Grundlagen der Spieleprogrammierung

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Spieleprogrammierung"

Transkript

1 Grundlagen der Spieleprogrammierung Sommer 23 Grundlagen der Spieleprogrammierung Teil I: 3D-Graphik Kapitel 2: Die Mathematik Peter Sturm Universität Trier Outline. Übersicht und Motivation 2. Mathematische Grundlagen 3. Das Ideal: Photorealistisch (Ratracing, Radiosit 4. Die Realität: DirectX und OpenGL (Übersicht 5. Schritt : Drahtgitter 6. Schritt 2: Teturen 7. Schritt 4: Licht, Filter, etc. 8. Schritt 5: Fortgeschrittene Techniken (erte-, Piel-Shader, 9. 3D-Hardware.3D-Engines im Überblick, Cg von nvidia. Spielekonsolen 2.Zusammenfassung und Ausblick (c Peter Sturm, Universität Trier

2 Grundlagen der Spieleprogrammierung Sommer 23 3D-Graphik Mathematik im 3D-Raum Motivation Abstraktionen Koordinatenssteme Punkt (ektor Gerade, Fläche, Körper Affine Transformationen erschieben, Skalieren, Drehen, Scheren Leistungsaspekte Gleitkommaahlen iele viele Gleitkommaoperationen Hoher Optimierungsdruck Beugsssteme Ursprung und orthogonale Richtungsvektoren Objektposition relativ um Ursprung Absolutes Koordinatensstem Relatives Koordinatensstem Objektspeifischer Ursprung Koordinationssteme Linkshändige und rechtshändige Modelle (c Peter Sturm, Universität Trier 2

3 Grundlagen der Spieleprogrammierung Sommer 23 Punkte sind relativ u einem Koordinatensstem Abstand vom Ursprung Punkte Punkt: 3-Tupel Operationen auf Punkte erschieben (Translation Skalierung Rotation a b c b a c Affine Transformationen Translation erschiebung bgl. den Grundachsen Mathematisch: Addition +D t + t + t + t t + t Skalierung Abstand um Ursprung kleiner oder größer Mathematisch: Multiplikation S Rotation Drehung (meist um eine Grundachse Mathematisch: Winkelfunktionen R Beispiel: Drehung im Z-Achse: s s s s s s + * (c Peter Sturm, Universität Trier 3

4 Grundlagen der Spieleprogrammierung Sommer 23 (c Peter Sturm, Universität Trier 4 Wünschenswert Einheitliche Datenstruktur für alle affinen Transformationen Matrienoperationen Homogenes Koordinatensstem 4-dimensionale Koordinaten Punkt (,,, w mit a a/w und w Gängig ist w Transformationsmatrien: 44 Translation Einfache erschiebungsmatri Operation t t t t t t

5 Grundlagen der Spieleprogrammierung Sommer 23 (c Peter Sturm, Universität Trier 5 Skalierung Skalierungsmatri Operation s s s s s s Uniform: sss Rotation Nur über jeweils eine Grundachse Alles andere geht auch, ist aber Brain Twister Grundmatrien: R R R

6 Grundlagen der Spieleprogrammierung Sommer 23 Rotation und dann erschiebung Beispiel Drehung um 45 Grad bgl. X-Achse erschiebung um -8 bgl. Y-Achse Matrien usammenfassen Achtung: Erste Operation Lette Matri M2 M: Erste Transformation ist M Konstruktion eines lokalen Sstems Matrienoperationen bgl. Koordinatensstem (Welt Aufbau des lokalen Sstems:. erschieben des Zentrums (Pivot um Ursprung 2. Gewünschte affine Transformation ausführen 3. erschiebung urück an den Ausgangspunkt Resultat: 2 Taff (c Peter Sturm, Universität Trier 6

7 Grundlagen der Spieleprogrammierung Sommer 23 Matrioperationen nicht kommutativ Beispiel: Teekanne Translation: erschiebung an Y-Achse um -8 Rotation: Drehung an X-Achse um -45 Grad Zuerst Translation, dann Rotation Zuerst Rotation, dann Translation Live T, dann R R, dann T (c Peter Sturm, Universität Trier 7

8 Grundlagen der Spieleprogrammierung Sommer 23 ektoraddition Kräftparallelogramm Weitere sinnvolle Funktionen W Länge eines ektors +W Normalisierter ektor: 2 U Normale u einer Oberfläche wird häufig benötigt Normalvektor N W Kreuprodukt: N W Bei Kurven muß erst die Tangentialebene bestimmt werden v w v w N v w v w v w v w (c Peter Sturm, Universität Trier 8

9 Grundlagen der Spieleprogrammierung Sommer 23 Skalarprodukt Hilfsmittel ur Winkelbestimmung wischen ektoren W v w + v w + v w Eigenschaft > wenn <9 Grad wenn 9 Grad < wenn >9 Grad Winkelbestimmung wischen und W W W Implementierungsaspekte Hierarchische Definition lokaler Koordinatenssteme Ein Weltkoordinatensstem Performan Wann werden kombinierte Transformationsmatrien berechnet? Speicherbedarf? (c Peter Sturm, Universität Trier 9

Computergrafik Sommersemester 2004 Übungen

Computergrafik Sommersemester 2004 Übungen Sommersemester 4 Freiwillige Zusatzübung Aufgabe 6: Transformationen im zweidimensionalen aum Berechnen Sie die Transformationsmatri, die eine Szene zuerst um 3 Grad um den Ursprung dreht und anschließend

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Grundlagen der Spieleprogrammierung

Grundlagen der Spieleprogrammierung Grundlagen der Spieleprogrammierung Teil I: 3D-Graphik Kapitel 8: Hardware Peter Sturm Universität Trier Outline 1. Übersicht und Motivation 2. Mathematische Grundlagen 3. Das Ideal: Photorealistisch (Raytracing,

Mehr

Grundlagen der Spieleprogrammierung

Grundlagen der Spieleprogrammierung Grundlagen der Spieleprogrammierung Teil I: 3D-Graphik Kapitel 3: Das Ideal - Photorealistisch Peter Sturm Universität Trier Outline 1. Übersicht und Motivation 2. Mathematische Grundlagen 3. Das Ideal:

Mehr

3 Koordinatentransformationen

3 Koordinatentransformationen 8 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 3 Koordinatentransformationen Für die Darstellung von dreidimensionalen Objekten wird grundsätlich eine Reihe von Transformationen ausgeführt, die von den

Mehr

Computergrafik 1 Übung

Computergrafik 1 Übung Prof. Dr. Andreas Butz Dipl.-Medieninf. Hendrik Richter Dipl.-Medieninf. Raphael Wimmer Computergrafik Übung Wiederholung Lineare Algebra: Vektoren, Matrizen, Transformationen in D und 3D Computergrafik

Mehr

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y 4 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 4 Projektionen 4. Parallelprojektion (a) Senkrechte Projektion auf eine Koordinatenebene Wir wählen als Projektionsebene die Ebene, d. h. in den Beeichnungen

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Transformationen im 3D-Raum

Transformationen im 3D-Raum Thomas Jung Repräsentation von 3D-Oberflächen Aufbau von Szenen Transformationen im 3D-Raum Projektionstranformationen Anwendung in OpenGL Geometrietransformationen bilden die Basis für die Computergrafik

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

Prüfung EM1 28. Jänner 2008 A :=

Prüfung EM1 28. Jänner 2008 A := 1. Die Menge der Eigenwerte der Matrix ist Prüfung EM1 28. Jänner 2008 A := ( 0 1 ) 0 1 A. {1, 0} B. { 1} C. {0} D. {0, 1, 1} E. {0, 1} 2. Es seien V ein n-dimensionaler reeller Vektorraum, ein Skalarprodukt

Mehr

1 Grundlagen der analytischen Geometrie

1 Grundlagen der analytischen Geometrie M. Pester 3 Grundlagen der analtischen Geometrie. Punkte, Vektoren, Geraden, Ebenen Einsat rechnerischer Methoden für die Behandlung geometrischer Beiehungen. Punkten werden Zahlentupel (Koordinaten) ugeordnet.

Mehr

Computergrafik 1 Transformationen

Computergrafik 1 Transformationen Computergrafik 1 Transformationen Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin Überblick Repräsentationen, Primitiven Transformationen in 2D Skalierung Translation Rotation Scherung

Mehr

7.3 Lorentz Transformation

7.3 Lorentz Transformation 26 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE 7.3 Lorent Transformation In diesem Abschnitt sollen die Transformationen im 4-dimensionalen Minkowski Raum betrachtet werden. Dabei wollen wir uns auf solche

Mehr

Kapitel 3. Transformationen

Kapitel 3. Transformationen Oyun Namdag Am 08.11.2007 WS 07/08 Proseminar Numerik: Mathematics for 3D game programming & computer graphics Dozenten: Prof. Dr. V. Schulz, C. Schillings Universität Trier Kapitel 3 Transformationen

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Kurze Zusammenfassung (Stand: 3 Juli 2) Prof Dr V Stahl Copyright 28 by Volker Stahl All rights reserved V Stahl Lineare Algebra und Computer Grafik Zusammenfassung

Mehr

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem

2.3.1 Rechtshändiges und linkshändiges Koordinatensystem 2.3. Rechtshändiges und linkshändiges Koordinatensstem Die Koordinatenachsen im dreidimensionalen Raum lassen sich auf wei verschieden Arten anordnen: Linkshändig und Rechtshändig (s. Abbildung 2.9). Um

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 2012-05-30 Korrektur: Kugelkoordinaten II r und θ konstant: Rand einer Kreisscheibe parallel zur xy Ebene z θ fest y θ konstant, r R : Kegel, ausgehend

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 212-5-7 Noch Kapitel III: Transformationen 2D Rotation um freies Rotationszentrum y α P(p x, p y ) Ziel: Rotiere Punkte r i um Winkel α um P und erhalte

Mehr

3.5 Transformationen im Raum

3.5 Transformationen im Raum 3.5 Transformationen im Raum Translation Die Verschiebung eines Punktes (,,) T um den Translationsvektor (t,t,t ) T ergibt den Punkt (,, ) T mit 1 t 1 t 1 t 1 + t + t = = + t 1 1 1 T(t,t,t ) Computergrafik

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Affine Koordinatentransformationen

Affine Koordinatentransformationen Affine Koordinatentransformationen Medieninformatik IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Wintersemester 017/18 Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen

Mehr

Transformation - 3. Für "übliche" Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche

Transformation - 3. Für übliche Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche Transformation - 3 Wiederholung und spezielle Angaben im Zusammenhang mit Kreis-Berechnungen 1. Problemstellung Im Zusammenhang mit der Berechnung von Schnittflächen kann es sinnvoll sein, die Berechnung

Mehr

5 Kinematik der Starrkörperbewegung

5 Kinematik der Starrkörperbewegung 35 Ein starrer Körper ist eine Idealisierung eines Maschinenteils, bei der man Verformungen vernachlässigt. Verbindet man mit dem Körper in einem beliebigen Beugspunkt ein körperfestes Koordinatensstem,

Mehr

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt a ( b c) bilden. Aus der geometrischen Interpretation von Skalarprodukt und Vektorprodukt ist sofort ersichtlich,

Mehr

Inhaltsverzeichnis. 1 Hardwaregrundlagen

Inhaltsverzeichnis. 1 Hardwaregrundlagen Inhaltsverzeichnis 1 Hardwaregrundlagen 2.1 Koordinatentransformationen 2.2 Transformationen in der Ebene 2.3 Transformationen im Raum 3 Repräsentation und Modellierung von Objekten 4 Rasterung 5 Visibilität

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Transformationen. 09-Transformationen

Transformationen. 09-Transformationen Transformationen 9-Transformationen Als Transformationen werden affine Transformationen im R n betrachtet. Alle derartigen Transformationen lassen sich darstellen als: A + b wobei A die quadratische Transformationsmatri

Mehr

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011 C A R L V O N O S S I E T Z K Y Transformationen Johannes Diemke Übung im Modul OpenGL mit Java Wintersemester 2010/2011 Motivation Transformationen Sind Grundlage vieler Verfahren der Computergrafik Model-

Mehr

Repräsentation und Transformation von geometrischen Objekten

Repräsentation und Transformation von geometrischen Objekten Repräsentation und Transformation von geometrischen Objekten Inhalt: Grundlagen Überblick Einfache Transformationen in der Ebene Homogene Koordinaten Einfache Transformationen in der Ebene mit homogenen

Mehr

In den vorigen Abschnitten wurden die globalen kartesischen Koordinaten der Atome eines Moleküls transformiert.

In den vorigen Abschnitten wurden die globalen kartesischen Koordinaten der Atome eines Moleküls transformiert. 4 MATRXDARSTELLUNG VON SYMMETREOPERATONEN 33 4.8 Lokale Koordinatenachsen m Gegensat um globalen Koordinatensstem, das für das gesamte Molekül gilt, sind lokale Koordinatenachsen individuell für jedes

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen Kapitel 2 Lineare Algebra II 21 Lineare Abbildungen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 21 Definition Eine

Mehr

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences Computer graphics Vektoren und Matrizen Dr. Ernst Kruijff Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences 3 Dm group Einführung Transformationen Sources Online:

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

Mathematiklabor 2. Übungsblatt

Mathematiklabor 2. Übungsblatt Dr. Jörg-M. Sautter 3.4.7 Mathematiklabor. Übungsblatt Aufgabe : (Wiederholung) Laden Sie die Dateien mlintro?.m herunter und gehen Sie diese Schritt für Schritt durch. Aufgabe : (Matrix- und Vektoroperationen,

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

x y Kenner der Kegelschnitte werden hier eine Ellipse erkennen, deren Hauptachsen aber nicht mit der Richtung der Koordinatenachsen zusammenfallen.

x y Kenner der Kegelschnitte werden hier eine Ellipse erkennen, deren Hauptachsen aber nicht mit der Richtung der Koordinatenachsen zusammenfallen. Matrizen / ensoren - eil ensoren - zweidimensionales Beispiel um das Eigenwertproblem zu verdeutlichen hier als Beispiel ein zweidimensionales Problem die entsprechenden Matrizen und Determinanten haben

Mehr

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems

Transformation Allgemeines Die Lage eines Punktes kann durch einen Ortsvektor (ausgehend vom Ursprung des Koordinatensystems Transformation - 1 1. Allgemeines 2. Zwei durch eine Translation verknüpfte gleichartige Basissysteme 3. Zwei durch eine Translation verknüpfte verschiedenartige Basissysteme (noch gleiche Orientierung)

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen Kapitel 2 Lineare Algebra II 2 Lineare Abbildungen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 2 Definition Eine Abbildung

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen und Matrizen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen und Matrizen Kapitel 2 Lineare Algebra II 2 Lineare Abbildungen und Matrizen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 2 Definition

Mehr

Prüfungsdauer: 120 Minuten

Prüfungsdauer: 120 Minuten Computergraphik und Multimediasysteme Seite 1 von 6 Klausur: Computergraphik II Probeklausur Semester: Prüfer: Prüfungsdauer: 1 Minuten Hilfsmittel: Schreibgeräte, Lineal, nichtprogrammierbarer Taschenrechner

Mehr

Vorlesung 11. Morphing und Active- Appearance-Modelle

Vorlesung 11. Morphing und Active- Appearance-Modelle Vorlesung Morhing und Active- Aearance-Modelle Martin Giese Martin.giese@tuebingen.mg.de Übersicht Morhing Active-Aearance-Modelle AAM I. Morhing Morhing Mohing Metamorhosis Kontinuierliche Transformation

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

Transformation - Homogene Koordinaten. y + b )

Transformation - Homogene Koordinaten. y + b ) Transformation - Homogene Koordinaten In der "üblichen" Behandlung werden für die Verschiebung (Translation) und die Drehung (Rotation) verschiedene Rechenvorschriften benutzt - einmal Addition von Vektoren

Mehr

IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen

IT-Sicherheitsmanagement. Teil 4: Einführung in algebraische Strukturen IT-Sicherheitsmanagement Teil 4: Einführung in algebraische Strukturen 19.09.18 1 Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie.

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.12.2013 Alexander Lytchak 1 / 15 Motivation Für das Verständis affiner Teilräume eines Vektorraums sind Translationen

Mehr

IT-Security. Teil 9: Einführung in algebraische Strukturen

IT-Security. Teil 9: Einführung in algebraische Strukturen IT-Security Teil 9: Einführung in algebraische Strukturen 08.05.17 1 Literatur und Videos [9-1] http://www.iti.fh-flensburg.de/lang/krypto [9-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage,

Mehr

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen Hermann Schwarz Marko Pilop 2003-11-20 http://www.informatik.hu-berlin.de/~pilop/3d_basics.pdf {hschwarz pilop}@informatik.hu-berlin.de

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Gliederung 4 Invarianten Isometrien (Kongruenzen) Ähnlichkeitsabbildungen Affine Transformationen Projektive Transformationen 2 von

Mehr

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage, Springer, 2015 [4-3] Teschl, Gerald; Teschl, Susanne: Mathematik für

Mehr

Analytische und projektive Geometrie für die Computer-Graphik. Von Prof. Dr. rer. nato Bodo Pareigis Universität München

Analytische und projektive Geometrie für die Computer-Graphik. Von Prof. Dr. rer. nato Bodo Pareigis Universität München Analytische und projektive Geometrie für die Computer-Graphik Von Prof. Dr. rer. nato Bodo Pareigis Universität München ä3 B. G. Teubner Stuttgart 1990 Prof. Dr. rer. nato Bodo Pareigis 1937 geboren in

Mehr

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k v 1 v 1 v 2 v 2 W 2 -v (v, v ) 1 1 2 Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k. Schritt: Subtraktion der Komponenten von ṽ k in Richtung von v 1,v 2,...,v k 1 und Normierung von w k auf

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1

0 1 0 b Die inverse Funktion muss die Translation um b sein und hat daher die homogene Matrix b b 1 Homogene Koorinaten Aufgabe. In homogener Darstellung ist ie Translation f R 4 R 4 um einen Vektor b R 3 eine lineare Funktion un kann aher urch eine Matri Vektor Multiplikation realisiert weren. Wie sieht

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Tensoren. Duale Basis ermitteln Zusammenhänge

Tensoren. Duale Basis ermitteln Zusammenhänge Tensoren Koordinatentransformation Metrische Matri (Metrischer Tensor Parallelogrammfläche Drehung um den Ursprung Orthogonale Matri Koordinatentransformation bei einer Drehung Tensoren in der Phsik Tensoren

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem y + z = 1 + y z

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

YOUNG SCIENTISTS. 4 dimensionale komplexe Zahlen in der Computergrafik. Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE

YOUNG SCIENTISTS. 4 dimensionale komplexe Zahlen in der Computergrafik. Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE YOUNG SCIENTISTS 4 dimensionale komplexe in der Computergrafik Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE Programm Vorbereitung (Wiederholung) Komplexe Vektoren Quaternionen Quaternionen

Mehr

Grundlagen der Spieleprogrammierung

Grundlagen der Spieleprogrammierung Grundlagen der Spieleprogrammierung Teil I: 3D-Graphik Kapitel 9: Engines, Cg und anderes Peter Sturm Universität Trier Outline 1. Übersicht und Motivation 2. Mathematische Grundlagen 3. Das Ideal: Photorealistisch

Mehr

Stellen Sie diese Operation grafisch durch Pfeile in einem zweidimensionalen Koordinatensystem dar. + R n R n R n. + R R R

Stellen Sie diese Operation grafisch durch Pfeile in einem zweidimensionalen Koordinatensystem dar. + R n R n R n. + R R R Vektoren Aufgabe Berechnen Sie 2 + 0 Aufgabe 2 Beweisen Sie das ausführlich das Assoziativgesetz der Vektoraddition + R n R n R n Sie dürfen dabei alle Gesetze der reellen Addition + R R R verwenden machen

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatseamen (SS 205): Lineare Algebra und analtische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Höhere Mathematik für Ingenieure Band II

Höhere Mathematik für Ingenieure Band II Teubner-Ingenieurmathematik Höhere Mathematik für Ingenieure Band II Lineare Algebra Bearbeitet von Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister 1. Auflage 2012. Taschenbuch. xvii, 417 S.

Mehr

V5.1 Definition eines Koordinatensystems Ein Koordinatensystem ist eine "glatte" Abbildung von Vektoren auf Koordinaten

V5.1 Definition eines Koordinatensystems Ein Koordinatensystem ist eine glatte Abbildung von Vektoren auf Koordinaten V5 Krummlinige Koordinatensysteme Übersicht / Vorschau: Motivation: Symmetrien des Systems ausnutzen, um Beschreibung zu vereinfachen! Beispiel Stromdurchflossener Leiter: Stärke des Magnetfelds hängt

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Vorlesung Mathematik für Ingenieure II (Sommersemester 8) Kapitel : Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. Mai 8) Differenzialrechnung R R 4

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 3 Funktionen mehrerer Variablen Hans Walser: Modul 3, Funktionen mehrerer Variablen ii Modul 3 für die Lehrveranstaltung Mathematik für Naturwissenschaften

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

HM II Tutorium 1. Lucas Kunz. 24. April 2018

HM II Tutorium 1. Lucas Kunz. 24. April 2018 HM II Tutorium 1 Lucas Kunz 24. April 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Körper...................................... 2 1.2 Gruppen..................................... 2 1.3 Vektorraum...................................

Mehr

1 Definitionen: 6 Punkte gesamt

1 Definitionen: 6 Punkte gesamt ANTWORTEN zum KOLLOQIUM zur Einführung in die Lineare Algebra Hans G. Feichtinger Sommersemester 2014 Fr., 25. Juli 2014, 10:00, Fakultät f. Mathematik Punktezahl: (1) 6 (2) 9 (3) 5 (4) 10 TOTAL (von 30):

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Kapitel 15 Lineare Gleichungssysteme

Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 2012-05-14 Kapitel V: Modeling Transformation & Vertex Shader 5.1 Vertex Definitionen: Vertex Vertex Computergrafik Mathematischer Punkt auf einer Oberfläche

Mehr

Vorlesung 12. Morphing und Active- Appearance-Modelle

Vorlesung 12. Morphing und Active- Appearance-Modelle Vorlesung Morhing und Active- Aearance-Modelle Martin Giese Martin.giese@uni-tuebingen.de Übersicht Morhing Active-Aearance-Modelle AAM I. Morhing Morhing Mohing Metamorhosis Kontinuierliche Transformation

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 5 Quadriken Polarität Transformationen Klassifikation von Quadriken Geraden in Regelquadriken Die kubische Wendelinie (twisted

Mehr

(6) View Transformation. Vorlesung Computergrafik T. Grosch

(6) View Transformation. Vorlesung Computergrafik T. Grosch (6) Vie Transformation Vorlesng Comptergrafik T. Grosch Wiederholng Transformationen Translation, Rotation, Skalierng Matrien OpenGL: Modelie Matri Hete Kamera seten (Vie Transformation) Transformation

Mehr

Computergrafik. Kapitel 2: Grundlagen der 2D-Grafik SS Prof. Dr. Thomas Wieland

Computergrafik. Kapitel 2: Grundlagen der 2D-Grafik SS Prof. Dr. Thomas Wieland Computergrafik Kapitel 2: Grundlagen der 2D-Grafik SS 25 Prof. Dr. Thomas Wieland Übersicht Teil 2 2. 2D-Transformationen 2.2 Koordinatentransformationen 2.3 Grafiken mit Java2D Computergrafik, Sommersemester

Mehr

Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5. Symmetrie. Michael Wand Institut für Informatik.

Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5. Symmetrie. Michael Wand Institut für Informatik. Michael Wand Institut für Informatik. Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5 Symmetrie Symmetrie Geometrische Symmetrie Beispiele Symmetrische geometrische Objekte (2D)

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 2 Grundstrukturen Notation: Sind M und N zwei Mengen, so heißt die Menge M N := {(m, n) : m M, n N} das cartesische Produkt oder auch die

Mehr

8 Kinetik der allgemeinen Starrkörperbewegung

8 Kinetik der allgemeinen Starrkörperbewegung 57 Die allgemeine Starrkörperbewegung ist eine Überlagerung von Translation und Rotation mit je 3 Freiheitsgraden. Dem entsprechen 6 Gleichungen, die aus Impuls- und Drallsat resultieren. Der Impuls eines

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3 Matrixpotenzen In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden Ist die Matrix diagonalisierbar, dann kann diese Berechnung wie folgt vereinfacht werden Sei A eine diagonalisierbare

Mehr

1 Analytische Geometrie

1 Analytische Geometrie Analytische Geometrie. Grundlagen, Begriffe, Schreibweisen Achsenkreuz Die Achsen heißen in dieser Darstellung x und -Achse. Punkte Punkte werden weiterhin mit großen, lateinischen Buchstaben bezeichnet

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 2: Vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. Oktober 2011) Vektoren in R n Definition 2.1

Mehr

Wiederholung. Vorlesung GPU Programmierung Thorsten Grosch

Wiederholung. Vorlesung GPU Programmierung Thorsten Grosch Wiederholung Vorlesung Thorsten Grosch Klausur 2 Zeitstunden (26.7., 8:30 10:30 Uhr, G29/307) Keine Hilfsmittel Kein Bleistift / Rotstift verwenden 3 Aufgabentypen Wissensfragen zur Vorlesung (ca. 1/3)

Mehr

2D-Punkt-Transformationen

2D-Punkt-Transformationen Zur Erinnerung Drehung eines beliebigen Punktes B um den Winkel θ um den Koordinaten-Ursprung zum Punkt B : x B r cosα y B r sin α [r, α: Hilfsgrößen ] x B r cos(α+θ) r (cosα cosθ sinα sinθ) x B cosθ y

Mehr

Grundlagen der Spieleprogrammierung

Grundlagen der Spieleprogrammierung Grndlagen der Spieleprogrammierng Teil I: 3D-Graphik Kapitel 6: Tetrem Peter Strm Unierität Trier tline 1. Übericht nd Motiation 2. Mathematiche Grndlagen 3. Da Ideal: Photorealitich (Ratracing Radioit

Mehr

Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Galileo Galilei

Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Galileo Galilei TO Rechenmethoden Wise 2012-2013 Jan von Delft 16.10.2012 http://homepages.physik.uni-muenchen.de/~vondelft/lehre/12t0/ Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Galileo Galilei Das

Mehr

Computer Vision. Klaus Diepold Lehrstuhl für Datenverarbeitung. 23. Mai Bild 1: Abbildung mit dünnen Linsen.

Computer Vision. Klaus Diepold Lehrstuhl für Datenverarbeitung. 23. Mai Bild 1: Abbildung mit dünnen Linsen. Computer Vision Klaus Diepold Lehrstuhl für Datenverarbeitung 3. Mai 8 Bilderzeugung. Abbildung durch Linsen Durch Betrachtung von ähnlichen Dreiecken in Bild ergibt sich die Beziehung f = Z + z, die die

Mehr