotik/Steuerungstechnik

Klausur Robotik/Steuerungstechnik Prof. Dr. K. Wüst SS 2009 Fachbereich MNI FH Gießen-Friedberg Klausur Robotik/Steuerungstechnik 9.7.2009 Nachname: Vorname: Matrikelnummer: Aufgabe Punkte erreicht 1 30 2 30 3 40 4 20 Summe 120 Mit Lösungen

Mehr

Lösungen lineare Funktionen

Lösungen lineare Funktionen lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.

Mehr

Vorlesung Finite-Elemente Prof. Rieg. Elastizitätstheorie I. wieso?? Definition!

Vorlesung Finite-Elemente Prof. Rieg. Elastizitätstheorie I. wieso?? Definition! Vorlesng Finite-lemente Prof. Rieg lastiitätstheorie I wieso?? Definition! lastiitätstheorie II lim A B A B A B A B A Dehnng am Pnkt A ) ( ) ( ) ( ) ( A A ( B ) ( A ) lastiitätstheorie III A B A B ( )

Mehr

Grundlagen der Spieleprogrammierung

Grundlagen der Spieleprogrammierung Grundlagen der Spieleprogrammierung Sommer 23 Grundlagen der Spieleprogrammierung Teil I: 3D-Graphik Kapitel 2: Die Mathematik Peter Sturm Universität Trier Outline. Übersicht und Motivation 2. Mathematische

Mehr

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation Bildtransformationen Geometrische Transformationen Grauwert-Interpolation Transformation Transformation zwei Schritte geometrische Transformation (Trafo der Koordinaten) Neuberechnung der Pielwerte an

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

Geometrie in der Ebene und im Raum

Geometrie in der Ebene und im Raum KAPITEL Geometrie in der Ebene und im Raum. Koordinaten Wir beschreiben nach einer Idee von René Descartes (596 650) jeden Punkt in der Ebene durch ein Paar reeller Zahlen. Die Menge der Paare reeller

Mehr

1.5. Relationen, Abbildungen und Flächen

1.5. Relationen, Abbildungen und Flächen .5. Relationen, Abbildungen und Flächen In Verallgemeinerung der reellen Situation nennt man jede Teilmenge F eines kartesischen Produkts A B eine Relation zwischen A und B, und man spricht von einer Abbildung

Mehr

Aufgaben zum Skalarprodukt

Aufgaben zum Skalarprodukt Aufgaben zum Skalarprodukt 3 1.0 Gegeben ist der Vektor a= 4. 5 0 0 1.1 Berechnen Sie a und a. 1.2 Berechnen Sie denjenigen Vektor der Länge 5 LE, der dieselbe Orientierung hat wie der Gegenvektor von

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α Mathematik 1 - Übungsblatt 7 Lösungshinweise Tipp: Verwenden Sie zur Kontrolle Scilab, wo immer es möglich ist. Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind

Mehr

(4) Mathematik der Farben

(4) Mathematik der Farben (4) Mathematik der Farben Vorlesng CV-Integration S. Müller Draft Diese Folien enthalten neröffentlichte Ergebnisse nd sind daher bitte nr für den internen Gebrach z erwenden. Seziell die Zahlenwerte sind

Mehr

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1 Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 1. Vektorrechnung und Geometrie Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies

Mehr