x (k+1) = Φ(x (k) ), k = 0,1,... lim k x(k) = x = A 1 b,

Größe: px
Ab Seite anzeigen:

Download "x (k+1) = Φ(x (k) ), k = 0,1,... lim k x(k) = x = A 1 b,"

Transkript

1 Ì Ð ÎÁÁÁ ÁØ Ö Ø Ú Ä ÙÒ Ð Ò Ö Ö Ð ÙÒ Ý Ø Ñ

2

3 ÅÓØ Ú Ø ÓÒ Ö Ø Å Ø Ó Ò Û Ù Ð Ñ Ò Ø ÓÒ Ú Ö ¹ Ö Ò Ò Ö ÖÓ Ñ Ò ÓÒ Ò n Ö Ù ÛÒ (O(n 3 )) Ô Þ ÐÐ Ö ÒÒ ØÞØ Å ØÖ Þ Òº Ù Û ÁØ Ö Ø Ú Î Ö Ö Ò Ò ÓÖÑ Ñ Ø x (k+1) = Φ(x (k) ), k = 0,1,... lim k x(k) = x = A 1 b, ÛÓ Φ(x (k) ) Þ ÒØ Ù Û ÖØ Ø Û Ö Ò ÒÒº ½

4

5 ¾ ÃÓÒ ØÖÙ Ø ÓÒ ÚÓÒ ÁØ Ö Ø ÓÒ Ú Ö Ö Ò A R n n Ö ÙÐÖ b R n ÙÒ x R n Ò ÙØ Ä ÙÒ ÚÓÒ Ax = b Ë Ö Ò Û Ö A = B +(A B) ÛÓ B R n n Ö ÙÐÖ Ó Ø Ax = b Bx+(A B)x = b x = B 1 (B A)x+B 1 b x = (I B 1 A)x+B 1 b =: Φ(x) Ö Ø ÜÔÙÒ Ø Ø Ö Ø ÓÒ x (k+1) = Φ(x (k) ) = (I B 1 A)x (k) +B 1 b, k = 0,1,... Á Ø B = A Ó Ø x (1) = A 1 b = x Ü Ø Ä ÙÒ º Ö ÓÐÐØ B A Ò B 1 ³ Ò ³ ÞÙ Ö Ò Ò Ò Å ØÖ Ü T := I B 1 A Ø ÁØ Ö Ø ÓÒ Ñ ØÖ Üº Ë ØÞ ¾ º½ µ Ë Ò Î ØÓÖÒÓÖÑ ÙÒ T ÞÙ ÓÖ Ò Ø Å ¹ ØÖ ÜÒÓÖѺ ÐØ T < 1, T = I B 1 A Ó Ø ÜÔÙÒ Ø Ð ÙÒ x = Φ(x) Ò Ù Ò Ä ÙÒ ÙÒ ÞÛ Ö x = A 1 bº ÁØ Ö Ø ÓÒ Ú Ö Ö Ò x (k+1) = Tx (k) + B 1 b, k = 0,1,... ÓÒÚ Ö ÖØ ÒÒ Ö ÐÐ x (0) R n Ò Ä ÙÒ x ÙÒ ÐØ ÔÖ ÓÖ Ð Ö ØÞÙÒ x (k) x T k 1 T x(1) x (0), k N. µ ÁØ Ö Ø ÓÒ Ú Ö Ö Ò

6 ½ ¾ ÃÓÒ ØÖÙ Ø ÓÒ ÚÓÒ ÁØ Ö Ø ÓÒ Ú Ö Ö Ò x (k+1) = Tx (k) + B 1 b, k = 0,1,... ÓÒÚ Ö ÖØ Ò Ù ÒÒ Û ÒÒ ρ(t) < 1 Ðغ Û Å Ø Φ(x) = Tx+B 1 b ÓÐ Ø Û Ò Φ(x) Φ(y) = Tx+B 1 b Ty B 1 b = T(x y) T x y ÙÒ T < 1 Φ ÓÒØÖ Ö Ò Øº Ù Ò Ò a) Ö Ò Ö Ù Ñ Ò Ò ÜÔÙÒ Ø ØÞ Ë ØÞ ½ º¾µº Ë ØÞ ¾½º Ø ρ(t) = inf{ T : T Ø ÞÙ ÓÖ Ò Ø Å ØÖ ÜÒÓÖÑ}. ÐØ ÒÙÒ ρ(t) < 1 Ó Ü Ø ÖØ Ð Ó Ò ÞÙ ÓÖ Ò Ø Å ØÖ ÜÒÓÖÑ Ñ Ø T < 1 ÙÒ ÃÓÒÚ Ö ÒÞ ÓÐ Ø Ù a)º Ë ÒÙÒ x (k) ÓÒÚ Ö ÒØ Ñ Ø lim k x (k) = x = A 1 b. Ö Ò Ð Ö f (k) = x (k) x ÐØ f (k+1) = x (k+1) x = Tx (k) +B 1 b Tx B 1 b = T(x (k) x) = Tf (k) ÙÒ lim k f (k) = 0 Ò ÎÓÖÖ Ù ØÞÙÒ Ö ÐÐ f (0) R n º Ë ÒÙÒ Ô Þ ÐÐ f (0) Ò ÒÚ ØÓÖ ÚÓÒ T ÞÙÑ ÒÛ ÖØ λº ÒÒ ÐØ f (k) = Tf (k 1) =... = T k f (0) = λ k f (0) Ï Ò lim k f (k) = 0 ÑÙ ÒÒ λ < 1 ÐØ Òº λ Ò Ð Ö ÒÛ ÖØ Û Ö ÑÙ ρ(t) < 1 Òº Ñ Ö ÙÒ Ö Å ØÖ Ü T = ( ) ÐØ T = T Z = 1.2 > 1 Ö T 2 = ρ(t T T) = ρ(t) = < 1º ÃÓÒØÖ Ø ÓÒ Ò Ø ÒÒ Ò Ñ ÐÐ Ñ Ø 2 Ö Ò Ø Ñ Ø Ò Û Ò Û Ö Ò

7 ¾ Â Ó ¹ ÙÒ Ù¹Ë Ð¹Î Ö Ö Ò Ï Ö Ö Ò A = D L U Ñ Ø D = diag(a 11,a 22,...,a nn ) a 12 a 1n. L = a , U = a n 1n. a n1 a nn Ù Ö Ñ º º D Ø ÒÚ ÖØ Ö Öº a ii 0, i = 1,...,n, Ï Ð Ò Û Ö B = D Ó Ø T J := I D 1 A ÙÒ Û Ö Ö ÐØ Ò Î Ö Ö Ò x (k+1) = T J x (k) + D 1 b = (I D 1 A)x (k) + D 1 b = D 1 (D A)x (k) + D 1 b = D 1 [(L + U)x (k) + b] ÓÑÔÓÒ ÒØ ÒÛ Ö Ø Ö i = 1,...,n x (k+1) i = [ n j=1 (L+U) ijx (k) = 1 a ii [ j=1,j i a ii j + b i ] a ij x (k) j b i ] Î Ö Ö Ò Ø Â Ó ¹ Ó Ö ÑØ Ö ØØÚ Ö Ö Òº Ï Ð Ò Û Ö B = D L Ó Ø T GS = I (D L) 1 A ÙÒ Û Ö Ö ÐØ Ò Î Ö Ö Ò x (k+1) = T GS x (k) + (D L) 1 b = (I (D L) 1 A)x (k) + (D L) 1 b = (D L) 1 [(D L A) x (k) + b] }{{} =U.

8 ½ ¾ Â Ó ¹ ÙÒ Ù¹Ë Ð¹Î Ö Ö Ò (D L)x (k+1) = Ux (k) + b ÃÓÑÔÓÒ ÒØ ÒÛ Ö Ø Ö i = 1,...,n (Dx (k+1) ) i = (Lx (k+1) ) i + (Ux (k) ) i + b i i 1 a ii x (k+1) i = a ij x (k+1) j a ij x (k) j + b i x (k+1) i = 1 a ii j=1 [ i 1 j=1 j=i+1 a ij x (k+1) j + j=i+1 a ij x (k) j b i ] Î Ö Ö Ò Ø Ù¹ Ë Ð¹ Ó Ö ÒÞ Ð Ö ØØÚ Ö Ö Ò Ö Ö ÒÙÒ ÚÓÒ x (k+1) i ÓÒ Ö Ò Ø Ò ÃÓÑÔÓÒ ÒØ Ò, 1 j i 1 Ö Ø Ø Û Ö Òº x (k+1) j Ë ØÞ ¾ º½ µ Á Ø A R n n ØÖ Ø ÓÒ Ð ÓÑ Ò ÒØ ÐØ Ð Ó a ii > j=1,j i a ij, i = 1,...,n, Ó ÓÒÚ Ö ÖØ Â Ó ¹Î Ö Ö Ò ÙÒ Ò ÚÓÑ ËØ ÖØÚ ØÓÖ x (0) R n º µ Ë Ò a ii 0, i = 1,...,n ÙÒ Ö Ö ÙÖ Ú Ò ÖØ Ò Ð Ò p 1,...,p n Ñ Ø ÐØ p i := i 1 j=1 a ij a ii p i + j=i+1 p := max i=1,...,n p i < 1. a ij a ii ÒÒ ÓÒÚ Ö ÖØ Ù¹Ë Ð¹Î Ö Ö Ò ÙÒ Ò ÚÓÑ ËØ ÖØÚ ¹ ØÓÖ x (0) R n º Û µ ÐØ Ty = I D 1 A = max i=1,...,n δ ij a ij = max i=1,...,n j=1 j=1,j i a ij a ii a ii < 1 Ò ÎÓÖÖ Ù ØÞÙÒ º ÙÔØÙÒ ÓÐ Ø ÒÒ Ù Ë ØÞ ¾ º½ µ º µ Ë x R n Ñ Ø x = max i=1,...,n x i = 1 ÙÒ

9 ¾ Â Ó ¹ ÙÒ Ù¹Ë Ð¹Î Ö Ö Ò ½ ÒÒ Ø z = T GS x = (I (D L) 1 A)x = (D L) 1 (D L A)x = (D L) 1 Ux. i 1 a ij z i = z j a ii j=1 j=i+1 À ÖÐ ØÙÒ Ù¹Ë Ð¹Î Ö Ö Ò µº x = 1 Ø Ö ÐØ Ò Û Ö z 1 j=1 j=2 a ij a ii x j a 1j a 11 = p 1 < 1 ÒÒ Ñ ÐØ z j p j Ö j = 1,...,i 1º ÒÒ ÐØ i 1 a ij z i a ii p a ij j + = p i < 1 a ii j=i+1 Ð Ó Ø z < 1 ÙÒ Û Ò Ö ÃÓÑÔ Ø Ø ÚÓÒ {x R n : x = 1} ÓÐ Ø T GS = max x =1 T GSx < 1 ÃÓÖÓÐÐ Ö ¾ º¾ Ö ØÖ Ø ÓÒ Ð ÓÑ Ò ÒØ Å ØÖ Þ Ò A R n n ÓÒ¹ Ú Ö ÖØ Ù¹Ë Ð¹Î Ö Ö Ò ÙÒ Ò ÚÓÑ ËØ ÖØÛ ÖØ x (0) R n º Û ÐØ Ò ÎÓÖ Ù ØÞÙÒ p 1 = j=2 a ij a ii < 1 ÙÒ ÐÐ p 1,...,p i 1 < 1 Ò Ó Ø Ù p i = < i 1 j=1 a ij a ii j=1,j i p j + a ij a ii j=i+1 < 1. Ñ Ö ÙÒ Ö ØÖ Ø ÓÒ Ð ÓÑ Ò ÒØ Å ØÖ Þ Ò A R n n ÐØ Ø Ø T GS T J < 1. a ij a ii

10 ½ ¼ ¾ Â Ó ¹ ÙÒ Ù¹Ë Ð¹Î Ö Ö Ò ËØÓ Ö» ÙÐ Ö µ Ö ÓÒ Ø ÒØ ÓÖ Ò Ø Å ØÖ Þ Ò A R n n º º Å ØÖ Þ Ò A = D L U Ö ÐØ ÒÛ ÖØ ÚÓÒ C(α) := αd 1 L + α 1 D 1 U, α R + ÙÒ Ò ÚÓÒ α Ò ÐØ Ó Ö ρ(t GS ) = ρ(t j ) 2. ÃÓÒÚ Ö ÖØ Ð Ó Â Ó ¹Î Ö Ö Ò Ö Ò ÓÒ Ø ÒØ ÓÖ Ò Ø Å ¹ ØÖ Ü Ó Ù Ù¹Ë Ð¹Î Ö Ö Ò ÙÒ ÞÛ Ö ÓÔÔ ÐØ Ó Ò Ðк

11 ¾ Ê Ð Ü Ø ÓÒ Ú Ö Ö Ò ÁØ Ö Ø ÓÒ Ú Ö Ö Ò Ò Ø ÐØ x (k+1) = (I B 1 A)x (k) + B 1 b = x (k) B 1 Ax (k) + B 1 b = x (k) + x (k), ÛÓ x (k) = x (k+1) x (k) = B 1 Ax (k) +B 1 b غ Á Ö Ò Ò Ê Ð Ü Ø ÓÒ Ô Ö Ñ Ø Ö ω R + Ò ÙÖ x (k+1) = x (k) + ω x (k), ÙÑ ÃÓÒÚ Ö ÒÞ Î Ö Ö Ò ÞÙ Ð ÙÒ Òº Â Ó ¹Ê Ð Ü Ø ÓÒ Ú Ö Ö Ò B = Dµ x (k+1) = x (k) + ω( D 1 Ax (k) + D 1 b) = (I ωd 1 A)x (k) + ωd 1 b = T JOR (ω)x (k) + ωd 1 b, k = 0,1,... ÃÓÑÔÓÒ ÒØ ÒÛ Ö Ø x (k+1) i = x (k) i + ω a ii (b i j=1 = (1 ω)x (k) i + ω a ii (b i a ij x (k) j ) j=1,j i a ij x (k) j ). Ë ØÞ ¾ º½ Å ØÖ Ü T J = I D 1 A ÒÙÖ Ö ÐÐ ÒÛ ÖØ λ 1 λ 2... λ n Ñ Ø Ð Ò Ö ÙÒ Ò Ò ÒÚ ØÓÖ Ò v 1,...,v n ÙÒ ÐØ ρ(t J ) < 1º ÒÒ ØÞØ Å ØÖ Ü T JOR (ω) ÒÛ ÖØ ÙÒ ÐØ Ñ Ø µ i := 1 ω +ωλ i, i = 1,...,n

12 ½ ¾ ¾ Ê Ð Ü Ø ÓÒ Ú Ö Ö Ò Û Å Ø Ö ÐØ Ò Û Ö 2 ω opt := 2 λ 1 λ n ρ(t JOR (ω opt )) ρ(t JOR (ω)) ω 0. (I D 1 A)v i = T j v i = λ i v i, i = 1,...,n T JOR (ω)v i = (I ωd 1 A)v i = [(1 ω)i + ω(i D 1 A)]v i = (1 ω +ωλ i )v i, i = 1,...,n. Ð Ó Ò µ i (ω) := 1 ω+ωλ i ÒÛ ÖØ ÚÓÒ T JOR (ω) ÙÒ ÐØ µ 1 (ω) µ 2 (ω)... µ n (ω). ÓÐÐ ÒÙÒ ω opt > 0 Ó Û ÐØ Û Ö Ò ρ(t JOR (ω opt )) = max i=1,...,n µ i(ω opt ) max i=1,...,n µ i(ω) = ρ(t JOR (ω)) Ö ÐÐ ω > 0 Ðغ À ÖÞÙ ÓÐÐØ ÐØ Ò ÒÒ Û Ò µ n (ω opt ) = µ 1 (ω opt ) 1 ω opt +ω opt λ n = (1 ω opt +ω opt λ 1 ) 2 ω opt = > 0, 2 λ 1 λ n λ i = Tr(T J ) = Tr(I D 1 A) = 0 i=1 Ñ Ò ÒÛ ÖØ ÚÓÒ T J ÙÒØ Ö Ð ÎÓÖÞ Ò Òº Á Ø ÒÙÒ ω > ω opt Ó ÐØ ÙÒ Ñ Ø µ 1 (ω) = 1 ω(1 λ 1 ) < 1 ω opt (1 λ 1 ) = µ 1 (ω opt ) < 0 ρ(t JOR (ω)) µ 1 (ω) > µ 1 (ω opt ) = ρ(t JOR (ω opt )). Ò ÐÐ ω < ω opt Û Ø Ñ Ò Ò ÐÓ º Ù¹Ë Ð¹Ê Ð Ü Ø ÓÒ Ú Ö Ö Ò ËÇÊ¹Î Ö Ö Òµ

13 ¾ Ê Ð Ü Ø ÓÒ Ú Ö Ö Ò ½ x (k+1) i = x (k) i + ω( x (k) ) i = x (k) i + ω a ii (b i i 1 j=1 = (1 ω)x (k) i + ω a ii (b i i = 1,...,n k = 0,1,... Å ØÖ Ü¹Ë Ö Û a ij x (k+1) j i 1 j=1 j=i a ij x (k+1) j a ij x (k) j ) j=i+1 a ij x (k) j (I ωd 1 L)x (k+1) = [(1 ω)i + ωd 1 U]x (k) + ωd 1 b D 1 (D ωl)x (k+1) = D 1 [(1 ω)d+ωu]x (k) + ωd 1 b x (k+1) = (D ωl) 1 [(1 ω)d +ωu]x (k) + ω(d ωl) 1 b = T SOR (ω)x (k) + ω(d ωl) 1 b Ñ Ø Ö ÁØ Ö Ø ÓÒ Ñ ØÖ Ü T SOR (ω) := (D ωl) 1 [(1 ω)d+ωu]. Ë ØÞ ¾ º¾ A R n n Ñ Ø a ii 0, i = 1,...,nº ÒÒ ÐØ Ö ω R ρ(t SOR (ω)) ω 1 Û Ò µ 1,...,µ n ÒÛ ÖØ ÚÓÒ T SOR (ω)º ÒÒ ÓÐ Ø n µ i = det(t SOR (ω)) ÑÒ Ø i=1 = det((d ωl) 1 )det([(1 ω)d +ωu]) = det(d 1 )det((1 ω)d) = det(d 1 )(1 ω) n det(d) = (1 ω) n. ρ(t SOR (ω)) = max i=1,...,n µ i 1 ω. ÃÓÖÓÐÐ Ö ¾ º ËÇÊ¹Î Ö Ö Ò ÓÒÚ Ö ÖØ Ø Ò Ö ω (0,2)º ω > 1 ÇÚ ÖÖ Ð Ü Ø ÓÒ ω < 1 ÍÒ ÖÖ Ð Ü Ø ÓÒ SOR = ËÙ Ú ÇÚ ÖÊ Ð Ü Ø ÓÒ )

14 ½ ¾ Ê Ð Ü Ø ÓÒ Ú Ö Ö Ò Ë ØÞ ¾ º µ Á Ø A R n n ÝÑÑ ØÖ ÔÓ Ø Ú Ò Ø Ó ÓÒÚ Ö ÖØ ËÇÊ¹Î Ö Ö Ò Ò Ù ÒÒ Û ÒÒ ω (0,2) غ µ A R n n ÓÒ Ø ÒØ ÓÖ Ò Ø ÙÒ σ(t J ) = σ(i D 1 A) Rº ÖÒ Ö ρ := ρ(t J ) < 1. ÒÒ ÐØ µ ËÇÊ¹Î Ö Ö Ò ÓÒÚ Ö ÖØ Ö ÐÐ ω (0,2)º µ Å Ø Ö Ï Ð ω opt := ρ 2 ÐØ ρ(t SOR (ω opt )) ρ(t SOR (ω)) Ö ÐÐ ω (0,2) ÛÓ Øº ρ(t SOR (ω opt )) = 1 1 ρ ρ 2 Û ºÅ Ø Ö ³ÆÙÑ Ö Ð Ò Ö Ö Ð ÙÒ Ý Ø Ñ ³ Î Û ½ º

15 ¾ Î Ö Ö Ò Ö ÓÒ Ù ÖØ Ò Ö ÒØ Ò ÒÙÒ Ô Þ ÐÐ A R n n ÝÑÑ ØÖ ÔÓ Ø Ú Ò Ø Ô µ º º A = A T ÙÒ x,ax 2 = x T Ax > 0 x R n \{0}. Ë ØÞ ¾ º½ Á Ø x Ä ÙÒ ÚÓÒ Ax = b Ñ Ø Ò Ö Ô ¹Å ØÖ Ü A R n n Ó ÐØ F(x) = min v R nf(v), ÛÓ F : R n R Ò ÖØ Ø ÙÖ F(v) = 1 a ik v k v i 2 i=1 k=1 = 1 2 v,av 2 b,v 2. b i v i i=1 Û Ö Ô ÖØ ÐÐ Ò Ð ØÙÒ Ò ÚÓÒ ÐØ F (v) = a jk v k b j. v j Ð Ó Ø ÙÒ k=1 F(v) = Av b 2 F v i v j (v) = a ij, À ¹Å ØÖ Ü ÚÓÒ F º Ä ÙÒ x ÚÓÒ Ax = b Ö ÐÐØ Ð Ó F(x) = Ax b = 0 ÙÒ 2 F(x) = A > 0 Ð Ó Ø x Ò Å Ò ÑÙÑ ÚÓÒ F º F(v) = Av b = 0 Ò ÒÓØÛ Ò ÃÖ Ø Ö ÙÑ Ø ÑÙ Å Ò ÑÙÑ Av = b Ð Ò Ð Ó Ø x Ò ÙØ ÐÓ Ð Å Ò ÑÙÑ ÚÓÒ F º

16 ½ ¾ Î Ö Ö Ò Ö ÓÒ Ù ÖØ Ò Ö ÒØ Ò Þ ÒÙÒ Ö Î ØÓÖ r := Av b Û Ö Ê Ù ÒÚ ØÓÖ ÞÙ v ¹ Ò ÒÒغ Á Å Ò Ñ Ö F(v) Ø Ö Ø Ú ÙÑ Ò Æ ÖÙÒ Ò x ÞÙ Ö ÐØ Òº Á Ø Ò Ê ØÙÒ Ú ØÓÖ p R n \{0} Ò Ó Ø ÑÑ Ò Û Ö Ù ¹ Ò ÚÓÒ v R n Ò t R Ñ Ø F(v +t p) = minf(v +tp). t R Ï Ö Ò Ö Ò ϕ : R R ÙÖ ϕ(t) := F(v+tp) ÙÒ ÖÖ Ò Ò ϕ(t) = F(v +tp) = 1 2 v +tp,a(v+tp) 2 b,v +tp 2 Ø ÒÒ = 1 2 v,av 2 + t p,av t2 p,ap 2 b,v 2 t b,p 2 = 1 2 t2 p,ap 2 + t p,av b 2 + F(v) Ñ Ø r = Av b º A Ô Ø Û Ö ÙÖ ϕ (t) = 0 t = p,r 2 p,ap 2 =: t v A := v,av 2, v R n Ò ÆÓÖÑ Ò ÖØ Ó Ò ÒÒØ Ò Ö ÒÓÖѺ ÁÒ ÓÒ Ö Ø p,ap 2 > 0 p 0º Ç Ò Ö Ø t = 0 p,v 2 = 0 Ð Ó ÐÐ Ö Ê ØÙÒ Ú ØÓÖ p ÓÖ¹ Ø Ó ÓÒ Ð ÞÙÑ Ê Ù ÒÚ ØÓÖ v Û ÐØ ÛÙÖ º Ä ÑÑ ¾ º¾º Á Ø v = v +t p Ó ÐØ p,r 2 = 0 ÛÓ r = Av b غ Û Ø p,r 2 = p,av b 2 = p,a(v +t p) b 2 = p,r+t Ap 2 = p,r 2 + t p,ap 2 = 0. Ò ÙÐ ÁÒØ ÖÔÖ Ø Ø ÓÒ n = 2 Æ Ú ÙÑ Ò Ò {v R n : F(v) = ÓÒ Ø} Ò ÓÒÞ ÒØÖ ÐÐ Ô Ò ÙÑ x

17 ¾ Î Ö Ö Ò Ö ÓÒ Ù ÖØ Ò Ö ÒØ Ò ½ p x v r v r Å Ð Ï Ð ÚÓÒ p p = F(v) = (Av b) = r. ÖØ ÞÙÖ Å Ø Ó Ø Ð Ø Ò Ø v (k+1) = v (k) λ k (Av (k) b), k = 0,1,... ÃÓÒÚ Ö ÒÞ Ø Ö ÙÒØ Ö ÍÑ ØÒ Ò Ö Ð Ò Ñº Ö Ï Ð ÓÒ Ù ÖØ Ê ØÙÒ pº Ò Ø ÓÒ ¾ º º Û Î ØÓÖ Ò p,q R n Ò ÓÒ Ù ÖØ Ó Ö A¹ ÓÖØ Ó ÓÒ Ð ÐÐ Ö Ò Ô ¹Å ØÖ Ü A ÐØ p,q A := p,aq 2 = 0. ÒÒ Ñ Ò x (i),i = 0,...,k ÓÒ Ø ÑÑØ ÙÒ r 0,...,r k Ñ Ø r i = Ax (i) b ÞÙ Ö Ò Ê Ù ÒÚ ØÓÖ Òº ÖÒ Ö p 0 = r 0 º Ö k¹ø ËÙ Ö ØÙÒ p k ØÞ Ò Û Ö p k = r k + k 1 α j p j j=0 ÙÒ Ö Ò Ò α 0,...,α m 1 R Ó p k ÞÙ ÐÐ Ò Ò Ö Ò ËÙ Ö ¹ ØÙÒ Ò p 0,...,p k 1 ÓÒ Ù ÖØ Ø ÙÒ ØÞ Ò ÚÓÖÖ Ù Ö Ø Ðغ ÖØ Ö i = 0,...,k 1 ÞÙ p i,p j A = 0 0 i < j k 1

18 ½ ¾ Î Ö Ö Ò Ö ÓÒ Ù ÖØ Ò Ö ÒØ Ò 0 = p k,ap i 2 = r k,ap i 2 + k 1 α j p j,ap i 2 j=0 ÙÒ Ñ Ø ÞÙ = r k,ap i 2 + α i p i,ap i 2 α i = r k,ap i 2 p i,ap i 2. ÖØ ÞÙ Ñ ÚÓÖÐÙ Ò Î Ö Ö Ò Ï Ð x (0) R n,p 0 := r 0 = Ax (0) bº ÁØ Ö Ö Ö k = 0,1,... λ k := p k,r k 2 p k,ap k 2 ; x (k+1) := x (k) +λ k p k ; r r+1 := r k + λ k Ap k º Û ÚÓÒ Ä ÑÑ ¾ º¾µ p k+1 := r k+1 Ë ØÞ ¾ º ÐØ k j=0 r k+1,ap j 2 p j,ap j 2 p j. µ p k,ap i 2 = 0, 0 i < k µ U k+1 := span{p 0,...,p k } = span{r 0,...,r n } ÙÒ dimu k+1 = k +1 µ r k U k µ x (k) = A 1 b r k = 0 p k = 0 µ U k+1 = span{r 0,Ar 0,...,A k r 0 } µ r k,ap i 2 = 0, 0 i < k 1 º Û µ ÃÐ Ö Ò ÃÓÒ ØÖÙ Ø ÓÒº µ ÁÒ Ù Ø ÓÒ Ö k k = 0 p 0 = r 0 R n \{0} ÙÔØÙÒ º Ë ÙÔØÙÒ Ö k 0 Û Òº p 0,...,p k+1 ÓÖØ Ó ÓÒ Ð Þ Ð Ë Ð ÖÔÖÓ Ù Ø u,av 2 Ò ÓÐ Ødim{p 0,...,p k,p k+1 } = dimu k+2 = k +2º Æ ÃÓÒ ØÖÙ Ø ÓÒ ÐØ p k+1 r k+1 = k α j p j U k+1 j=0 ÙÒ ÓÑ Ø U k+2 = span{u k+1,p k+1 } = span{u k+1,r k+1 }. µ Ï Ö Û Ò Û Ö Ò Ù Ø Ú r 1,r 0 2 = r 0,r 0 2 p 0,r 0 2 p 0,Ap 0 2 Ap 0,r 0 2 = 0,

19 ¾ Î Ö Ö Ò Ö ÓÒ Ù ÖØ Ò Ö ÒØ Ò ½ p 0 = r 0 غ ÐØ ÙÔØÙÒ Ö k Ó Ø Ñ Ø η U k ÖÒ Ö ÐØ r k+1,η 2 = r k,η }{{} 2 +λ k Ap k,η }{{} 2 =0 nach Ind.vor. =0 nach a) r k+1,p k 2 = r k,p k 2 p k,r k 2 p k,ap k 2 p k,ap k 2 = 0 ÙÒ Ñ Ø ÙÔØÙÒ º µ x k = A 1 b r k = 0 Ð Öº Á Ø r k = 0 Ó Ø p k = 0 Ò ÃÓÒ ØÖÙ Ø ÓÒº Á Ø p k = 0 Ó Ø r k U k Ò µ Ö Ø Ù r k U k Ò µº Ð Ó Ø r k = 0º µ ÁÒ Ù Ø ÓÒ Ò k k = 0 Ð Öº ÐØ ÙÔØÙÒ Ö kº Ù µ ÓÐ Ø ÓÛ Ð Ó Ø r k U k+1 = span{r 0,...,r k } = span{r 0,...,A k r 0 } Ap k AU k+1 = span{ar 0,...,A k+1 r 0 }. r k+1 = r k +λ k Ap k span{r 0,...,A k+1 r 0 }. Ù µ ÓÐ Ø dimu k+2 = k +2 Ð Ó Ø U k+2 = span{r 0,...,A k+1 r 0 }. µ Ö i < k 1 ÐØ p i U k 1 ÙÒ ÓÑ Ø Ap i U k Ò µº ÓÐ Ð ÐØ Û Ò µ r k,ap i 2 = 0 Å Ø À Ð ÚÓÒ Ë ØÞ ¾ º ÒÒ Ò Û Ö Ò Ê Ò Ù Û Ò Î Ö Ö Ò Ú ÖÖ Ò ÖÒº Ù µ Ð ÖØ p k = r k Ù µ Ð ÖØ k 1 j=0 r k,ap j 2 p j,ap j 2 p j = r k r k,ap k 1 2 p k 1,Ap p 1 2 p k 1 0 = r k+1,r k 2 = r k +λ k Ap k,r k 2 λ k = r k,r k 2 Ap k,r k 2 ÙÒ ÓÑ Ø ÐØ r k,r k 2 = p k,r k 2 º Ù Ö Ñ

20 ½ ¼ ¾ Î Ö Ö Ò Ö ÓÒ Ù ÖØ Ò Ö ÒØ Ò Ap k = 1 λ k (r k+1 r k ) Ø ÓÐ Ø ÒÓ r k+1,ap k 2 = r k+1,r k+1 r k b)c) = p k,ap k 2 p k,r k+1 r k 2 r k+1,r k+1 2 p k,r k 2. ËÓÑ Ø Ö ÐØ Ò Û Ö Ò ÐØ ÓÖÑ Î Ö Ö Ò Ö ÃÓÒ Ù ÖØ Ò Ö ÒØ Ò ¹Î Ö Ö Òµ Ï Ð x (0) R n r 0 := Ax (0) b, p 0 := r 0, α 0 := r º ÁØ Ö Ö Ö k = 0,1,... ÐÐ α k 0 Ø Ò Ö r k := Ap k x (k+1) := x (k) +λ k p k ; r k+1 := r k +λ k v k ; α k+1 := r k ; p k+1 := r k+1 + α k+1 α k p k. Þ ÒÙÒ Ö Î ØÓÖÖ ÙÑ ; λ k := α k r k,p k 2 ; U k := span{r 0,...,A k 1 r 0 } Ø ÃÖÝÐÓÚ¹ÍÒØ ÖÖ ÙÑ Ö Ñ Ò ÓÒ kº Ö ¹Î Ö Ö Ò ÐØ Ø Ø x (k) x (0) + span{p 0,...,p k 1 } 27.4 e) = x (0) +U k. ÐØ Ó Ö Ë ØÞ ¾ º Ö ÁØ Ö ÖØ Ò ¹Î Ö Ö Ò ÐØ F(x (k) ) = min v x 0 +U k F(v). Û Ö Ð η U k \{0} ÙÒ Û Ò x (k) x 0 +U k ÐØ Ñ Ø Ö ØÐ ÙÒ ϕ(t) := F(x (k) +tη) ÙÒ ÓÑ Ø ϕ (t) = η,aη 2 + η,ax (k) b 2, ϕ (0) = η,ax (k) b 2,

21 ¾ Î Ö Ö Ò Ö ÓÒ Ù ÖØ Ò Ö ÒØ Ò ½ ½ Û Ö Ù Ë ØÞ ¾ º µ ÓРغ f(x (k) ) = min v x0 +U k F(v) r k = Ax (k) b U k ÃÓÖÓÐÐ Ö ¾ º Ü Ø Ö Ê ÒÙÒ Ò Ø ¹Î Ö Ö Ò Ò ÔØ Ø Ò n Ë Ö ØØ Ò Ñ Ø Ö Ü Ø Ò Ä ÙÒ x (n) = x = A 1 bº Û ÓÐ Ø Ù Ë ØÞ ¾ º ÙÒ dimu k = kº ÁÑ ÐÐ Ñ Ò Ò Ò Ø ¹Î Ö Ö Ò Ù ÖÙÒ ÚÓÒ ÊÙÒ ÙÒ ¹ Ð ÖÒ Ò Ø Ò n Ë Ö ØØ Òº Å Ò ÒÒ ÓÐ Ò ÃÓÒÚ Ö ÒÞÖ ÙÐØ Ø Û Òº Ë ØÞ ¾ º ÃÓÒÚ Ö ÒÞ ¹Î Ö Ö Ò µ Á Ø A R n n Ô ÙÒ x = A 1 b Ó ÐØ Ö ÁØ Ö ÖØ Ò x (k) ¹Î Ö Ö Ò ( ) k κ 1 x (k) x A 2 x (0) x A κ+1 ÛÓ ËÔ ØÖ Ð ÓÒ Ø ÓÒ ÚÓÒ A غ κ = λ max = A 2 A 1 2 λ min Û ËØÓ Ö» ÙÐ Ö ÃÓÒÚ Ö ÒÞ Û Ò Ø Ò Ø Ð Ó ÚÓÒ Ö ÃÓÒ Ø ÓÒ ÚÓÒ A º

22 ½ ¾ ¾ Î Ö Ö Ò Ö ÓÒ Ù ÖØ Ò Ö ÒØ Ò x 2 x = A ( 1) b x (3) x (2) p 2 p 1 x (1) x (0) x 1 Æ Ú ÙÑ Ò Ò {v R n : F(v) = F(x (k) )} ÙÒ ÃÓÒÚ Ö ÒÞÚ ÖÐ Ù ¹Î Ö Ö Ò Ö n = 2º

Ü (k) Ü < ǫ, (Ü (k) ) < ǫ, Ü (k+½) Ü (k) < ǫ

Ü (k) Ü < ǫ, (Ü (k) ) < ǫ, Ü (k+½) Ü (k) < ǫ Å Ö Ñ Ò ÓÒ Ð Æ ÛØÓÒ Î Ö Ö Ò º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á Ð Ñ Ò Ö Ò ÙÒ Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò º ÅÖÞ ¾¼½ Å Ö Ñ Ò ÓÒ Ð Æ ÛØÓÒ Î Ö Ö Ò ½ Å Ö Ñ Ò ÓÒ Ð Æ ÛØÓÒ Î Ö Ö Ò Î ØÓÖ Ò Ú ØÓÖÛ ÖØ ÙÒ Ø ÓÒ Ò

Mehr

R ψ = {λ ψ, λ 0}. P ψ P H

R ψ = {λ ψ, λ 0}. P ψ P H Ã Ô Ø Ð Ç ÖÚ Ð Ù ØÒ ÙÒ ÍÒ Ø ÑÑØ Ø ÒØ Ò ÐÐ Ò Ö Ö ØØÐ Ò Ñ ÙÒ Ò ººº Ò Û Ö Ø ¹ Ø Ø Ö Ø Ö Ö È ¹ ÙÒ Ø ÓÒ ÙÒ Ñ Ø Ö Æ ØÙÖ ØÞ ººº Ò ËØ Ð Ö ØÞ Û Ò Ø Ò Ö Ò Â Ö ÙÒ ÖØ Ø ÑÑ Ò Û Ö ººº ÎÓÒ Ò Ñ Ï ÞÙÖ ÞÙ ØÖÙÑ Ò ÞÙÖ ÞÙÑ

Mehr

Ð ÖÙÒ Ï Ö ÓÐÙÒ Å ØÖ Ü Ð Ö Ä Ò Ö Ð ÙÒ Ý Ø Ñ Ä Ö Ø ÐÐÙÒØ Ö ÙÒ Ò Å ÌÄ ÙÒ Ð Ò Ö ËÝ Ø Ñ ÃÓÒ Ø ÓÒ Þ Ð Ô Ð Ö Ø ÈÓ ÓÒ¹ÈÖÓ Ð Ñ Å ØÖ Ü ÔÐ ØØ Ò ÅÓ ÖÒ Ø Ö Ø Ú Î Ö

Ð ÖÙÒ Ï Ö ÓÐÙÒ Å ØÖ Ü Ð Ö Ä Ò Ö Ð ÙÒ Ý Ø Ñ Ä Ö Ø ÐÐÙÒØ Ö ÙÒ Ò Å ÌÄ ÙÒ Ð Ò Ö ËÝ Ø Ñ ÃÓÒ Ø ÓÒ Þ Ð Ô Ð Ö Ø ÈÓ ÓÒ¹ÈÖÓ Ð Ñ Å ØÖ Ü ÔÐ ØØ Ò ÅÓ ÖÒ Ø Ö Ø Ú Î Ö Ä Ò Ö Ð ÙÒ Ý Ø Ñ Á º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á Ð Ñ Ò Ö Ò ÙÒ Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò ½¾º ÅÖÞ ¾¼½ Ð ÖÙÒ Ï Ö ÓÐÙÒ Å ØÖ Ü Ð Ö Ä Ò Ö Ð ÙÒ Ý Ø Ñ Ä Ö Ø ÐÐÙÒØ Ö ÙÒ Ò Å ÌÄ ÙÒ Ð Ò Ö ËÝ Ø Ñ ÃÓÒ Ø ÓÒ

Mehr

e := {X E n x c = 0}

e := {X E n x c = 0} Ã Ô Ø Ð ½ Ò ÐÝØ ÓÑ ØÖ ½º½ Ð ÙÒ Ò ÚÓÒ Ö Ò ÙÒ Ò Ò ½º½º½ È Ö Ñ Ø Ö Ð ÙÒ Ò Ö Ö Ò Ò Ö g Ø ÙÖ Ò Ò ÈÙÒ Ø A ÙÒ Ö Ê ØÙÒ Ø Ð Øº Ë ØÞ ½ Á Ø A E Ò Ð Ñ ÒØ Ò ÙÙÒ Ö ÙÑ µ Ñ Ø Ñ ÇÖØ Ú ØÓÖ a ÙÒ u R 3 \{ 0} ÒÒ Ø ÈÙÒ ØÑ Ò

Mehr

ÙÚ ÖÐ Ø º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ º Ç ØÓ Ö ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ ÙÚ ÖÐ Ø º Ç ØÓ Ö ¾¼½ ½» ½

ÙÚ ÖÐ Ø º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ º Ç ØÓ Ö ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ ÙÚ ÖÐ Ø º Ç ØÓ Ö ¾¼½ ½» ½ ÙÚ ÖÐ Ø º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ º Ç ØÓ Ö ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ ÙÚ ÖÐ Ø º Ç ØÓ Ö ¾¼½ ½» ½ ÁÒ ÐØ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ ÙÚ ÖÐ Ø º Ç ØÓ Ö ¾¼½ ¾» ½ Ò Ö Ð ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ

Mehr

Î ÖØÖ Ù Ò Ú ÖÐÙ Ø Ñ ÁÒØ Ö Ò ÒÑ Ö Ø ÙÒ Ò Ø ÖÖ Ä ÙÒ Å Ð À Ò ÍÒ Ú Ö ØØ ÁÒÒ ÖÙ ÁÒ Ø ØÙØ Ö Ò Ò ÙÒ Ò ÒÞ Ò

Î ÖØÖ Ù Ò Ú ÖÐÙ Ø Ñ ÁÒØ Ö Ò ÒÑ Ö Ø ÙÒ Ò Ø ÖÖ Ä ÙÒ Å Ð À Ò ÍÒ Ú Ö ØØ ÁÒÒ ÖÙ ÁÒ Ø ØÙØ Ö Ò Ò ÙÒ Ò ÒÞ Ò Î ÖØÖ Ù Ò Ú ÖÐÙ Ø Ñ ÁÒØ Ö Ò ÒÑ Ö Ø ÙÒ Ò Ø ÖÖ Ä ÙÒ Å Ð À Ò ÍÒ Ú Ö ØØ ÁÒÒ ÖÙ ÁÒ Ø ØÙØ Ö Ò Ò ÙÒ Ò ÒÞ Ò Ö Ð Ä ÕÙ ØØ Ò ÒÞ Ò Ø ØÙØ ÓÒ Ò ÙÒ ÁÒØ Ö Ò ÒÑ Ö Ø Î ÖØÖ Ù Ò ÁÒØ Ö Ò ÒÑ Ö Ø Û Ö Ò Ö ÃÖ Ù Û Ö ÙÒ Ò Ö Ò ÒÞ

Mehr

Ê ÓØ ÓÖ º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ º Å ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ Ê ÓØ ÓÖ º Å ¾¼½ ½» ½

Ê ÓØ ÓÖ º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ º Å ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ Ê ÓØ ÓÖ º Å ¾¼½ ½» ½ Ê ÓØ ÓÖ º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ º Å ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ Ê ÓØ ÓÖ º Å ¾¼½ ½» ½ Å Ü Ñ Ð Ö ÒÞ ÙÒ Ö Ö Ö ØÚ ÖØ ÐÙÒ Ò Ø ÓÒ Ò ÙÒ Ø ÓÒ Ä : [¼, ) [¼, ) Ø Ð Ò Ñ Ú Ö Ö Ò ÐÓÛÐÝ Ú ÖÝ

Mehr

a n½ x ½ +a n¾ x ¾ a nn x n = b n

a n½ x ½ +a n¾ x ¾ a nn x n = b n Ä Ò Ö Ð ÙÒ Ý Ø Ñ º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á Ð Ñ Ò Ö Ò ÙÒ Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò ½ º ÅÖÞ ¾¼½ Ä Ò Ö Ð ÙÒ Ý Ø Ñ Ä Ö Ø Ð Ö ÑÔ Ò Ð Ø Å ØÖ Ü Ð Ö Ä Ö Ø ÐÐÙÒØ Ö ÙÒ Ò Å ÌÄ ÙÒ Ð Ò Ö ËÝ Ø Ñ Ð Ö ÑÔ

Mehr

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim Ì Ð ÁÁ Ä Ò Ö Ð ÙÒ Ý Ø Ñ ¹ Ö Ø Å Ø Ó Ò Ä Ò Ù¹ËÝÑ ÓÐ Ä Ò Ù¹ËÝÑ ÓÐ Ð Ò Î Ö ÐØ Ò ÚÓÒ ÙÒ Ø ÓÒ Ò Ò Ò Ö ÍÑ ¹ ÙÒ ÚÓÒ Ø ÑÑØ Ò Ï ÖØ Ò ÞÙ Ð Þ Ö Òº Ò Ø ÓÒ º½º Ò f,g : D R R ÙÒ Ø ÓÒ Ò ÙÒ a D Ò ÀÙ ÙÒ ÔÙÒ Øº ÐØ f(x)

Mehr

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = =

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Ë ÈÌ»ÇÃÌ ¾¼½¾ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ï Ú Ð Ö ÒÒ Ø Ù Ò Ö ÙÖ ÒØ Ò Ù ¹½¾ Ù Ô Ø Ö ÊØ ÐÖ Ø Ö ÙØ Å Ù Ò ÙÒ Ò Ã Ø Ö ÍÒ ÒÒ Ö Ò Ø Ù Û Ò Û ÐØ ÛÓ Ð Ò Ò Ò ÏÓ Òµ À ÒÛ ÙÒ Ò Û Ð Ò Ò Ð Ò Ò ÈÙÒ Ø ÙÒØ

Mehr

ÖÐ ÙÒ Ò Ê ÒÑ Ò Ò Ä ÙÖ ÒØ È Ð Ö ¼º ÆÓÚ Ñ Ö ¾¼¼ ½» ¾

ÖÐ ÙÒ Ò Ê ÒÑ Ò Ò Ä ÙÖ ÒØ È Ð Ö ¼º ÆÓÚ Ñ Ö ¾¼¼ ½» ¾ ÖÐ ÙÒ Ò Ê ÒÑ Ò Ò Ä ÙÖ ÒØ È Ð Ö ¼º ÆÓÚ Ñ Ö ¾¼¼ ½» ¾ ÖÐ À ØÓÖ À ÒØ Ö Ö Ò Ö ÒÞ ÒÑ Ò Ö ÒÞ ÒÚ Ö Ö Ò ØÙÖ Ö Ö ÒÞ ÒÑ Ò Ò ÐÝØ Å Ò ¾» ¾ ÖÐ ½ ½ ½ ½ Ä Ø ÞÙÖ Ø Ö ÁÒ Ù ØÖ ÐÐ Ò Ê ÚÓÐÙØ ÓÒ ½ ÎÓÐÐÑ Ò ÖØ Ö Ï ØÙ Ð ½ ¼ Ù

Mehr

ψ(t, Ü) = e iet/ ψ(ü).

ψ(t, Ü) = e iet/ ψ(ü). Ã Ô Ø Ð Ö ÖÑÓÒ Ç Þ ÐÐ ØÓÖ ÒÞ Û Ë Ö Ò Ò ÒÒ Ò Ø Ò Ã Ø ÒÔÓØ ÒØ Ð Ö ÌÙÒÒ Ð Ø Ï Ö ØÓ ØÓÑ ÙÒ ÚÓÖ ÐÐ Ñ Ö ÖÑÓÒ Ç Þ ÐÐ ØÓÖº Ï ÒÒ Ë Ó Ò Ò Ò Ö Ù Ò Ë º Ï ÒÒ Ò Ø Ò ÖÒ Ë Ó Ð Ò Ë Ò Ò Òº Ù Ø Ò ËÔÖ ÚÓÒ ÈÖÓ ÓÖ Ò ÁÒ Ñ Ã

Mehr

= = = = =

= = = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Â Æ» ¾¼½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ù Ñ Ð Ò Û Ö Ê Ð Ñ Ø Ñ Ö Û Ö ÓÖÑØ Ò Òº Ø ÐÐ Ù Ø ÐÐØ Ò ËØ Ò Ñ Ö ÚÓÖ Ò Òº µ Ï Ú Ð Ú Ö Ò ÓÑÑ Ò ÚÓÖ µ Ï Ð Ø Ñ Ù Ø Ò Ú ÖØÖ Ø Ò µ Ï Ð Ø Ù Ñ ÐØ Ò Ø Ò ¾ À Ï Ò

Mehr

h : N {0, 1, 2,..., 10} k k mod 11 10, 23, 17, 42, 13, 21, 31, 1

h : N {0, 1, 2,..., 10} k k mod 11 10, 23, 17, 42, 13, 21, 31, 1 ÂÙÒº ÈÖÓ º Öº Ö Ø Ò ËÓ Ð Ö È Ö ÓÖÒ Ò ½½º ÂÙÐ ¾¼¼ ÈÖÓ ¹ÃÐ Ù ÙÖ ÞÙÖ ÎÓÖÐ ÙÒ Ø Ò ØÖÙ ØÙÖ Ò ÙÒ Ð ÓÖ Ø Ñ Ò ËË ¾¼¼ Æ Ñ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Mehr

ÒÛ Ò ÙÒ Ô Ø Ð Ö ÒÒ ÖÙÒ ÂÈ Ñ ÚÓÖ Ò Ò ØØ Û Ø Ð ÓÑÔÖ ÓÒ ÅÈ µ ØÛ µ ÃÓÑÔÖ ÓÒ ÚÓÒ Ù Ó Ø Ò ¾

ÒÛ Ò ÙÒ Ô Ø Ð Ö ÒÒ ÖÙÒ ÂÈ Ñ ÚÓÖ Ò Ò ØØ Û Ø Ð ÓÑÔÖ ÓÒ ÅÈ µ ØÛ µ ÃÓÑÔÖ ÓÒ ÚÓÒ Ù Ó Ø Ò ¾ ÖÒ Ù Àº ÖÒ ÙÙÒ ¹ØÖ Öº Ñ Ð ¾¼½ ËÓË ÌÖ Ö ÍÒ Ú Ö ØØ Ø Ò ÓÑÔÖ ÓÒ ÒÛ Ò ÙÒ Ò ½ ÒÛ Ò ÙÒ Ô Ø Ð Ö ÒÒ ÖÙÒ ÂÈ Ñ ÚÓÖ Ò Ò ØØ Û Ø Ð ÓÑÔÖ ÓÒ ÅÈ µ ØÛ µ ÃÓÑÔÖ ÓÒ ÚÓÒ Ù Ó Ø Ò ¾ ÒÐ Ø Ò ÒÒ Ö Ð ÒÞ ÐÒ Ö Ð Ö Ï Ø Ö Ò Ø ËØ ÖÙÒ

Mehr

ÒÐ ØÙÒ ØÖ Ù ÖØ ÅÓÖÔ ÓÐÓ Ì ÓÖ Ø ÅÓÖÔ ÓÐÓ È Ð ÔÔ Ï Ö ÍÒ Ú Ö ØØ Ä ÔÞ Ô Ð ÔÔºÛ ÖÙÒ ¹Ð ÔÞ º ½ º ÔÖ Ð ¾¼½ ½» ¾

ÒÐ ØÙÒ ØÖ Ù ÖØ ÅÓÖÔ ÓÐÓ Ì ÓÖ Ø ÅÓÖÔ ÓÐÓ È Ð ÔÔ Ï Ö ÍÒ Ú Ö ØØ Ä ÔÞ Ô Ð ÔÔºÛ ÖÙÒ ¹Ð ÔÞ º ½ º ÔÖ Ð ¾¼½ ½» ¾ Ì ÓÖ Ø ÅÓÖÔ ÓÐÓ È Ð ÔÔ Ï Ö ÍÒ Ú Ö ØØ Ä ÔÞ Ô Ð ÔÔºÛ ÖÙÒ ¹Ð ÔÞ º ½ º ÔÖ Ð ¾¼½ ½» ¾ ¾» ¾ Ò ÝÒØ Ø ËØÖÙ ØÙÖ ½µ È È»ÆÈ ³ ¼ ÆÈ ¼ ÌÈ Æ ¼ Ø ÚÈ Ì Ê ÔÖ ÒØ ÒØ Ò Ù ÎÈ Ú È»ÆÈ Î ¼ ¼ ÆÈ Æ ¼ Û Ö Ù ÒÓÑÑ Ò Î Ö Ò ÐÙÒ Ò» ¾

Mehr

= 27

= 27 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ ÁÒ ÂÙÐ Ë Ù Ö Ò Ø Ò Ö È Ö Ë Ù º Ë Ò ÑÑØ Ñ ÙÒ ÐÒ Ú Ö ÒÞ ÐÒ Ë Ù Ö Ù º Á Ø Ò ÞÙ ÑÑ Ò Ö Ò È Ö Ù ¹½¾ Û ÚÓÒ Ò Ð Ö Ò Ò Ú ÐÐ Ð º Ï Ð Ò ¾ À Ï Ò ÐÚÓ ÛÛÛº Ð

Mehr

v = a b c d e f g h [v] =

v = a b c d e f g h [v] = ÂÙÒº ÈÖÓ º Öº Ö Ø Ò ËÓ Ð Ö È Ö ÓÖÒ Ò ¾ º ÂÙÐ ¾¼¼ ½º ÃÐ Ù ÙÖ ÞÙÖ ÎÓÖÐ ÙÒ Ø Ò ØÖÙ ØÙÖ Ò ÙÒ Ð ÓÖ Ø Ñ Ò ËË ¾¼¼ Æ Ñ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Å

Mehr

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ Ò Ò Ø Ó ÍÒØ Ö Ù ÙÒ Ö Ð ØÖÓÒ Ò ÄÓ Ð ÖÙÒ Ò Ò Ö Ñ Ò ÓÒ Ð Ò À Ð Ð Ø Ö ØÖÙ ØÙÖ Ò Ñ Ø Ï ÐÛ Ö ÙÒ ÙÒ ÍÒÓÖ ÒÙÒ Ò Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö ÚÓÖ Ð Ø ÚÓÒ Å Ö

Mehr

±0, 1m 2 m 3..m 53 2 e 10e 9..e

±0, 1m 2 m 3..m 53 2 e 10e 9..e Ê Ò Ò Ï ÖÙÑ Ð Ö Ö Ò Ò Ø Ó ÓÑÔÙØ Ö Ì ÐÒ Ñ Ö Ö Ø Ò Ö Ö ÒÒ Å Ò È ØÖ Å ÙØ Ò Ö ÊÓÞ È ØÖ ÃÐ ØÞ Ö ØÓÔ Ö Ë Ñ Ø ÊÓ ÖØ Ë ÐÑ ÒÒ Ò Ö ¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ ÁÑÑ Ò٠йà ÒØ¹Ç Ö ÙÐ À Ö Ö¹Ç Ö ÙÐ Ò Ö ¹Ç Ö ÙÐ ÁÑÑ ÒÙ

Mehr

Prof. Dr. Siegfried Trautmann Lehrstuhl für Finanzwirtschaft / FB 03 Johannes Gutenberg-Universität Mainz

Prof. Dr. Siegfried Trautmann Lehrstuhl für Finanzwirtschaft / FB 03 Johannes Gutenberg-Universität Mainz Prof. Dr. Siegfried Trautmann Lehrstuhl für Finanzwirtschaft / FB 03 Johannes Gutenberg-Universität 55099 Mainz ÃÐ Ù ÙÖ ÞÙÖ ÎÓÖÐ ÙÒ Ò ÒÞÛ ÖØ Ø ÁÁ ÏË ¾¼¼»¾¼¼ µ ¾ º ÖÙ Ö ¾¼¼ À ÖÖ» Ö Ù Æ Ñ ÎÓÖÒ Ñ Å ØÖºÆÖº

Mehr

α : Σ γ Σ α γ : Σ α Σ γ

α : Σ γ Σ α γ : Σ α Σ γ Ë Ñ Ò Ö Ö Ø ØÖ Ø ÁÒØ ÖÔÖ Ø Ø ÓÒ Á È Ò ½¼º ÂÙÐ ¾¼¼ ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ä Ö¹ ÙÒ ÓÖ ÙÒ Ò Ø Ì ÓÖ Ø ÁÒ ÓÖÑ Ø ØØ Ò Ò ØÖ ¹ ¼ Å Ò Ò Î Ö Ö ÓÞ ÒØ ØÖ Ù Ö Æ Þ Å ÝÐÓÚ ÈÖÓ º Å ÖØ Ò ÀÓ

Mehr

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½ ÆÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ ÙÒØ Ö Î ÖÛ Ò ÙÒ Ý Ò Ö Î Ö Ð Ò Ð Ø ÓÒ ¹ źËÑ Ø ² ʺÃÓ Ò ¹ ½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ

Mehr

(x, y) + (0, 0) = (x, y)

(x, y) + (0, 0) = (x, y) ÃÓÑÔÐ Ü Ð Ò ÙÒ ÓÑ ØÖ Ì ÐÒ Ñ Ö Æ Ð ÊÙ Ø Â Ò ÈÙØÞ ÊÓÒ Ï ÒÞ Ð Ð Ü Ý ÄÓÙØ Ó ÂÓ À ÒÒ Ö ØÙÒ Â ÖÒ ÖÓ Ø Ò À Ö Ö¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ Ò Ö ¹Ç Ö ÙÐ ÖÙÔÔ

Mehr

ÎÓÖÛÓÖØ ÚÓÖÐ Ò Ë Ö ÔØÙÑ Ø Ò Ò Ö ÚÓÒ Ñ Ö Ñ Ï ÒØ Ö Ñ Ø Ö ¾¼¼»¾¼¼ ÐØ Ò Ò ÎÓÖÐ ÙÒ ÆÙÑ Ö Å Ø Ñ Ø Á ÒØ Ø Ò Òº ÎÓÖÐ ÙÒ Ó¹ Û Ö ÓÖØ ØÞÙÒ ÆÙÑ Ö Å Ø Ñ Ø ÁÁ ÖØ Ò

ÎÓÖÛÓÖØ ÚÓÖÐ Ò Ë Ö ÔØÙÑ Ø Ò Ò Ö ÚÓÒ Ñ Ö Ñ Ï ÒØ Ö Ñ Ø Ö ¾¼¼»¾¼¼ ÐØ Ò Ò ÎÓÖÐ ÙÒ ÆÙÑ Ö Å Ø Ñ Ø Á ÒØ Ø Ò Òº ÎÓÖÐ ÙÒ Ó¹ Û Ö ÓÖØ ØÞÙÒ ÆÙÑ Ö Å Ø Ñ Ø ÁÁ ÖØ Ò ÆÙÑ Ö Á Ï ÒØ Ö Ñ Ø Ö ¾¼¼»¼ Ò Ø Ë Ð ½¾º ÆÓÚ Ñ Ö ¾¼¼ ÎÓÖÛÓÖØ ÚÓÖÐ Ò Ë Ö ÔØÙÑ Ø Ò Ò Ö ÚÓÒ Ñ Ö Ñ Ï ÒØ Ö Ñ Ø Ö ¾¼¼»¾¼¼ ÐØ Ò Ò ÎÓÖÐ ÙÒ ÆÙÑ Ö Å Ø Ñ Ø Á ÒØ Ø Ò Òº ÎÓÖÐ ÙÒ Ó¹ Û Ö ÓÖØ ØÞÙÒ ÆÙÑ Ö Å Ø Ñ Ø ÁÁ ÖØ Ò

Mehr

δ x := x x ε x := x x

δ x := x x ε x := x x Ì Ð Á Ð ÖØ ÓÖ ½ Ð Ö ÖØ Ò Ò Ø ÓÒ ½º½º Ò Ð ÓÖ Ø ÑÙ Ø Ò Ö Ò Ñ Ð Ò ÐÐ Ò¹ ÙØ Ø Ð Ø ÓÐ ÚÓÒ Ð Ñ ÒØ Ö Ò Ê ÒÓÔ Ö Ø ÓÒ Ò ÙÒØ Ö Ò Þ ÙÒ Ñ Ø Ñ Ø Ö ÙÒ Ø ÓÒ Ò ÙÒ Ò ÙÒ Òº Ð Ñ ÒØ Ö Ê ÒÓÔ Ö Ø ÓÒ Ò Ò ÖÙÒ Ö Ò ÖØ Ò ÐÓ ÇÔ

Mehr

ÖÙÒ ½ ÖÙÒ ¾ ËÔ Ö ÈÖÓÞ ÓÖ» Ø Ù ÑÑ Ò ÙÒ ÂÓÒ Ë ÐÙÑ Ö Ö ¾»

ÖÙÒ ½ ÖÙÒ ¾ ËÔ Ö ÈÖÓÞ ÓÖ» Ø Ù ÑÑ Ò ÙÒ ÂÓÒ Ë ÐÙÑ Ö Ö ¾» ÖÙÒ ÎÓÖØÖ Ñ ÈÖÓ Ñ Ò Ö ÃÓÒÞ ÔØ ÚÓÒ ØÖ Ý Ø Ñ ÓÑÔÓÒ ÒØ Ò ÂÓÒ Ë ÐÙÑ Ö Ö Ô Ð Ôº Ò ÓÖÑ Ø ºÙÒ ¹ ÖÐ Òº Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò»Æ ÖÒ Ö ¾ º ÂÙÒ ¾¼¼ ÂÓÒ Ë ÐÙÑ Ö Ö ½» ÖÙÒ ½ ÖÙÒ ¾ ËÔ Ö ÈÖÓÞ ÓÖ» Ø Ù ÑÑ Ò ÙÒ ÂÓÒ

Mehr

Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ ÙÒ Ö ØÖÖ Ð Ü Ð µ ÁÒ ÓÖÑ Ø ÓÒ Û Ö Ö Ø ÔØ Ò Ö Ë

Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ ÙÒ Ö ØÖÖ Ð Ü Ð µ ÁÒ ÓÖÑ Ø ÓÒ Û Ö Ö Ø ÔØ Ò Ö Ë ÈÓ Ø ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Á È Ð ÔÔ Ï Ö ÍÒ Ú Ö ØØ Ä ÔÞ Ô Ð ÔÔºÛ ÖÙÒ ¹Ð ÔÞ º Ô Ð ÔÔÛ Öº ½ º ÔÖ Ð ¾¼½ ½» Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ

Mehr

f (x) = t x t 1 f (x) = a x ln(a) f(x) f (x) g(x) f(x) g (x) g 2 (x)

f (x) = t x t 1 f (x) = a x ln(a) f(x) f (x) g(x) f(x) g (x) g 2 (x) Ì À Æ Á Ë À À Ç À Ë À Í Ä Ã Ä Æ ÙÐØØ Ö Ï ÖØ Ø ¹ ÙÒ Ê Ø Û Ò Ø Ò ÓÖÑ Ð ÑÑÐÙÒ É Í Æ Ì Á Ì Ì Á Î Å Ì À Ç Æ À Ö Ù Ö ¾¼½ ÖÙÔÔ ÉÙ ÒØ Ø Ø Ú Å Ø Ó Ò Å Åº½ ÓÖÑ ÐÒ ÞÙÖ Å Ø Ñ Ø Ð ØÙÒ Ò ÙÒ Ø ÓÒ Ð ØÙÒ fx = c; c IR f

Mehr

Lehrstuhl und Institut für Strömungslehre

Lehrstuhl und Institut für Strömungslehre ÙÒ Ò ÞÙÑ È Ø ËØÖ ÑÙÒ Ð Ö Ö Ñ Ò Ò ÙÖÛ Ò ÙÒ Î Ö Ö Ò Ø Ò ½º Ù Ò Ð ØØ ËØÖ ÑÙÒ Ö ÀÝ ÖÓ Ø Ø Ù ½º½ ÙÒ Ù ËØÖ ÑÙÒ Ñ Ò Ù ¾º½º½µ º ½º½ ÃÖ Ø ÖÞ Ù ÙÑ ØÖ ÑÙÒ Ò ÃÖ Ø ÖÞ Ù Û Ö ÚÓÒ Ò Ö Ö ÙÒ Ö Ò È Ö ÐÐ Ð ØÖ ÑÙÒ Ö Û Ò Ø

Mehr

¾

¾ Ï Ò ØÐ À Ù Ö Ø Ö Ø ËØ Ø ÔÖ ÙÒ Ö Ä Ö ÑØ Ò Ê Ð ÙÐ Ò Ò ÊÈÇ Á ÚÓÑ ½ º Þ Ñ Ö ½ ËØÖ Ò Ò Ö ÙÖ Ð ÙÒ ÞÙÑ Ä Ò ÑÓØ Ú Ö Ò ÓÑÔÙØ Ö ÙÒ ÁÒØ ÖÒ Ø Ñ ÈÖÓ Ø È Ø Ó ½ ÚÓÖ Ð Ø ÚÓÒ ÓÖÒ Ð ÃÓÖ Ò Ö Ø Ö È Ó Ò ÀÓ ÙÐ À Ð Ö Ê Ö ÒØ

Mehr

v = ṡ, a = v, a = s adt v = a t+v 0 s = 1 2 a t2 +v 0 t+s 0

v = ṡ, a = v, a = s adt v = a t+v 0 s = 1 2 a t2 +v 0 t+s 0 Ú½º ¹ Ö ØÙ Ð ÙÖ ÖØ ÚÓÒ Ò Ñ ½ º¼ º¾¼½ Î Ö ÓÒ ÚÓÑ ½ º¼ º¾¼½ ÓÒØ ÒØ ÙÖ ÖÙÒ Ð ÙÒ ÙÒ Ú Ö ÐØ Ò Ò Ö ØÙ Ð Ì Ð ½ Ò ÐÓ Å Ø Ó Ð ÖÖ ÒÙÒ ÞÙÑ Ò ØØ ÃÓÒ ØÖÙ Ø ÓÒ a t¹ v t¹ ÙÒ s t¹ Ö ÑÑ Ò Å ÌÄ Ì Ð ¾ Ð ÙÒ ÙÒ Ñ ÙÒ Ñ Ø Ñ

Mehr

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö ËÔ ÖÖÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑÖ ØÙÒ ËÔ ÖÖ Òµ ÖÙ Ú ÒØ Ð Ø ÑÑØ Ð Ø ÖÙ Ñ ËÝ Ø Ñ Ö Ò¹ Å Ò ÖÒ Ù ÐØ Òµ Þ Ò ËØÖÓÑÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑ Ñ ËÝ Ø Ñ ÖÓ ÐÒ Î ÒØ Ð Ä ØÙÒ Ù ÙÖ Ò Ù ÙÒ ÚÓÒ p ËØ Ù ÖÙÒ ÙÒ ËØÖ ÑÙÒ Ö ØÙÒ

Mehr

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ Ë Ñ Ò Ö ÞÙÖ Ì ÓÖ Ö ØÓÑ Ã ÖÒ ÙÒ ÓÒ Ò ÖØ Ò Å Ø Ö Æ ØÞÐ Ì ÓÖ Ñ ÙÒ Ö ÒÛ Ò ÙÒ Ò Ö ÅÓÐ ÐÔ Ý Ä Ä Ò ¾ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ÙÐ Ö¹Ì ÓÖ Ñ ¾º½ ÀÓÑÓ Ò ØØ Ò Ö ÙÒ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º

Mehr

ÁÒ ÐØ ½ ¾ ÈÖ Ú ÒØ Ø Ú Å ÒØ Ò Ò ¹ ÎÓÖ Ù Ò ÁÒ Ø Ò ÐØÙÒ Ñ Ò Ñ ÅÓ ÐÐ ÖÙÒ ÚÓÒ ËÝ Ø Ñ Ò Ñ ØØ Ð Å Ö ÓÚ ËÝ Ø Ñ ÅÓ ÐÐ ÖÙÒ Ö Ê Ô Ö ØÙÖÞ Ø Ö ÒÙÒ Ö ÅÌÌ ÙÒ ÅÌÌÊ Ò

ÁÒ ÐØ ½ ¾ ÈÖ Ú ÒØ Ø Ú Å ÒØ Ò Ò ¹ ÎÓÖ Ù Ò ÁÒ Ø Ò ÐØÙÒ Ñ Ò Ñ ÅÓ ÐÐ ÖÙÒ ÚÓÒ ËÝ Ø Ñ Ò Ñ ØØ Ð Å Ö ÓÚ ËÝ Ø Ñ ÅÓ ÐÐ ÖÙÒ Ö Ê Ô Ö ØÙÖÞ Ø Ö ÒÙÒ Ö ÅÌÌ ÙÒ ÅÌÌÊ Ò ÙÚ ÖÐ Ø º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ ¾ º ÂÒÒ Ö ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ ÙÚ ÖÐ Ø ¾ º ÂÒÒ Ö ¾¼½ ½» ¼ ÁÒ ÐØ ½ ¾ ÈÖ Ú ÒØ Ø Ú Å ÒØ Ò Ò ¹ ÎÓÖ Ù Ò ÁÒ Ø Ò ÐØÙÒ Ñ Ò Ñ ÅÓ ÐÐ ÖÙÒ ÚÓÒ ËÝ Ø Ñ

Mehr

ÓÒÙ ¹Å ÐÙ ËÝ Ø Ñ Ö Î Ö ÖÙÒ Û Ã Ø ÓÖ Ò ÚÓÒ Ê Ò Ò Ó Ø Ú Ò Ê Ò Þº º ÈË Þ Ð Ò ÙØÓ Ö ÀÙ Ö ÙÑ Û Ø Ø ºº ÙÒ Ò Ù Ø Ú Ò Ê Ò Ò Ø Ó Ø Ú Ñ Ö Ê Òµ Ê Ó Ö Ø Ø Ã ÒÒ Ò

ÓÒÙ ¹Å ÐÙ ËÝ Ø Ñ Ö Î Ö ÖÙÒ Û Ã Ø ÓÖ Ò ÚÓÒ Ê Ò Ò Ó Ø Ú Ò Ê Ò Þº º ÈË Þ Ð Ò ÙØÓ Ö ÀÙ Ö ÙÑ Û Ø Ø ºº ÙÒ Ò Ù Ø Ú Ò Ê Ò Ò Ø Ó Ø Ú Ñ Ö Ê Òµ Ê Ó Ö Ø Ø Ã ÒÒ Ò Ê ÓØ ÓÖ º Ì Ð ÈÖÓ º Ö À Ù Ò Ð ÅÓÒØ ÒÙÒ Ú Ö ØØ Ä Ó Ò Ø ÖÖ ¾ º ÔÖ Ð ¾¼½ ÈÖÓ º Ö À Ù Ò Ð Ä Ó Òµ Ê ÓØ ÓÖ ¾ º ÔÖ Ð ¾¼½ ½» ½ ÓÒÙ ¹Å ÐÙ ËÝ Ø Ñ Ö Î Ö ÖÙÒ Û Ã Ø ÓÖ Ò ÚÓÒ Ê Ò Ò Ó Ø Ú Ò Ê Ò Þº º ÈË Þ Ð Ò ÙØÓ Ö ÀÙ

Mehr

Ñ Ð ØÖº Ø ÒÚ Ö Ö Ñ À ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½½ ½º½ Ö Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½½ ½º¾ Ó

Ñ Ð ØÖº Ø ÒÚ Ö Ö Ñ À ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½½ ½º½ Ö Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½½ ½º¾ Ó ¹ÌÖÙ Ø ÐÐ Ø Ö Ë Ö Ø Ý Ø Ñ Ñ Ð ØÖÓÒ Ò Ø ÒÚ Ö Ö Ñ À Ä Ò ØÖ Ö À ÙÔØ ØÖ ¹½¼ ¼ Ï Ò Ì Ð ½µ ½ ¾½ ½ ¹ ¼ Ü ½µ ½ ¾½ ½ ¹ ¼ ØØÔ»»ÛÛÛº ¹ØÖ٠غ Ø ºØÖÙ Ø ÖØ Þ ÖÙÒ Ö ØÐ Ò ÖØ Ø ÈÖ Ø ËØ Ø Ñ Òص Ö ÕÙ Ð Þ ÖØ ÖØ Ø º Ò ÔÖ Ñ

Mehr

È Ý ¹Ë Ö ÔØ Ö Ö Ø Â Ö È Ý ÙÒØ ÖÖ Ø Ò Ñ ÖØÖ ØØ ÚÓÒ Ö Ë º Ò Ã ÒØÓÒ ÙÐ Öº ŠРú ÖÖÝ ½¾º Ç ØÓ Ö ¾¼½

È Ý ¹Ë Ö ÔØ Ö Ö Ø Â Ö È Ý ÙÒØ ÖÖ Ø Ò Ñ ÖØÖ ØØ ÚÓÒ Ö Ë º Ò Ã ÒØÓÒ ÙÐ Öº ŠРú ÖÖÝ ½¾º Ç ØÓ Ö ¾¼½ È Ý ¹Ë Ö ÔØ Ö Ö Ø Â Ö È Ý ÙÒØ ÖÖ Ø Ò Ñ ÖØÖ ØØ ÚÓÒ Ö Ë º Ò Ã ÒØÓÒ ÙÐ Öº ŠРú ÖÖÝ ½¾º Ç ØÓ Ö ¾¼½ ÁÒ ÐØ Ú ÖÞ Ò Á ÒÐ ØÙÒ ÙÒ ÖÙÒ Ð Ò ½ ³Ï ÖÙÑ Ë Ö ÔØ Ø À Ö Ù ÓÖ ÖÙÒ Ò ÙÒ Û Ë Ñ Ø ÖÒº³ ½º½ ³ Ö ÖÙÒ Ò ÙÒ ÈÖÓ Ð

Mehr

Ê Ùѹ ÙÒ Ø ÓÑÔÐ Ü ØØ

Ê Ùѹ ÙÒ Ø ÓÑÔÐ Ü ØØ ÃÓÑÔÐ Ü ØØ ÚÓÒ Ð ÓÖ Ø Ñ Ò ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ÈÖÓ º Öº À Ö ÖØ ÎÓÐÐÑ Ö ÁÒ Ø ØÙØ Ö Ì ÓÖ Ø ÁÒ ÓÖÑ Ø ¼½º¼ º¾¼¼ Ê Ùѹ ÙÒ Ø ÓÑÔÐ Ü ØØ Ø Ö ÙÒ ÈÐ ØÞ Ö Ë Å Ò ÌÙÖ Ò Ñ Ò Ìŵº Ë : N Nº Å Ö Ø Ø Ò Ø ÐÐ Ö ÐÐ Ò ÙÒ Ö ÐÐ Ï

Mehr

1 4 (s 2 +4) 2. s 4 = 10 7

1 4 (s 2 +4) 2. s 4 = 10 7 ¼ Å ÒÙØ Ò ÒÐ Þ Ø Ë Ø ½ Ö ÙÖ Ø Ö ÃÐ Ù ÙÖ Û Ö Ò ÒÐ Þ Ø ÚÓÒ ½¼ Å ÒÙØ Ò Û Öغ Ï Ö Ò ¹ Ö Ø Ù Ö Ø Á Ò Ò Ò Ø Ø ØØ Ø Ñ Ø Ö Ö ØÙÒ Ö Ù Ò ÞÙ ÒÒ Òº ÙØ Ø ÓÒ Ö Ø Û Ö Ò Ö ÑØ Ò Ù Ö Ö ÒÐ Þ Ø Ò ÖÐ Ë Ö ÖØ ËØ Ø ÐÐ Ö Øºµ Ù

Mehr

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ Ø ÓÒ ÒÙÑ Ö ÁÒØ Ö Ø ÓÒ º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á º Ö Ò ÙÒ º À Ù Ò Ð ¾ º Å ¾¼½ ½» ¾ Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ

Mehr

a IR (x 1,...,x n ) IR n : L(x 1 +a,...,x n +a) = L(x 1,...,x n ) µ x := 1 n

a IR (x 1,...,x n ) IR n : L(x 1 +a,...,x n +a) = L(x 1,...,x n ) µ x := 1 n Ã Ô Ø Ð Ò ÖÙÒ Ò ËØ Ø Ø ÙÒ Ö Ò Ö Ò ØÖ ØÙÒ Ò Ò Ö Ï Ö ÒÐ Ø Ø ÓÖ Ò Û Ö Ù ÐÐ ÜÔ ¹ Ö Ñ ÒØ ÙÖ Ï Ö ÒÐ Ø ÖÙÑ ÑÓ ÐÐ Öغ Ö ÒØÛ ÐÙÒ Ö Ñ Ø Ñ Ø Ò Ì ÓÖ Ò Û Ö ÒÒ ÚÓÒ Ù Ò Ò Ö ÞÙ ÖÙÒ Ð Ò Ï Ö ÒÐ Ø Ö ÙÑ ÙÒ Ñ Ø Î ÖØ ÐÙÒ Ö

Mehr

2 = = = = = 82

2 = = = = = 82 Å ÌÀ Å ÌÁË À Ê ÁÌÆ ËËÌ ËÌ Ê Á ÁÆÌÊÁÌÌ ÁÆ Á ÀÇ ÀË ÀÍÄ Ê ÈÈ ÊËÏÁÄ Ö ÓÐ Ò ØÒ Ø Ø ÒØ ÐØ Ò Ê ÚÓÒ Ù ÒØÝÔ Ò Ñ ÖØÖ ØØ Ò Ò Ó ÙÐ Ð ÒÒØ ÚÓÖ Ù ØÞØ Û Ö Òº Ñ Ì Ø ÞÙ ÖÙÒ Ð Ò Ò Ê Ò ØÞØ Û Ö Ò Ò ÙÒ Ö Ò Å Ø Ñ Ø ÚÓÖÐ ÙÒ Ò

Mehr

ÒØÛ ÐÙÒ ÚÓÒ Å ØÖ Ò Ö ÅĹ Ó ÙÑ ÒØ ÓÐÐ Ø ÓÒ Ò ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ ÊÓ ØÓ Ö ÁÒ ÓÖÑ Ø ÚÓÖ Ð Ø ÚÓÒ ÓÖ Ò Ñ Ä Ö Ë Ò Ö ¾½º ÔÖ Ð ½ Ò ÊÓ ØÓ ØÖ Ù Ö ÈÖÓ º Öº Ò Ö À Ù Ö ÈÖÓ º Öº Ð Ñ Ò Ô Öº¹ÁÒ º Å ÃÐ ØØ ØÙÑ ¾ º Þ Ñ Ö

Mehr

loooooooooooooomoooooooooooooon

loooooooooooooomoooooooooooooon ÁÒØ ÖÔÓÐ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Mehr

Peter Gienow Nr.11 Einfach heilen!

Peter Gienow Nr.11 Einfach heilen! Peter Gienow Nr.11 Einfach heilen! Reading excerpt Nr.11 Einfach heilen! of Peter Gienow Publisher: Irl Verlag http://www.narayana-verlag.com/b4091 In the Narayana webshop you can find all english books

Mehr

Kurzzusammenfassung. Abstract

Kurzzusammenfassung. Abstract Å Ø Ñ Ø ÅÓ ÐÐ ÖÙÒ Ø Ð ÑÓ¹ ÓÖØ Ð Ö Ê Ð Ö Ñ ØØ Ð ËÝ Ø Ñ Ò Ô Ò ÓÔÔ ÐØ Ö Ç Þ ÐÐ ØÓÖ Ò ÁÒ Ù ÙÖ Ð ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Å Ø Ñ Ø ¹Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ ÞÙ Ã ÐÒ ÚÓÖ Ð Ø ÚÓÒ Òҹà ØÖ Ò Ö Ù À Ñ ÙÖ

Mehr

ÁÒ Ø ØÙØ Ö ÈÖÓ Ö ÑÑ ØÖÙ ØÙÖ Ò ÙÒ Ø ÒÓÖ Ò Ø ÓÒ ÁÈ µ ÁÒ Ø ØÙØ Ö Ì Ð Ñ Ø ÁÌŵ ÁÒ Ø ØÙØ Ö Ï ÖØ Ø ÔÓÐ Ø ÙÒ Ï ÖØ Ø ÓÖ ÙÒ ÁÏϵ ÁÒ Ø ØÙØ Ö Ï ÖØ Ø Ø ÓÖ ÙÒ ÇÔ Ö Ø ÓÒ Ê Ö ÏÁÇʵ ÒØÖÙÑ Ö Ò Û Ò Ø Ê Ø Û Ò Ø Ò Êµ ÁÒØ

Mehr

Â Ö Ò ¼ À Ø ½¼ Þ Ñ Ö ¾¼½¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ

Â Ö Ò ¼ À Ø ½¼ Þ Ñ Ö ¾¼½¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Â Ö Ò ¼ À Ø ½¼ Þ Ñ Ö ¾¼½¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ ÞÙ Å ÒÞ JG U JOHANNES GUTENBERG UNIVERSITÄT

Mehr

Ë Ð Ö Ö Ø ÚÓÒ ÐÙ Ø Ö¹ Ø Ý Ø Ñ Ò ÙÖ Î ÖØ ÐÙÒ Ö Å Ø Ø Ò ÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ Ö ÁÒ Ò ÙÖÛ Ò Ø Ò Ö ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ Ì Ò ÀÓ ÙÐ µ Ò Ñ

Ë Ð Ö Ö Ø ÚÓÒ ÐÙ Ø Ö¹ Ø Ý Ø Ñ Ò ÙÖ Î ÖØ ÐÙÒ Ö Å Ø Ø Ò ÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ Ö ÁÒ Ò ÙÖÛ Ò Ø Ò Ö ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ Ì Ò ÀÓ ÙÐ µ Ò Ñ Ë Ð Ö Ö Ø ÚÓÒ ÐÙ Ø Ö¹ Ø Ý Ø Ñ Ò ÙÖ Î ÖØ ÐÙÒ Ö Å Ø Ø Ò ÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ò Ó ØÓÖ Ö ÁÒ Ò ÙÖÛ Ò Ø Ò Ö ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ Ì Ò ÀÓ ÙÐ µ Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ Ù Ó Å ÐÔÓ Ð Ù ËÓÐ Ò Ò Ì Ö Ñ Ò Ð Ò ÈÖ

Mehr

a 2 b 2 db = 10 log db = 20 log db b 2 2

a 2 b 2 db = 10 log db = 20 log db b 2 2 À Ò ÓÙØ ÞÙÖ Î Ö Ò Ø ÐØÙÒ ÑÓÒ ØÖ Ø ÓÒ ÜÔ Ö Ñ ÒØ ÙÒ Ø ÓÒ Ò Ö ØÓÖ ÙÒ Ø ÓÒ ÙÑ Ò Î Ö Ð Ú Ö Ò Ö ÌÝÔ Ò Ø Ö È Ý ÍÒ Ú Ö ØØ ÝÖ ÙØ Ö Ø Ò Ä Ò Ò Ö ¾ º  ÒÙ Ö ¾¼¼ ½ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ÙÒ Ø ÓÒ ÙÑ Ò ¾º½ Ö º º º º

Mehr

ÅÓÖÔ ÓÐÓ ÅÓÖÔ ÓÐÓ Ö Ö ÙÑ ÒØ Ó ÖÙÒ ÈÖÓÒÓÑ Ò Ð Ð Ü ÓÒ Ö ÓÒ Å ÐÐ Ö ÁÒ Ø ØÙØ Ö Ä Ò Ù Ø ÍÒ Ú Ö ØØ Ä ÔÞ Ï Ë ¾¼½½ ÛÛÛºÙÒ ¹Ð ÔÞ º» ÑÙ ÐÐ Ö Ö ÓÒ Å ÐÐ Ö ÁÒ Ø ØÙ

ÅÓÖÔ ÓÐÓ ÅÓÖÔ ÓÐÓ Ö Ö ÙÑ ÒØ Ó ÖÙÒ ÈÖÓÒÓÑ Ò Ð Ð Ü ÓÒ Ö ÓÒ Å ÐÐ Ö ÁÒ Ø ØÙØ Ö Ä Ò Ù Ø ÍÒ Ú Ö ØØ Ä ÔÞ Ï Ë ¾¼½½ ÛÛÛºÙÒ ¹Ð ÔÞ º» ÑÙ ÐÐ Ö Ö ÓÒ Å ÐÐ Ö ÁÒ Ø ØÙ ÅÓÖÔ ÓÐÓ ÅÓÖÔ ÓÐÓ Ö Ö ÙÑ ÒØ Ó ÖÙÒ ÈÖÓÒÓÑ Ò Ð Ð Ü ÓÒ Ö ÓÒ Å ÐÐ Ö ÁÒ Ø ØÙØ Ö Ä Ò Ù Ø ÍÒ Ú Ö ØØ Ä ÔÞ Ï Ë ¾¼½½ ÛÛÛºÙÒ ¹Ð ÔÞ º» ÑÙ ÐÐ Ö Ö ÓÒ Å ÐÐ Ö ÁÒ Ø ØÙØ Ö Ä Ò Ù Ø µ ¼ ¹¼¼ ¹½¼¼ ½» ¾ ÈÖÓÒÓÑ Ò Ð Ð Ü ÓÒ Ä Øº

Mehr

Ð ØÖÓÒ ÙÒ Ð Ò ÚÓÒ Å ÖØ Ò Ï Ò Ò Ö Ò ½ ¹ ½ ¼ Ö Ò Ò ½ µ ÛÙÖ Ö ØÑ Ð ÚÓÒ Å Ð ËÓÓ ØÑ Ý Ö ÍÒ Ú Ö ØØ Ò Ö Ø ÐÐØ ÙÒ Ù ¹ÊÓÑ ÞÙÖ Î Ö ÙÒ Ø ÐÐغ Í Ó Ù ÍÒ Ú Ö ØØ Ù Ù

Ð ØÖÓÒ ÙÒ Ð Ò ÚÓÒ Å ÖØ Ò Ï Ò Ò Ö Ò ½ ¹ ½ ¼ Ö Ò Ò ½ µ ÛÙÖ Ö ØÑ Ð ÚÓÒ Å Ð ËÓÓ ØÑ Ý Ö ÍÒ Ú Ö ØØ Ò Ö Ø ÐÐØ ÙÒ Ù ¹ÊÓÑ ÞÙÖ Î Ö ÙÒ Ø ÐÐغ Í Ó Ù ÍÒ Ú Ö ØØ Ù Ù Ð ØÖÓÒ ÙÒ Ð Ò ÚÓÒ Å ÖØ Ò Ï Ò Ò Ö Ò ½ ¹ ½ ¼ Ö Ò Ò ½ µ ÛÙÖ Ö ØÑ Ð ÚÓÒ Å Ð ËÓÓ ØÑ Ý Ö ÍÒ Ú Ö ØØ Ò Ö Ø ÐÐØ ÙÒ Ù ¹ÊÓÑ ÞÙÖ Î Ö ÙÒ Ø ÐÐغ Í Ó Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö Ö Ø Ø ¾¼½ Î Ö ÓÒ Ó Ò Ò Ï Ò Ò Ì ÜØ ÙÒ Ð ÖÒ ØÛ

Mehr

Institut für Mechanik

Institut für Mechanik Institut für Mechanik Berichte des Instituts für Mechanik (Bericht 1/2012) Idirisou Danladi Lokalisierungsanalyse des Rissbeginns anhand eines orthotropen Schädigungsmodells kassel university press Berichte

Mehr

Ø ÑÑÙÒ Ö ÃÓÒØÖ Ø ÑÔ Ò Ð Ø Ñ Å ÑÑÓ Ö ÑÑ ÙÒ Ö ÙØÙÒ Ö Ð ÖÑ ÖØ ÙÒ ÙÒ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ó ØÓÖ Ò Ò ÙÖ Ò Öº¹ÁÒ ºµ Ò ÒÓÑÑ Ò ÙÖ ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ö ÇØØÓ¹

Ø ÑÑÙÒ Ö ÃÓÒØÖ Ø ÑÔ Ò Ð Ø Ñ Å ÑÑÓ Ö ÑÑ ÙÒ Ö ÙØÙÒ Ö Ð ÖÑ ÖØ ÙÒ ÙÒ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ó ØÓÖ Ò Ò ÙÖ Ò Öº¹ÁÒ ºµ Ò ÒÓÑÑ Ò ÙÖ ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ö ÇØØÓ¹ Ø ÑÑÙÒ Ö ÃÓÒØÖ Ø ÑÔ Ò Ð Ø Ñ Å ÑÑÓ Ö ÑÑ ÙÒ Ö ÙØÙÒ Ö Ð ÖÑ ÖØ ÙÒ ÙÒ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö Ó ØÓÖ Ò Ò ÙÖ Ò Öº¹ÁÒ ºµ Ò ÒÓÑÑ Ò ÙÖ ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ö ÇØØÓ¹ÚÓÒ¹ Ù Ö ¹ÍÒ Ú Ö ØØ Å ÙÖ ÚÓÒ ÙØ Ø Ö Ôк¹ÁÒ º ÖØ Ô ÐØ

Mehr

2x 1 + 5x 2 = 29 8x 1 3x 2 = 1 x + y = a µ 3x 1 + 4x 2 + x 3 = 1. 2x 1 x 2 = 2 x 1 + 3x 3 = 5. µ 5a 2b + 3c 4d = 0 2a + b = 0 3c 2d = x

2x 1 + 5x 2 = 29 8x 1 3x 2 = 1 x + y = a µ 3x 1 + 4x 2 + x 3 = 1. 2x 1 x 2 = 2 x 1 + 3x 3 = 5. µ 5a 2b + 3c 4d = 0 2a + b = 0 3c 2d = x Ù Ò ÑÑÐÙÒ ÞÙÖ ÎÓÖÐ ÙÒ Ò ÖÙÒ Ò Ñ Ø Ñ Ø Ö Ø Ò ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ÙÒ Ù Ò ÞÙÖ ÎÓÖÐ ÙÒ Ò ÖÙÒ Ò Ñ Ø Ñ Ø Ö Ø Ò Ð Ò Ò ËØÓ Ö Ö Ø Ò Ò Ø Ò Ö Ä ÖÚ Ö Ò Ø ÐØÙÒ Ò ÙÒ Ò ÞÙ Ò ÖÙÒ Ò Ä Ò Ö Ð Ö ÙÒ ÓÑ ØÖ ÙÒ Ò ÞÙ Ò ÖÙÒ Ò Ò ÐÝ

Mehr

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1 T U M Á Æ Ë Ì Á Ì Í Ì Ê Á Æ Ç Ê Å Ì Á à ¼º ÏÓÖ ÓÔ Ö ÃÓÑÔÐ Ü ØØ Ø ÓÖ Ø Ò ØÖÙ ØÙÖ Ò ÙÒ Þ ÒØ Ð ÓÖ Ø Ñ Ò ÖÒ Ø Ïº Å ÝÖ ËÚ Ò ÃÓ Ù ÀÖ ºµ ÀÁ ÃÄÅÆÇ ÌÍŹÁ¼ ¼ ÅÖÞ ¾¼¼ Ì À Æ Á Ë À Í Æ Á Î Ê Ë Á Ì Ì Å Æ À Æ ÌÍŹÁÆ

Mehr

¾ ʺ à ÀÄ Ò Ò Ù À Ð ÖØ Ù ÒØÛ ÐÙÒ Ö ÖÙÒ Ð Ò ÓÖ ÙÒ Ð Ò Ù ÖÐ Ñ Ò Ø Ò ÈÙÒ Ø Ö ÒÒ Ò ½µ Ë Ò Ù ÖÙÒ Ð Ò Ö ÓÑ ØÖ À Ð Ò ÓÒ Ö Ñ À Ò¹ Ð Ù Ü ÓÑ Ø Å Ø Ó Û Û Ò Û Öº

¾ ʺ à ÀÄ Ò Ò Ù À Ð ÖØ Ù ÒØÛ ÐÙÒ Ö ÖÙÒ Ð Ò ÓÖ ÙÒ Ð Ò Ù ÖÐ Ñ Ò Ø Ò ÈÙÒ Ø Ö ÒÒ Ò ½µ Ë Ò Ù ÖÙÒ Ð Ò Ö ÓÑ ØÖ À Ð Ò ÓÒ Ö Ñ À Ò¹ Ð Ù Ü ÓÑ Ø Å Ø Ó Û Û Ò Û Öº ÈÖ ¹ÈÙ Ð Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÍÒ Ú Ö Ó Ñ Ö ÈÖ ÔÖ ÒØ ÆÙÑ Ö ¼ ½ ÎÁ ÀÁÄ ÊÌ Ê È Ê Ç Á Æ Ê ÁÆÀ Ê Ã ÀÄ Ù ÑÑ Ò ÙÒ ÁÒ Ö Ö Ø Ø ÐÐ Ò Û Ö À Ð ÖØ Ù ÓÒ Ö Ñ Ò Ò¹ Ø ÓÖ Ø Òµ È Ö ÓÜ Ò Ò Ò Ò ÖÙÒ Ð ÒØ ÓÖ Ø Ò ÎÓÖÐ ÙÒ Ò ÚÓÖº

Mehr

Ê Ê ÙÒ ÒØ ÖÖ Ý Ó ÁÒ Ô Ò ÒØ ÙØÓÖ ÖÒ Ö Ë Ñ Ø Å Øº ÆÖº ¾ à ÒÒÞº ½ ½ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ½ ÅÓØ Ú Ø ÓÒ ¾ Ì Ð Ò Ê ËÝ Ø Ñ ÖÖ Ý Å Ò Ñ ÒØ ËÓ ØÛ Ö Ê Ä Ú Ð º½ Ö «Ò Ø ÓÒ Ò ººººººººººººººººººººººººººººººº

Mehr

x y x+y x+15 y 4 x+y 7

x y x+y x+15 y 4 x+y 7 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¼ ¹ Â Æ» ¾¼½ ½ ½ ÎÓÖ ÙÐ Ä ÙÒ ¼¹½½ Î ¾ Ï ¾ Ä ÙÒ ¼¹½¾ È Ö Ö Ö Ò ÓÖ Ò Ø Ò ÅÓÓÒ Ñ Ù ÊÓÑ Ó Ä Ë ÒØÓ ÄÓ Ä Ó Ð Ò Ø Ö Ø Ä ÙÒ ¼¹½ Ä ÙÒ ¼¹½ ¹¾ ¹ ¹½ ¹ Ä ÙÒ ¼¹½ Ò Ã Ò Öº Ë Ñ Ò ½ ¾ ÙÒ Ó Ò ØÖÓ

Mehr

ÅÓØ Ú Ø ÓÒ ÅÓØ Ú Ø ÓÒ ØÞØ ÐÐ ÒÞ Ð Ñ ÒØ Ö Ù Ø Ò ÆÙÒ À Ö Û Ö Ò Ö ÖÙÒ Û Ø Ò ÙÖ Ö µ ÌÓÓÐ ÒÙØÞÙÒ ÚÓÒ ËØ Ò Ö ÓÑÔÓÒ ÒØ Ò Ù ÒÑ Ö Ñ Ö Ù ËÓ ØÛ Ö Ø

ÅÓØ Ú Ø ÓÒ ÅÓØ Ú Ø ÓÒ ØÞØ ÐÐ ÒÞ Ð Ñ ÒØ Ö Ù Ø Ò ÆÙÒ À Ö Û Ö Ò Ö ÖÙÒ Û Ø Ò ÙÖ Ö µ ÌÓÓÐ ÒÙØÞÙÒ ÚÓÒ ËØ Ò Ö ÓÑÔÓÒ ÒØ Ò Ù ÒÑ Ö Ñ Ö Ù ËÓ ØÛ Ö Ø ËÓ Ø ÁÈ ÈÖÓÞ ÓÖ Ò ÙÒ Ò ØØ ËÝ Ø Ñ Ò ÖÙÒ ÈÖ Ø ÙÑ È Ö ÐÐ Ð Ê Ò Ö Ö Ø ØÙÖ Ò Ñ Û Ø ÐÐÙÐ Ö ÙØÓÑ Ø Å Ö Ê Ò Ä Ö ØÙ Ð Ö ÁÒ ÓÖÑ Ø Ê Ò Ö Ö Ø ØÙÖµ Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÏË ¾¼½¼»½½ ÅÓØ Ú Ø ÓÒ ÅÓØ Ú

Mehr

Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ Ò ØÓÖ Ö Ë Ö Ø Ñ Ò Ñ Ò Ë Ö Ø Ñ Ò Ñ ÒØÔÖÓÞ Ë ÙÖ Øݵ ÈÓÐ È ¹ÅÓ ÐÐ ËØ Ò Ö ÙÒ ÆÓÖÑ Ò ÞÙ ÁÌ¹Ë Ö Ø Ë Ö Ø ÓÒÞ ÔØ Ä Ø Ö ØÙÖ ¾»

Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ Ò ØÓÖ Ö Ë Ö Ø Ñ Ò Ñ Ò Ë Ö Ø Ñ Ò Ñ ÒØÔÖÓÞ Ë ÙÖ Øݵ ÈÓÐ È ¹ÅÓ ÐÐ ËØ Ò Ö ÙÒ ÆÓÖÑ Ò ÞÙ ÁÌ¹Ë Ö Ø Ë Ö Ø ÓÒÞ ÔØ Ä Ø Ö ØÙÖ ¾» ØÓ Ë ÙÖ ØÝ ÎÇ ÁÒØÖÓ ÙØ ÓÒ Ë Ö Ø»Ë Ö Ø Ñ Ò Ñ ÒØ ÇÖ Ò ØÓÖ ÁÒ Ù ØÖ Ð ËÓ ØÛ Ö ÁÆËÇ Ö Ê Ò Ö Ø ØÞØ ÙØÓÑ Ø ÓÒ ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ì Ò ÍÒ Ú Ö ØØ Ï Ò ÁÒ Ø ØÙØ ÐÓÖ Ò Ò Ù Ö Ö ÒÞ Å Ö Ó Ö Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º ÎÓÖ Ö ØÙÒ Ö Î ÖØ ÙÒ ÔÖ ÙÒ Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ Ï Ò Ö ÔÖ ÒØ Ø ÓÒ ÙÒ Ø Ò Ò Ò Ò Ö ÏÓÖØÑ ÒÒ Ò Ö ºÛÓÖØÑ ÒÒÖÛØ ¹ Òº µ Ö Ò Ù Ò ÎÓÖ Ö ØÙÒ Ò ÚÓÒ ÓÑ Ò ÕÙ ÐÑ Ý Ö ÓÑ Ò ÕÙ ºÞ ÐÑ Ý ÖÖÛØ ¹ Òº µ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½

Mehr

= S 11 + S 21S 12 r L 1 S 22 r L

= S 11 + S 21S 12 r L 1 S 22 r L ÈÖ Ø ÙÑ Ö ÀÓ Ö ÕÙ ÒÞØ Ò Ö ËØÙ ÒØ Ò Ö Ð ØÖÓØ Ò Ä Ò Ö Ö Ö Ù ÖÑ Ö Ë ¹Î Ö ØÖ Ö Î Ö ÓÒ ½º º Å ¾¼½¾ Ó ÙÐ Ò Ð ØÖÓØ Ò ÙÒ ÁÒ ÓÖÑ Ø ÓÒ Ø Ò Ä Ö Ø ÀÓ ¹ ÙÒ À Ø Ö ÕÙ ÒÞØ Ò ÈÖÓ º Öº¹ÁÒ º Àº À Ù ÖÑ ÒÒ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË

Mehr

Bachelorarbeit. Ausgeführt am Institut für Festkörperphysik der Technischen Universität Wien

Bachelorarbeit. Ausgeführt am Institut für Festkörperphysik der Technischen Universität Wien Bachelorarbeit Hohe Gütefaktoren in Split-Ring-Resonatoren Ausgeführt am Institut für Festkörperphysik der Technischen Universität Wien unter Anleitung von Univ.Prof. Dr.rer.nat. Andrei Pimenov und Dipl.-Phys.

Mehr

Ð ÙÒ ½ ËÙ Ø Ú ÙÖØ ÐÙÒ ÚÓÒ Ì ÑÔ Ö ØÙÖ Ò ÙÖ Ø Ø Ò ÓÖ Ò Òº ÏÖÑ ÑÔ Ò Ò Ø Ó ÙÒ Ò Ù ÙÒ Ð Ö Ü Ø Å ÙÒ ÚÓÒ ÏÖ¹ Ñ ÞÙ ØÒ Ò ÙÒ Ò Øº Ö Å Ò Ò ÑÑØ ÏÖÑ ÙÖ Ô Þ ÐÐ Æ ÖÚ

Ð ÙÒ ½ ËÙ Ø Ú ÙÖØ ÐÙÒ ÚÓÒ Ì ÑÔ Ö ØÙÖ Ò ÙÖ Ø Ø Ò ÓÖ Ò Òº ÏÖÑ ÑÔ Ò Ò Ø Ó ÙÒ Ò Ù ÙÒ Ð Ö Ü Ø Å ÙÒ ÚÓÒ ÏÖ¹ Ñ ÞÙ ØÒ Ò ÙÒ Ò Øº Ö Å Ò Ò ÑÑØ ÏÖÑ ÙÖ Ô Þ ÐÐ Æ ÖÚ Ë Ñ Ò ÖÚÓÖØÖ ÞÙÑ Ì Ñ Ì ÑÔ Ö ØÙÖ ÙÒ ÏÖÑ Ò Ã ØØ Ð Ö ½ º½½º¾¼¼ Ö Ú Ð Å Ò Ò ÙØ Ò Ö Ì ÑÔ Ö ØÙÖ ÙÒ ÏÖÑ Ñ Ö Ó Ö Û Ò Ö Ð º ½ ÖÐÙØ ÖÒ Ë Û Ë Ù Ë Ð Ö Ö Ï Ø ÒØÐ Ö ÍÒØ Ö ÞÛ Ò Ì ÑÔ Ö ØÙÖ ÙÒ ÏÖÑ Ò Ò Û Ö Ò Ï Ö Ò Ì ÑÔ

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º Ö ÒÙÒ ÖÞ Ø Ö È ÙÒØ Ö ØÙÒ ÚÓÒ Ú Ö ÓØ Ò Ã Ö ÐÐ Å ÐÐ Ö ËØÙ Ò Ö Ø Ñ ÁÒ Ø ØÙØ Ö Ì ÓÖ Ø ÁÒ ÓÖÑ Ø Ä Ö ØÙ Ð ÈÖÓ º Öº ÓÖÓØ Ï Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÙÐØØ Ö ÁÒ ÓÖÑ Ø ¾ º Ç ØÓ Ö ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú

Mehr

½ Ï ÐÐ ÓÑÑ Ò ÞÙÑ ËØÙ Ý Ù ÁÒ Ø ÐÐ Ø ÓÒ Ò ÓÒ ÙÖ Ø ÓÒ Á² ½µ ÖØ Þ ÖÙÒ º Ø Ö Ö Ø ÚÓÒ Ú Ö ÃÙÖ Ò ÞÙÑ Ë Ö Ä ÒÙÜ Ò ÆÍ ÖØ Ñ Ò ØÖ ØÓÖ Ä µº Ò Ö Ò Ö ÃÙÖ Ò ËÝ Ø Ñ Ñ Ò ØÖ Ø ÓÒ Ë ½µ Æ ØÛÓÖ Ò Æ Ì½µ ÙÒ Ë ÙÖ ¹ ØÝ Ë È½µº

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ α¹ëøö ÐÙÒ ½º½ ÖÙÒ Ð Ò º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ α¹ëô ØÖÙÑ º º º º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ α¹ëøö ÐÙÒ ½º½ ÖÙÒ Ð Ò º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ α¹ëô ØÖÙÑ º º º º º º º º º ÈÖÓØÓ ÓÐÐ Ã ÖÒÔ Ý ÔÖ Ø ÙÑ Ö Ø Ö ÖÙÒ Ö ËØÖ ÐÙÒ ÖØ Ò ÚÓÑ ½ º¼¾º¾¼¼ ¾½º¼¾º¾¼¼ ÏË ¾¼¼»¼ ÙÖ ÖØ ÙÒ Ù Û ÖØ Ø ÚÓÒ Ä Ö ÀÓÐÐÒ Ö Ê Ð Â Ö Å ÖÓ Ë Ö Ö ÂÙÐ Ò ÊÓÜÐ Ù ËØ Ú Ð Ö Ø Ë Ø Ò Ê ½ ÁÒ ÐØ Ú ÖÞ Ò ½ α¹ëøö ÐÙÒ ½º½ ÖÙÒ

Mehr

ÁÈÄÇÅ Ê ÁÌ Â ¹Ï Ðع ÒÒ Ñ Ò Ö ÄÓ ÔÖÓ Ö ÑÑ ÖÙÒ Ð È Ö Ñ ÞÙÖ Ï Ò Ú Ö Ö ØÙÒ Ö Ë Ñ ÒØ Ï ÚÓÒ ÌÓ Å ØÞÒ Ö Ò Ö Ø Ñ ½º Ë ÔØ Ñ Ö ¾¼¼ Ñ ÁÒ Ø ØÙØ Ö Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÙÒ ÓÖÑ Ð Ö ÙÒ Ú Ö Ö Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ö

Mehr

T = 0.3 s b = 4 m/s 2 s0 = 1 m. T = 2 s v0 = 90 km/h b = 1 m/s 2 s0 = 3 m. s = 0. s = 0. v0=220 km/h 2 a = 4 m/s. a = 1 m/s

T = 0.3 s b = 4 m/s 2 s0 = 1 m. T = 2 s v0 = 90 km/h b = 1 m/s 2 s0 = 3 m. s = 0. s = 0. v0=220 km/h 2 a = 4 m/s. a = 1 m/s Ö ÓÒ Ñ ËØÖ ÒÚ Ö Ö Û Ñ Ò Ð ÖÚ Ö ÐØ Ò ËØ Ù ÒØ Ø ÙÒ Ò Ù Ø Å ÖØ Ò ÌÖ Ö ½ Ö ÓÒ Ù Ö Ë Ø Î Ö Ö ÑÓ ÐÐ Ö Ö Ö Ú ØØ ÙÒ Ò Ö Ò Ø ÐÐÙÒ Ò ÚÓÒ ÙØÓ Ö ÖÒ Û Ö Ò Ù ÖÚ Ö ÐØ Ò ÙÒ Ñ ØØ Ð Ö Ù Ò Î Ö Ö Ù Ù Ò ¹ ÓÒ Ö Ù Þ ÒÞ Î Ö Ö

Mehr

Ø Ò Ö Ù Ò Â ÓÚ Ò Ò Ò ÀÒ Ò Ò Ï ØØÙÖÑ ÙÒ ÖÛ Ø Ò Û ÖÛ ÒØ Ö Ð Ò Óº Å Ö Ð Ù Ù Ö Û ÒÐ Ø Ò ÒÞ ÐÔ Ö ÓÒ Ö Ù Ò Â ÓÚ Ö Ð Ò Ò Ð ËØ ÐÐ Ø ÐÐØ ÙÒ Â ÓÚ ÓØ Ø Ò Ø Øº Å

Ø Ò Ö Ù Ò Â ÓÚ Ò Ò Ò ÀÒ Ò Ò Ï ØØÙÖÑ ÙÒ ÖÛ Ø Ò Û ÖÛ ÒØ Ö Ð Ò Óº Å Ö Ð Ù Ù Ö Û ÒÐ Ø Ò ÒÞ ÐÔ Ö ÓÒ Ö Ù Ò Â ÓÚ Ö Ð Ò Ò Ð ËØ ÐÐ Ø ÐÐØ ÙÒ Â ÓÚ ÓØ Ø Ò Ø Øº Å Å Ò ÂÙ Ò Ò Ù Ò Â ÓÚ Ò Ù Ø Ö Ò Ö Ø Ø Ø Ö Ö ÏÓ Ò Ö Ð Ö ÙÒ Û ÐØ Ò ÙÐ Ö ÜØÖ Ñ ÑÙ Ö Ò Ò¹ Ò Ò Ñ Ò Û Ö Ì Ö Ì Ò Ò Æ Ö Ø Ò Ò ÙÒ Ö Ò Ó Ö Ò Ö ØÙÒ Ð Òº Ò Ò Û Ö ÒÙÖ ÒÑ Ð Ò Ö Ò ÖÙÒ ÙÑ Ò ½½º Ë ÔØ Ñ Ö ¾¼¼½ Ó Ö Ö Ð Ë ØÙ

Mehr

σ 2 = 1 N SNR = σ2 X σ 2 X SNR(dB) = 10log 10

σ 2 = 1 N SNR = σ2 X σ 2 X SNR(dB) = 10log 10 ÖÒ Ù Àº ÖÒ ÙÙÒ ¹ØÖ Öº Ñ Ð ¾¼½ ËÓË ÌÖ Ö ÍÒ Ú Ö ØØ Ø Ò ÓÑÔÖ ÓÒ Î ÖÐÙ Ø Ø Ø ÃÓÑÔÖ Ñ ÖÙÒ Ú Ö Ö Ò Ò ÖÙÒ ½ Û Ò Ø Ö ÃÓÑÔÖ Ñ ÖÙÒ ¹ Û Ò Ø Ö ÓÑÔÖ Ñ ÖÙÒ ¹ Î ÖÐÙ Ø Ø Ø ÃÓÑÔÖ Ñ ÖÙÒ ÖÙÒ Ð Ò C D X X c Y Ò Ê ÔÖ ÒØ Ø ÓÒ

Mehr

CURANDO ÔÐÓÑ Ö Ø ÚÓÒ À ÒÒ Î ÒÞÐ Ö Ø Ö ÖÙÒ ÑÔ Ø Ö ÕÙ ÒØ ÒÑ Ò Ö ËÝ Ø Ñ Ö Ú Ö ÐÐ Ñ Ò ÖØ Å ÙÒ Ò UNIVERSITÄT ULM SCIENDO DOCENDO À ÙÔØ Ö Ø Ö Ôк ÈÖÓ º Öº Å

CURANDO ÔÐÓÑ Ö Ø ÚÓÒ À ÒÒ Î ÒÞÐ Ö Ø Ö ÖÙÒ ÑÔ Ø Ö ÕÙ ÒØ ÒÑ Ò Ö ËÝ Ø Ñ Ö Ú Ö ÐÐ Ñ Ò ÖØ Å ÙÒ Ò UNIVERSITÄT ULM SCIENDO DOCENDO À ÙÔØ Ö Ø Ö Ôк ÈÖÓ º Öº Å CURANDO ÔÐÓÑ Ö Ø ÚÓÒ À ÒÒ Î ÒÞÐ Ö Ø Ö ÖÙÒ ÑÔ Ø Ö ÕÙ ÒØ ÒÑ Ò Ö ËÝ Ø Ñ Ö Ú Ö ÐÐ Ñ Ò ÖØ Å ÙÒ Ò UNIVERSITÄT ULM SCIENDO DOCENDO À ÙÔØ Ö Ø Ö Ôк ÈÖÓ º Öº ź Ö Ý Ö Ö Ö Ø Ö ÈÖÓ º Öº Ⱥ Ê Ò Ö ÍÒ Ú Ö ØØ ÍÐÑ Ø ÐÙÒ

Mehr

Ò Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ñ º ÖØ ÅÙ Ö ÈÖÓ º Öº Ñ º Ã Ö Ø Ò Ë Ñ Ö ÈÖ Úº ÓÞº Öº Ñ º ËØ Ô Ò Ö Ò Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ¾ º½½º¾¼¼

Ò Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ñ º ÖØ ÅÙ Ö ÈÖÓ º Öº Ñ º Ã Ö Ø Ò Ë Ñ Ö ÈÖ Úº ÓÞº Öº Ñ º ËØ Ô Ò Ö Ò Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ¾ º½½º¾¼¼ Ù Ö Æ ÙÖÓ ÖÙÖ Ò ÃÐ Ò ÃÒ ÔÔ Ø Ö Ò Ò Ù Ó ÙÑ¹Ä Ò Ò Ö Ö ¹ ÍÒ Ú Ö ØØ Ð Ò ¹ Ö ÊÙ Ö¹ÍÒ Ú Ö ØØ Ó ÙÑ Ö ØÓÖ ÈÖÓ º Öº Ñ º º À Ö Ö Ê ØÖ ÖÙÒ ÚÓÒ ¹ÍÐØÖ Ðй ÙÒ Ì¹ Ø Ò Ö Ä Ò ÒÛ Ö Ð ÙÐ ÞÙÖ ÍÒØ Ö Ø ØÞÙÒ Ò Ú ÖØ Ö È Ð Ö Ù

Mehr

ÐØ P = W(s 2 ) W(s 3 ) W(s 4 ) W(s 4 ) W(s 5 ) W(s 6 ) = , 256º

ÐØ P = W(s 2 ) W(s 3 ) W(s 4 ) W(s 4 ) W(s 5 ) W(s 6 ) = , 256º Â Ö Ò ¾ À Ø ÂÙÒ ¾¼¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö ÒÛÖØ Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ ÞÙ Å ÒÞ Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò Û ÖØ

Mehr

Ê Ö ÒØ ÈÖÓ º Öº º È Ð ººººººººººººººººººººººººººººººººººººººººººººººººººººººººººº ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº º Å ÐÞ Öººººººººººººººººººººººººººººººººººººººººº

Ê Ö ÒØ ÈÖÓ º Öº º È Ð ººººººººººººººººººººººººººººººººººººººººººººººººººººººººººº ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº º Å ÐÞ Öººººººººººººººººººººººººººººººººººººººººº ËØÖÙ ØÙÖ Ò ÐÝ Ø Ù Ö ÈÐ Ñ Ò Ñ ØØ Ð Ø Ð Ö ÀÓÐÓ Ö Ô ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Å Ø Ñ Ø ¹Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ö Ö Ø Ò¹ Ð Ö Ø ¹ÍÒ Ú Ö ØØ ÞÙ Ã Ð ÚÓÖ Ð Ø ÚÓÒ Å ØØ ÃÖÓÐÐ Ã Ð ÔÖ Ð ¾¼½¼ Ê Ö ÒØ ÈÖÓ º Öº º È Ð ººººººººººººººººººººººººººººººººººººººººººººººººººººººººººº

Mehr

ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ ÃÓÑÔÐ Ü ØØ Ö Ò Ï ÖÙÑ Ø ÒØ Ö ÒØ Ï ÖÙÑ Ø Û Ø Ì Ð Á Ò ÖÙÒ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ¾»½

ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ ÃÓÑÔÐ Ü ØØ Ö Ò Ï ÖÙÑ Ø ÒØ Ö ÒØ Ï ÖÙÑ Ø Û Ø Ì Ð Á Ò ÖÙÒ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ¾»½ ËÓÖØ Ö Ò ÙÒ ËÙ Ò ÎÓÖØÖ Ñ À ÙÔØ Ñ Ò Ö À ÐÐÓ Ï ÐØ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö Ô Ð Ôº Ò ÓÖÑ Ø ºÙÒ ¹ ÖÐ Ò Òº Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò»Æ ÖÒ Ö ½º Å ¾¼¼ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ½»½ ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ

Mehr

S i. s i. p i. s i S i

S i. s i. p i. s i S i Å Ò Ñ Ò Ö ØÓÔ À ÖÑ ÒÒ ¾¾º Å ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ Ò Å Ò Ñ Ò ¾ ¾ Ò Ø ÓÒ Ò ¾ ¾º½ ËÔ ÐØ ÓÖ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º È Ö ÓÜÓÒ Ò Ò Ò Ð ÑÑ º º º º º º º º º º

Mehr

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û Ù Ñ ÁÒ Ø ØÙØ Ö ËÓÞ Ð È ØÖ ÙÒ ÂÙ Ò Ñ Þ Ò Ö ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÎÓÖ Ø Ò ÃÓÑÑ Ö Ö Ä Ø Öµ ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ Ê Ó ØÓÖ Ò Ö Ò Ð ÔÓ Ø ÍÒØ Ö Ð Ø ÒÓÖÑ Ð¹ ÙÒ Ö Û Ø Ò Ã Ò ÖÒ ÖØ Ø ÓÒ ÞÙÑ ÖÛ Ö Ó ØÓÖ Ö

Mehr

ÅÙÐØ Ò ÓÖ ÁÒØ Ö Ø ÓÒ ÚÓÒ Ö ÙÒ ÒØ Ò Ê Þ Ò ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Öº Ö Öº Ò Øºµ Ñ Ö È Ý ÓÐÓ Ö È Ð ÔÔ ¹ÍÒ Ú Ö Ø Ø Å Ö ÙÖ ÚÓÖ Ð Ø ÚÓÒ Å ØØ ÓÒ Ò Ù Ö ÙÖ Å Ö ÙÖ»Ä Ò ¾¼¼ ÅÙÐØ Ò ÓÖ ÁÒØ Ö Ø

Mehr

(A i ) t 1 A i f l. f l+1 = f l c l Ð. A t 1 l. c l,i = (A i ) t 1/(A i f l ) c l + = c l,i Ð

(A i ) t 1 A i f l. f l+1 = f l c l Ð. A t 1 l. c l,i = (A i ) t 1/(A i f l ) c l + = c l,i Ð Ö Å Ø Ñ Ø ÙÒ ÁÒ ÓÖÑ Ø Ö Ø ÖÙÔÔ È Ö ÐÐ Ð ÙÒ Î ÖØ ÐØ ËÝ Ø Ñ ÈÖÓ º Öº Ë Ö ÓÖÐ Ø È Ö ÐÐ Ð ÖÙÒ Ò Ð Ö ÓÒ ØÖÙ Ø ÓÒ Ð ÓÖ Ø ÑÙ Ñ Ø Í ÓÑ Ò ÕÙ Å ÐÒ Ö ºÑ ÐÙÒ ¹ÑÙ Ò Ø Öº ÓÑ Ò ÕÙ Å ÐÒ Ö È Ö ÐÐ Ð ÖÙÒ Ò Ð Ö ÓÒ ØÖÙ Ø ÓÒ

Mehr

Þ ÒÞÙÒØ Ö Ù ÙÒ Ò Ò Ö ÎÓÖ Ð Ò ÙÒ Î ÖØ Ù Ò ¹Å Ø Ó Ö ÙÓÖ ÒÙÒ ÔÖÓ Ð Ñ ÔÐÓÑ Ö Ø Ñ ÁÒ ÓÖÑ Ø Ò º Ò ÓÖѺ Ê Ò Ö À ÖÖÐ Ö ØÖ Ù Ö ÈÖÓ º Öº Ö Ò ÈÙÔÔ Ôк ÁÒ ÓÖѺ Ù Ä Ö ØÙ Ð Ö Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ ÙÒ Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÍÒ

Mehr

R n. u(x)e ix y dx, y R n (2π) n 2. f L 1 (Rµ. f(x) cos(yx) dx = 0. f(x) sin(yx) dx = lim. lim. lim. f(x)e ixy dx = 0, Ð Ó ˆf(y) 0 Ö y

R n. u(x)e ix y dx, y R n (2π) n 2. f L 1 (Rµ. f(x) cos(yx) dx = 0. f(x) sin(yx) dx = lim. lim. lim. f(x)e ixy dx = 0, Ð Ó ˆf(y) 0 Ö y ½¾º½ ÓÙÖ ÖØÖ Ò ÓÖÑ Ø ÓÒ ÓÙÖ ÖØÖ Ò ÓÖÑ Ø ÓÒ Ù L µ u L ( n ) Úº ÓÑÔÐ ÜÛ ÖØ µ ÓÙÖ ÖØÖ Ò ÓÖÑ ÖØ û(y) := u(x)e ix y dx, y n (π) n n ÒÚ Ö ÓÙÖ ÖØÖ Ò ÓÖÑ ÖØ ǔ(y) := u(x)e ix y dx, y n (π) n n Ñ ½µ ÁÒØ Ö Ð ÓÒÚ

Mehr

ÃÙÖÞ ÙÒ ËÇ È ÈÖÓØÓ ÓÐÐ ÛÙÖ Ð Ò ÔÐ ØØ ÓÖÑÙÒ Ò Æ Ö Ø Ò ÓÖ¹ Ñ Ø Ò Öغ Ö ÐÐ Ò Ñ Ø Ö Ò Ø ÓÒ Ø ÍÒ Ò Ø Ò Ø ÖÖ Øº Ø ÑÑ Ö ÒÓ Ê Ñ Ò Ò ÙÒ Ò Ò ÖÒ ÙÒ¹ Ò Ö Ò Ø Ò ÐØ

ÃÙÖÞ ÙÒ ËÇ È ÈÖÓØÓ ÓÐÐ ÛÙÖ Ð Ò ÔÐ ØØ ÓÖÑÙÒ Ò Æ Ö Ø Ò ÓÖ¹ Ñ Ø Ò Öغ Ö ÐÐ Ò Ñ Ø Ö Ò Ø ÓÒ Ø ÍÒ Ò Ø Ò Ø ÖÖ Øº Ø ÑÑ Ö ÒÓ Ê Ñ Ò Ò ÙÒ Ò Ò ÖÒ ÙÒ¹ Ò Ö Ò Ø Ò ÐØ ÁÈÄÇÅ Ê ÁÌ Î Ö Ð ÚÓÒ ËÇ È ÃÓÑÑÙÒ Ø ÓÒ ÔÐ ØØ ÓÖÑ Ò Ù ÖØ Ñ ÁÒ Ø ØÙØ Ö ÈÖÓ Ö ÑÑ Ö ÔÖ Ò Ö Ì Ò Ò ÍÒ Ú Ö ØØ Ï Ò ÙÒØ Ö Ö ÒÐ ØÙÒ ÚÓÒ ÓºÍÒ ÚºÈÖÓ º Ôк¹ÁÒ º Öº Ö ÒÞ ÈÙÒØ Ñ ÙÖ Å Ò Ö Â ÖØ Ò ½ ¾ ÙØ ¹ ÖÓ Ö ÓÖ Ï Ò ½

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ËØ Ú Ê Ø Ø ÈÖ ÒÞ Ô Ò ¾º½ Ï Ö ÓÐÙÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÐÐÑ Ð Ø º º º º º º º º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ËØ Ú Ê Ø Ø ÈÖ ÒÞ Ô Ò ¾º½ Ï Ö ÓÐÙÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÐÐÑ Ð Ø º º º º º º º º º º º º º ËØ Ú Ê ÅÙ ÓÖ ÅÙ Ò Â ÖÒ Æ ØØ Ò Ñ Ö ËÓÒ Å Ò º Å ¾¼¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ËØ Ú Ê Ø Ø ÈÖ ÒÞ Ô Ò ¾º½ Ï Ö ÓÐÙÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÐÐÑ Ð Ø º º º º º º º º º º º º º

Mehr

Lokaler und nichtlokaler Transport in Normalleiter-Supraleiter- Heterostrukturen

Lokaler und nichtlokaler Transport in Normalleiter-Supraleiter- Heterostrukturen Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 7493 Lokaler und nichtlokaler Transport in Normalleiter-Supraleiter- Heterostrukturen J. Brauer Institut für Nanotechnologie

Mehr

¾

¾ ÁÈÄÇÅ Ê ÁÌ Ì Ø Ð Ö ÔÐÓÑ Ö Ø Û ÒÒØ Ñ Ò Ò Ó Ö ÙØÓ Ò ØÓ Ø Ù Ò Ò Ö ØÞÙÒ Ö Ò Ù Ö Ø ÚÓÒ Ð Ô Ð Ò Î Ö Ö Ò Ë Ò Ë ÓØØÐ ØÒ Ö Ò ØÖ Ø Ö Ñ Ö Ö Å ØÖ Ö Æ ØÙÖÛ Ò Ø Ò Å º Ö Öº Ò Øºµ Ï Ò Å ¾¼½½ ËØÙ Ò ÒÒÞ Ð Ð ÙØ ËØÙ Ò Ð ØØ

Mehr

ØÞÙÒ Ö Ï ÖØ Ö ÚÓÒ Þ Ø Ö Ø Ò ÝÒ Ñ Ò ËÝ Ø Ñ Ò ÔÐÓÑ Ö Ø ÚÓÖ Ð Ø ÚÓÒ Öº¹ÁÒ º ÍÐÖ Ñ ÒÒ Ù Ë Û À ÐÐ Å ØÖ Ð¹ÆÖº ½½½¾ ØÖ Ù Ö ÈÖÓ º Öº Ϻ ÀÓ ØØØÐ Ö Ä Ö ØÙ Ð Ö Ö

ØÞÙÒ Ö Ï ÖØ Ö ÚÓÒ Þ Ø Ö Ø Ò ÝÒ Ñ Ò ËÝ Ø Ñ Ò ÔÐÓÑ Ö Ø ÚÓÖ Ð Ø ÚÓÒ Öº¹ÁÒ º ÍÐÖ Ñ ÒÒ Ù Ë Û À ÐÐ Å ØÖ Ð¹ÆÖº ½½½¾ ØÖ Ù Ö ÈÖÓ º Öº Ϻ ÀÓ ØØØÐ Ö Ä Ö ØÙ Ð Ö Ö ØÞÙÒ Ö Ï ÖØ Ö ÚÓÒ Þ Ø Ö Ø Ò ÝÒ Ñ Ò ËÝ Ø Ñ Ò ÔÐÓÑ Ö Ø ÚÓÖ Ð Ø ÚÓÒ Öº¹ÁÒ º ÍÐÖ Ñ ÒÒ Ù Ë Û À ÐÐ Å ØÖ Ð¹ÆÖº ½½½¾ ØÖ Ù Ö ÈÖÓ º Öº Ϻ ÀÓ ØØØÐ Ö Ä Ö ØÙ Ð Ö Ö Ø Å Ø Ñ Ø Ö ÖÒÍÒ Ú Ö ØØ Ò À Ò ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ

Mehr

Σ = {a 1,...,a n } K : Σ {0,1} +. L K := n. i=1 P(a i ) K(a i ).

Σ = {a 1,...,a n } K : Σ {0,1} +. L K := n. i=1 P(a i ) K(a i ). Ñ Ð ÖÒ ÙÙÒ ¹ØÖ Öº Àº ÖÒ Ù Ø Ò ÓÑÔÖ ÓÒ Ó ÙÒ Ó ÖÙÒ Ò Àº ÖÒ Ù ¾¼½½ ËÓË ÌÖ Ö ÍÒ Ú Ö ØØ ½ Ó ÖÙÒ Σ = {a 1,...,a n } Ö ÐÔ Ø Ò Ó Ò Ò Ø Ú ÙÒ Ø ÓÒ Ø K : Σ {0,1} +. ÙØ Ó ÖÙÒ Ö ÓÐ Ð a i1 a i2 a i3 a i4 a i5... K(a

Mehr

d 1 u 2 u 1 p 1 p 2 ζ = (m 1) 2 = d2 2 d 2 1 m = A 2 A 1

d 1 u 2 u 1 p 1 p 2 ζ = (m 1) 2 = d2 2 d 2 1 m = A 2 A 1 ¾¹¾½ Î ÖÐÙ Ø Û ÖØ Ö Ò ÙØ Ð Î ÖÐÙ Ø ÒØ Ø Ò ÙÖ ËØÖ ÑÙÒ ¹ Ð ÙÒ Û Ø Ô Ð ÔÐ ØÞÐ ÖÛ Ø ÖÙÒ u 1 p 1 d 1 p 1 p 2 d 2 u 2 p 1 ¾¹¾¼ ÖÙ Ú ÖÐÙ Ø Û ÖØ ÙÖ Ù Û ÖØÙÒ ÁÑÔÙÐ ØÞ ËØÖ ¹ ÑÙÒ Ñ Ò Á ζ = (m 1) 2 m = A 2 A 1 = d2

Mehr

Ù Ö Ö Æ ÙÖÓÐÓ Ò ÃÐ Ò Ö Ð ÖعÄÙ Û ¹ÍÒ Ú Ö ØØ Ö ÙÖ Ñ Öº Ò Î ÖÐ Ù Ò ÐÝ Ö ÌÖ ÑÓÖ Ö ÕÙ ÒÞ Ò Ñ ÅÓÖ Ù È Ö Ò ÓÒ ÙÒ Ñ ÒØ ÐÐ Ò ÌÖ ÑÓÖ ÁÆ Í ÍÊ Ä ¹ ÁËË ÊÌ ÌÁÇÆ ÞÙ

Ù Ö Ö Æ ÙÖÓÐÓ Ò ÃÐ Ò Ö Ð ÖعÄÙ Û ¹ÍÒ Ú Ö ØØ Ö ÙÖ Ñ Öº Ò Î ÖÐ Ù Ò ÐÝ Ö ÌÖ ÑÓÖ Ö ÕÙ ÒÞ Ò Ñ ÅÓÖ Ù È Ö Ò ÓÒ ÙÒ Ñ ÒØ ÐÐ Ò ÌÖ ÑÓÖ ÁÆ Í ÍÊ Ä ¹ ÁËË ÊÌ ÌÁÇÆ ÞÙ Ù Ö Ö Æ ÙÖÓÐÓ Ò ÃÐ Ò Ö Ð ÖعÄÙ Û ¹ÍÒ Ú Ö ØØ Ö ÙÖ Ñ Öº Ò Î ÖÐ Ù Ò ÐÝ Ö ÌÖ ÑÓÖ Ö ÕÙ ÒÞ Ò Ñ ÅÓÖ Ù È Ö Ò ÓÒ ÙÒ Ñ ÒØ ÐÐ Ò ÌÖ ÑÓÖ ÁÆ Í ÍÊ Ä ¹ ÁËË ÊÌ ÌÁÇÆ ÞÙÖ ÖÐ Ò ÙÒ Å Þ Ò Ò Ó ØÓÖ Ö Ö Å Þ Ò Ò ÙÐØØ Ö Ð ÖعÄÙ

Mehr

ÑÔ Ö ÍÒØ Ö Ù ÙÒ ÞÙÑ Î Ö Ð ÚÓÒ À Ð Ý Ø Ñ Ò Ö ÖÑ Ò Ø ÓÐÙØ ÙÒ Å ÖÓ Ó Ø Ò ÃÖ Ø Ö Ò Ö ÒÙØÞ Ö Ö ÙÒ Ð Ø ¹ Ñ Ô Ð ÚÓÒ Ü Ð Å Ø Ö Ö Ø Ò Ö Ì Ò Ò ÍÒ Ú Ö ØØ ÖÐ Ò ÙÐ

ÑÔ Ö ÍÒØ Ö Ù ÙÒ ÞÙÑ Î Ö Ð ÚÓÒ À Ð Ý Ø Ñ Ò Ö ÖÑ Ò Ø ÓÐÙØ ÙÒ Å ÖÓ Ó Ø Ò ÃÖ Ø Ö Ò Ö ÒÙØÞ Ö Ö ÙÒ Ð Ø ¹ Ñ Ô Ð ÚÓÒ Ü Ð Å Ø Ö Ö Ø Ò Ö Ì Ò Ò ÍÒ Ú Ö ØØ ÖÐ Ò ÙÐ ÑÔ Ö ÍÒØ Ö Ù ÙÒ ÞÙÑ Î Ö Ð ÚÓÒ À Ð Ý Ø Ñ Ò Ö ÖÑ Ò Ø ÓÐÙØ ÙÒ Å ÖÓ Ó Ø Ò ÃÖ Ø Ö Ò Ö ÒÙØÞ Ö Ö ÙÒ Ð Ø ¹ Ñ Ô Ð ÚÓÒ Ü Ð Å Ø Ö Ö Ø Ò Ö Ì Ò Ò ÍÒ Ú Ö ØØ ÖÐ Ò ÙÐØØ ½ Ø Û Ò Ø Ò ÁÒ Ø ØÙØ Ö ËÔÖ ÙÒ ÃÓÑÑÙÒ Ø ÓÒ Ø Ù Ó

Mehr

Ö ÁÒ ÓÖÑ Ø Ö ÒÒ Ò ÚÓÒ ÓÑ ÒÓ Ø Ò Ò Ñ Ø À Ð ÚÓÒ Û Ò ÖØ Ò Ð Ò ÐÝ ¹Î Ö Ö Ò ÔÐÓÑ Ö Ø ÞÙÖ ÖÐ Ò ÙÒ Ö ÔÐÓѹÁÒ ÓÖÑ Ø Ö Ñ ËØÙ Ò Ò ÓÑÔÙØ ÖÚ Ù Ð Ø ÚÓÖ Ð Ø ÚÓÒ Å Ö Ð À Ð ØÖ Ù Ö Ôк¹Å Ø º Àµ ËØ Ò Ï ÖØÞ ÁÒ Ø ØÙØ Ö ÓÑÔÙØ

Mehr

3x 4y +2z +5 = 0. a b c. P(x y z) x y z. P(x y z) E OP n = OA n. =:d. ax+by +cz +d = 0

3x 4y +2z +5 = 0. a b c. P(x y z) x y z. P(x y z) E OP n = OA n. =:d. ax+by +cz +d = 0 Å Ø Ñ Ø º Ë Ñ Ø Ö ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ½ ÁÒ ÐØ Ú ÖÞ Ò ½ Î ØÓÖ ÓÑ ØÖ Ò ÖÙÑÐ Ò ÃÓÓÖ º Ò Ò ¾ ½º½ ÃÓÓÖ Ò Ø Ò Ð ÙÒ Ö Ò º º º º º º º º º º º º º º º º º º ¾ ½º¾ Ò Ø Ä Ò ÚÓÒ Ò Ò º º º º º º º º º º º º º º º º

Mehr

Î ÖÞ Ò Ö ÖÞÙÒ Ò ÔÛº Ô Ð Û Ôغ ÓÔØÖ Ò ÁÇÄ ÁÒØÖ Ó ÙÐ ÖÐ Ò Ä ËÁÃ Ä Ö Ò Ë ØÙ Ã Ö ØÓÑ Ð Ù ÑÑ Å ÐÐ Ñ Ø Ö µm Å ÖÓÑ Ø Ö ÈÊÃ È ÓØÓÖ Ö Ø Ú Ã Ö Ø ØÓÑ ÊÅË ÊÓÓØ Å

Î ÖÞ Ò Ö ÖÞÙÒ Ò ÔÛº Ô Ð Û Ôغ ÓÔØÖ Ò ÁÇÄ ÁÒØÖ Ó ÙÐ ÖÐ Ò Ä ËÁÃ Ä Ö Ò Ë ØÙ Ã Ö ØÓÑ Ð Ù ÑÑ Å ÐÐ Ñ Ø Ö µm Å ÖÓÑ Ø Ö ÈÊÃ È ÓØÓÖ Ö Ø Ú Ã Ö Ø ØÓÑ ÊÅË ÊÓÓØ Å Ò Ù ÚÓÒ È ÒÝÐ Ô Ö Ò ÙÒ ÌÖÓÔ Ñ Ù Ï ÐÐ Ò ÖÓÒØ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö ÓØÓÖ Ñ Ò Öº Ñ ºµ ÚÓÖ Ð Ø Ñ Ê Ø Ö Å Þ Ò Ò ÙÐØØ Ö Ö Ö ¹Ë ÐÐ Ö¹ÍÒ Ú Ö ØØ Â Ò ÚÓÒ Ø Ò ÄÓÓ Ö ÓÖ Ò Ñ ¼¾º Ç ØÓ Ö ½ Ò Ç Ö Ù Ò ¾º ÔÖ Ð ¾¼¼ Î

Mehr

P = (1,2,2), Q = (3,5,6), R = (1,3,2), S = (5,2,3)

P = (1,2,2), Q = (3,5,6), R = (1,3,2), S = (5,2,3) ÙÐØØ Ö ÁÒ Ò ÙÖ Û Ò Ø Ò ÐÓÖ ØÙ Ò Ò ÓÑ Þ Ò Ì Ò ÈÖÓ º Öº Ϻ Ä Ò ÙØ ÃÐ Ù ÙÖ Ù Ò ÑÑÐÙÒ Å Ø Ñ Ø ÃÐ Ù ÙÖ Ù Ò ÞÙÖ Å Ø Ñ Ø ½ ¹ ÚÓÒ ÏÓÐ Ò Ä Ò ÙØ Ù Ò Ø ÐÐÙÒ Ò Ñ Ø Ö Ò Ò Î Ö ÓÒ º Ö ØÙÒ ÙÒØ Ö Å ØÛ Ö ÙÒ ÚÓÒ Ôк¹Å Ø

Mehr

Verteilte Systeme/Sicherheit im Internet

Verteilte Systeme/Sicherheit im Internet ruhr-universität bochum Lehrstuhl für Datenverarbeitung Prof. Dr.-Ing. Dr.E.h. Wolfgang Weber Verteilte Systeme/Sicherheit im Internet Intrusion Detection und Intrusion Response Systeme (IDS & IRS) Seminar

Mehr