Addieren und Subtrahieren kann man nur Größen gleicher Dimension.

Größe: px
Ab Seite anzeigen:

Download "Addieren und Subtrahieren kann man nur Größen gleicher Dimension."

Transkript

1 9 Dimensionsanalyse Wir haben bis jetzt Variablen oder Konstanten betrachtet und uns nie Gedanken über die Einheiten emacht. Wir können neben Länen auch Massen, Kräfte oder Zeiten haben. Diese physikalischen Beri e nennt man Dimensionen. Jede Größe, der eine Dimension zueordnet ist, wird in einer Einheit emessen. Wir werden folende Formulierun wählen: x hat die Dimension einer Läne und wird in der Einheit m (Meter) emessen, als Symbol verwenden wir das Zeichen [x] =m Addieren und Subtrahieren kann man nur Größen leicher Dimension. Für die Dimension von Produkten ilt [x y] =[x] [y], und ebenso für Quotienten [ x [x] y ]= [y]. z.b. die Fläche (als Produkt von Länen) hat die Einheit m 2. e x,lnx, sinx und cos x sind dimensionslose Funktionen. Bsp. Sei s(t) =s e t die nach t min noch vorhandene Mene einer radioaktiven Substanz in (Gramm). Da der Exponent von exp dimensionslos ist, hat der Parameter (Zerfallskonstante) die Einheit 1/min. Ausserdem ist die Anfansmene auch in anzueben. Berechnet man die Halbwertszeit, hat man: s(t h )= s 2 = s e t h also ln 2 = t h ) t h = ln 2 mit der Einheit [t h ]=[ 1 ]= [1] [ ] = min. Die erste Ableitun einer Funktion hat dieselbe Dimension wie der Di erenzenquotient: [f (x)] = [f(x)] [x] Bsp. die Momentaneschwindikeit wird durch x (t) zumzeitpunkt t aneeben, wobei x(t) die zurückelete Strecke zum Zeitpunkt t bezeichnet. Wenn x in m und t in s aneeben sind, dann hat x (t) die Dimension einer Geschwindikeit und die Einheit m/s. Das Interal einer Funktion hat dieselbe Dimension wie die Riemannsumme, die sich aus den Rechtecksflächen zusammensetzt: applez f(x)dx =[f(x)] [x] 38

2 Bsp. Die Arbeit, die eleistet wird um eine Feder aus der Ruhelae um 1 cm zu verlänern, ist durch das Interal aneeben: A = Z 1 F (x)dx Die Zukraft, die eine um xcmedehnte Spiralfeder entwickelt, ist nach dem Hook schen Gesetz leich F (x) =k x. Die Konstante k ist dimensionsbehaftet und hat die Dimension Kraft/Läne. Die Einheit der Arbeit ist Nm (Newton Meter), also J (Joule). A = Z 1 kxdx = kx2 2 (Ncm2 cm )=k 5(Ncm)=k.5(Nm)=k.5(J) Beispiel 1) Der Enerieverbrauch pro Zeiteinheit von Zuvöeln, die mit Geschwindikeit v een die umebende Luft flieen, ist durch die folende Formel eeben: e = Av 3 + M 2 Dabei wird die e in J/s (Joule/Sekunde) emessen. M ist die Masse des Voels in (Gramm) und die Luftdichte in /m 3. A und B sind Konstanten, die von Gestalt und Physioloie des Voels abhänen. Welche Dimensionen haben A und B? Bei welcher Geschwindikeit ist e am kleinsten? Dabei nehme man als konstant an. Lösun: A hat die Dimension einer Fläche, die Einheit ist m 2 und die Einheit von B ist s 4. Es macht natürlich Sinn nur positive v zu betrachten, also der Definitionsbereich ist v>. Zuerst suchen wir den Kandidaten für ein Extremum, also schauen wir wo die Ableitun von e nach v Null ist. durch Umformun erhalten wir Bv de dv =3A M 2 v2 B v 2 = v = s M 4 r 1 3AB. Es sollte die Dimension einer Geschwindikeit haben, und tatsächlich die Einheit ist m/s. Um zu überprüfern, ob das ein lokales Minimum ist, schauen wir uns die zweite Ableitun von e nach v an der Stelle v,d.h. d 2 e dv 2 (v )=6A v +2 M 2 B 39 1 v 3 >

3 Das heisst wir haben ein lokales Minimum an v. Da sich die Krümmun d nie ändert auf dem Definitionsbereich, d.h. 2 e (v) =6A v +2 M 2 1 dv 2 B > für v 3 alle v>, ist das lokale Minimum auch das lobale Minimum. Man kann sich auch noch folendes überleen. Für Werte von v nah bei wird ja der zweite Summand M 2 Bv in e beliebi roß, für roße Werte von v wird der erste Summand Av 3 beliebi roß, also insesamt e beliebi roß, und sicher nicht kleiner als der Wert an v, somit ist v das lobale Minimum. Beispiel 2) Eine Kuel wird aus einer Höhe von h = 5 m mit einer Anfanseschwindikeit v = 2 m/s vertikal nach oben eworfen. Unter Berücksichtiun der Erdbeschleiniun 1 m/s 2 und Vernachlässiun der Reibun berechne man die maximale Höhe, die die Kuel erreicht. Wann tri t die Kuel auf die Erdoberfläche? Lösun: zuerst brauchen wir ein Modell, das unser Problem beschriebt. Wir bezeichne mit y(t) die Höhe der Kuel zum Zeitpunkt t. Wir wissen, dass y (t) die Momentaneschwindikeit anibt. y (t) ibt demnach die Momentanbeschleuniun an, die in diesem Fall konstant und leich der Erdbeschleuniun ist, d.h. zu jeder Seit t ist die Momentanbeschleuniun leich. Die Kuel befindet am Anfan in der Höhe y() = h und hat die Anfanseschwindikeit y () = v. Das heißt: y (t) = y() = h y () = v Probleme solcher Art werden als Di erentialleichunen bezeichnet (Gleichunen in denen es Ableitunen von Funktionen vorkommen). Zusammen mit den Anfanswerten wird dies als Anfanswertproblem bezeichnet. Auch wenn wir das Lösen von Di erentialleichunen erst im nächsten Kapitel lernen werden, handelt es sich hier um eine sehr einfache Di erentialleichun. Nach dem Hauptsatz der Di erential- und Interalrechnun haben wir: y (t) = t + c 1 da y (t) = erhalten: die Ableitun von y (t) ist. Interieren wir noch einmal und y (t) = t2 2 + c 1t + c 2 Die Konstanten c 1 und c 2 sind die Interationskonstanten und werden durch die Anfanswerte bestimmt. Die Konstante c 1 = v = y () hat die Dimension einer Geschwindikeit, während c 2 = h = y() die Dimension einer 4

4 Einheit Variable y m t s Parameter m/s 2 v h m/s m Table 1: Auflistun aller Variablen und Parameter Läne. Die Lösun des Anfanswertproblems y(t) = t2 2 + v t + h ibt also die Höhe der Kuel zum Zeitpunkt t an. (t >) Die Frae, wo die Höhe maximal ist, können wir jetzt einfach beantworten. Die Funktion y(t) hat ein Extremum für y (t H )= t H + v =, also an t H = v / = 2(s), da y (t) = <füralle t ist das efundene Extremum auch tatsächlich ein lokales Maximum, und da sich die Krümmun nicht ändert ist es das lobale Maximum. Das heißt nach 2 s erreicht die Kuel die maximale Höhe (lobales Maximum) von y(t H )= v2 2 + v2 + h = 7(m). Die zweite Frae, wann die Kuel die Erdoberfläche erreicht, können wir auch beantworten. Der Zeitpunkt t E für den y(t E ) =, ist die Zeit, zu der die Kuel auf r die Erdoberfläche tri t. Die positive Nullstelle von y(t) istbei t E = v v h 2 5.7(s), also nach ca. 5.7 Sekunden. Skalierun Anhand dieses Beispiels werden wir sehen wie Entdimensionalisierun und Skalierun funktioniert. Zuerst suchen wir intrinsische Referenzrößen, mit deren Hilfe wir die Variablen skalieren und dimensionslose Variablen und Parameter erhalten, so dass wir uns ar nicht mehr um die Dimensionen kümmern. Im allemeinen ist es wichti welche Referenzrößen man wählt, d.h. das skalierte (dimensionslose) Problem sollte so ewählt werden, dass die dimensionslosen Variablen die Größenordnun eins haben. Hier wählen wir v 2 / als Referenzläne (man kann natürlich auch h als Referenzläne wählen) und v / als Referenzzeit, und führt die dimensionslose Läne und die dimensionslose Zeit ein. v = t und v 2 = y 41

5 Schaut man sich die Dimension an [ ] = [][t] [v ] = ms = 1, bemerkt man s 2 m/s dass dimensionslos ist, und auch [ ] = 1. Wenn wir y (t) umskalieren, erhalten wir: y (t) = dy dt (t) =v2 / d v / d ( ) =v d d ( ) =v ( ) Wir wissen dass y (t) die Dimension einer Geschwindikeit. Das heißt ( ) ist die dimensionslose Geschwindikeit. Ebenso skalieren wir die Beschleuniun. y (t) = d2 y dt 2 (t) = v2 / v 2 /2 d d ( ) = d2 d 2 ( ) = ( ) Wir bezeichnen := h und bemerken, dass [ h ] = 1, also ist ein dimensionsloser Parameter. Somit erhalten wir das dimensionslose v 2 v 2 Problem: ( ) = 1 () = () = 1 Die Lösun lautet: ( ) = 2 /2+ +. Durch Umskalieren kann man die ursprünlichen Variablen t und y erhalten. 42

Mathematische Modellierung Lösungen zum 2. Übungsblatt

Mathematische Modellierung Lösungen zum 2. Übungsblatt Mathematische Modellierun Lösunen zum 2 Übunsblatt Klaus G Blümel Lars Hoeen 3 November 2005 Lemma 1 Unter Vernachlässiun der Luftreibun beschreibt ein Massepunkt, der im Punkt 0, 0) eines edachten Koordinatensystems

Mehr

Teil II: Aufgaben zur Differential- und Integralrechnung Ohne Lösungsweg

Teil II: Aufgaben zur Differential- und Integralrechnung Ohne Lösungsweg Staatliche Studienakademie Leipzi Brückenkurs Mathematik Studienrichtun Informatik 1. - 15. September 11 Teil II: Aufaben zur Differential- und Interalrechnun Ohne Lösunswe 1. Aufabe: Bilden Sie die ersten

Mehr

Reiner Winter. Analysis. Aufgaben mit Musterlösungen

Reiner Winter. Analysis. Aufgaben mit Musterlösungen Reiner Winter Analysis Aufaben mit Musterlösunen. Aufabe: Geeben sei die Funktion ƒ(x) 5 x5 4 x mit x IR +... Untersuchen Sie die Funktion ƒ(x) auf Symmetrie, Nullstellen, Extrempunkte und Wendepunkte.

Mehr

Lösungen zu Übungsblatt 3

Lösungen zu Übungsblatt 3 PN1 Einführun in die Physik 1 für Chemiker und Bioloen Prof. J. Lipfert WS 2017/18 Übunsblatt 3 Lösunen zu Übunsblatt 3 Aufabe 1 Paris-Geschütz. a) Unter welchem Abschusswinkel θ hat das Geschütz seine

Mehr

s t =. v s t h = gt, t = v t = a v t t =

s t =. v s t h = gt, t = v t = a v t t = Michael Buhlmann Phsik > Mechanik > urf und urfparabel Innerhalb der Mechanik als Teilebiet der Phsik wird unter bestimmten Voraussetzunen earbeitet: Die Beweun eines Körpers im Raums wird zur Beweun eines

Mehr

Lösungen zu Übungsblatt 3

Lösungen zu Übungsblatt 3 PN1 Einführun in die Physik für Chemiker 1 Prof. J. Lipfert WS 018/19 Übunsblatt 3 Lösunen zu Übunsblatt 3 Aufabe 1 Paris-Geschütz. a) Unter welchem Abschusswinkel θ hat das Geschütz seine maximale Reichweite

Mehr

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1 Karlsruher Institut für Technoloie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösun 3 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

(sin φ +tan αcos φ) (4)

(sin φ +tan αcos φ) (4) PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninhofen, M. Hummel Blatt WS 8/9 1.1.8 1. Wurf am Abhan. Sie stehen an einem Abhan, der den Steiunswinkel α hat, und wollen (4Pkt.) einen Stein

Mehr

Einfache eindim. Bewegungen unter Krafteinwirkung

Einfache eindim. Bewegungen unter Krafteinwirkung Einfache eindim. Beweunen unter Krafteinwirkun N. Peters, A. Oettin, C. Janetzki (Dr. W. Seifert) 4. Noember 203 Senkrechter Wurf und Fall im D Für den senkrechten Fall und Wurf (x-achse nach oben) ilt

Mehr

K l a u s u r G k P h 11

K l a u s u r G k P h 11 K l a u s u r G k P h Aufabe a) Aus welcher Höhe muß ein Körper frei fallen, damit er mit der Geschwin- dikeit auf den Boden aufschlät? v 8 km h b) Wie lane dauert der freie Fall des Körpers? Aufabe 2

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 0/ Übunen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzi, Dr. Volker Körstens, David Maerl, Markus Schindler, Moritz v. Sivers Vorlesun 0..0, Übunswoche

Mehr

2006 AII. f : x f x x 4 g : x f x. f x f x 0 gilt und geben Sie die Bedeutung dieser Gleichung für den Graphen von f an. (4 BE)

2006 AII. f : x f x x 4 g : x f x. f x f x 0 gilt und geben Sie die Bedeutung dieser Gleichung für den Graphen von f an. (4 BE) 006 AII.0 Geeben sind die reellen Funktionen f : x f x x : x f x mit ID f ID IR.. Zeien Sie, dass in der esamten Definitionsmene und f x f x 0 ilt und eben Sie die Bedeutun dieser Gleichun für den Graphen

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 6 Hausübungen (Abgabe: )

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 6 Hausübungen (Abgabe: ) Prof. C. Greiner, Dr. H. van Hees Wintersemester 212/213 Übunen zur Theoretischen Physik 1 Lösunen zu Blatt 6 Hausübunen (Ababe: 14.12.212) (H14) Arbeit eines Kraftfeles (2 Punkte) r = (6m/s 2 t 2m/s,3m/s

Mehr

Physik I Übung 4 - Lösungshinweise

Physik I Übung 4 - Lösungshinweise Physik I Übun 4 - Lösunshinweise Moritz Kütt WS 11/1 Stefan Reutter Stand:.1.11 Franz Fujara Aufabe 1 Postraub Es war im Jahre 189 als der berüchtite Ganoe Lanfuß-Bill mit seiner Bande einen leendären

Mehr

c(t) = exp p (tv). Definition 3.55 (Exponentialabbildung). Die Abbildung exp p : D p S heißt Exponentialabbildung.

c(t) = exp p (tv). Definition 3.55 (Exponentialabbildung). Die Abbildung exp p : D p S heißt Exponentialabbildung. 3.6. Exponentialabbildun. Sei S eine reuläre Fläche mit riemannscher Metrik. Sei p S ein Punkt. Zu eimen Tantialvektor v T p S betrachten wir die eindeutie Geodätische c : I S mit c0 p, c 0 v und maximalem

Mehr

Seite 1 von 6 Standardaufgaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Menge IN der natürlichen Zahlen

Seite 1 von 6 Standardaufgaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Menge IN der natürlichen Zahlen Seite 1 von 6 Standardaufaben Grundwissen M5 Beispiele 1. Fasse alle Primzahlen und alle Quadratzahlen A.1 Mene IN der natürlichen Zahlen 5 ist eine natürliche Zahl: der folenden Mene in jeweils einer

Mehr

Lösung II Veröentlicht:

Lösung II Veröentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse ist gegeben durch x = 6m 60(m/s)t + 4(m/s 2 )t 2, wobei x in Metern t in Sekunden ist (a) Wo ist das Teilchen zur Zeit t= 0 s? (2 Punkte)

Mehr

Abiturprüfungsaufgaben zu gewöhnlichen Differentialgleichungen

Abiturprüfungsaufgaben zu gewöhnlichen Differentialgleichungen Abiturprüfunsaufaben zu ewöhnlihen Differentialleihunen Aufabe 1: Abi 1999 / AI Ein erhitzter Körper kühlt sih im Laufe der Zeit allmählih auf die konstante emperatur a (in C) seiner Umebun ab Seine emperatur

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Technische Mechanik III Übungsblatt Nr. 3

Technische Mechanik III Übungsblatt Nr. 3 Institut für Technische Mechanik Prof. Dr.-In. C. Proppe Prof. Dr.-In. W. Seeann Nae: Testat: Terin: (jew. 19:00 Uhr) Vornae: Di., 25.11.2008 Matr. Nr.: Technische Mechanik III Übunsblatt Nr. 3 Thea: Newtonsches

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 WINKELBERECHNUNGEN. a) WINKEL ZWISCHEN ZWEI GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 12 WINKELBERECHNUNGEN. a) WINKEL ZWISCHEN ZWEI GERADEN ARBEITSBLATT 12 WINKELBERECHNUNGEN a) WINKEL ZWISCHEN ZWEI GERADEN Diese Formel haben wir a bereits kennenelernt: Satz: Der Winkel zwischen zwei Vektoren a und b, berechnet sich nach der Formel: a b cos

Mehr

Ein Ball wird unter einem Winkel α mit einer Anfangsgeschwindigkeit v 0. = 35 m/s vom Boden über eine Mauer der Höhe H = 10 m geworfen.

Ein Ball wird unter einem Winkel α mit einer Anfangsgeschwindigkeit v 0. = 35 m/s vom Boden über eine Mauer der Höhe H = 10 m geworfen. Webinar: Dynamik Thema: Kinemaik eines Massenpunkes Aufabe: Schiefer Wurf Ein Ball wird uner einem Winkel α mi einer Anfanseschwindikei = 35 m/s vom Boden über eine Mauer der Höhe H = 10 m eworfen. H α

Mehr

Leseprobe. Heribert Stroppe. Physik - Beispiele und Aufgaben. Band 1: Mechanik - Wärmelehre ISBN:

Leseprobe. Heribert Stroppe. Physik - Beispiele und Aufgaben. Band 1: Mechanik - Wärmelehre ISBN: Leseprobe Heribert Stroppe Physik - eispiele und Aufaben and 1: Mechanik - Wärmelehre ISN: 978-3-446-463- Weitere Informationen oder estellunen unter http://www.hanser.de/978-3-446-463- sowie im uchhandel.

Mehr

A.5 Menge der ganzen Zahlen = { ; 3; 2; 1; 0; 1; 2; 3; }

A.5 Menge der ganzen Zahlen = { ; 3; 2; 1; 0; 1; 2; 3; } Dietrich-Bonhoeffer-Gymnasium Oberasbach Standardaufaben. Fasse alle Primzahlen und alle Quadratzahlen der folenden Mene in jeweils einer eienen Mene zusammen: {; 79; 56; ; ; 96; 7; 65; 8; 95; 97; }. Schreibe

Mehr

beschleunigt. Danach behält er die erreichte Geschwindigkeit konstant bei.

beschleunigt. Danach behält er die erreichte Geschwindigkeit konstant bei. Aufabe : Zwei Züe fahren zu unterschiedlichen Zeitpunkten in leicher Richtun vo Bahnhof A ab. æ ö Der erste Zu wird hierbei zunächst it der Funktion a ( ) = a ç - çè 5000 über eine Läne ø von l beschleunit.

Mehr

Ergänzungsübungen zur Vorlesung Technische Mechanik 3

Ergänzungsübungen zur Vorlesung Technische Mechanik 3 Eränzunsübunen zur Vorlesun Aufabe 1: Eine Welle bestehe aus zwei identischen Kreiskeeln der Läne L und der Masse K und eine Zylinder der Höhe H it der Masse Z. Bestien Sie das Massenträheitsoent I A.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Bewegung in einer Dimension Physik Bewegung in einer Dimension Überblick für heute 2. Semester Mathe wird das richtig gemacht! Differenzieren (Ableitung) Integration Strecke Geschwindigkeit Beschleunigung Integrieren und differenzieren

Mehr

Modellbildungen zum Kugelstoßen

Modellbildungen zum Kugelstoßen Bernhard Ubbenjans Hümmlin Gymnasium Mühlenber 7 Leistunskurs Mathematik 694 Börer Söel Facharbeit im Leistunsfach Mathematik zum Thema Modellbildunen zum Kuelstoßen Verfasser: Bernhard Ubbenjans Gliederun.

Mehr

v A B A α h 1 h c) Wie lautet der Geschwindigkeitsvektor beim Auftreffen der Kugel im Punkt B?

v A B A α h 1 h c) Wie lautet der Geschwindigkeitsvektor beim Auftreffen der Kugel im Punkt B? Institut für Mechanik Prof. Dr.-In. habil. P. Betsch Prof. Dr.-In. habil. Th. Seeli Prüfun in Dynamik 3. Auust 4 Aufabe ca. 0 % der Gesamtpunkte) H m v 0 y 0000 00000 00000 000 000 00 000 0 v A 000 00

Mehr

Millikan Versuch. Redmann, Nigl, Wiessner, Köck. Entstehung des Versuches:

Millikan Versuch. Redmann, Nigl, Wiessner, Köck. Entstehung des Versuches: Redmann, Nil, Wiessner, Köck Millikan Versuch Entstehun des Versuches: Anfan des 20. Jahrhunderts entstand die Frae, ob alle messbaren Ladunen auf eine kleinste Ladunseinheit zurückeführt werden können.

Mehr

Wirtschaftsmathematik: Formelsammlung (V1.40)

Wirtschaftsmathematik: Formelsammlung (V1.40) Wirtschaftsmathematik: Formelsammlung (V.40) Grundlagen n! = 2 3... n = 0! = n i für n N, n 0, i= pq-formel Lösung von x 2 + px + q = 0 x /2 = p p 2 ± 2 4 q abc-formel Lösung von ax 2 + bx + c = 0 Binomische

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite 1/17 Frae 1 ( 3 Punkte) Ein fahrendes Fahrzeu wird entsprechend dem Beschleuniunsverlauf a(t) abebremst. Zum Zeitpunkt t = hat es die Geschwindikeit v und befindet sich an der Position s =. Zum Zeitpunkt

Mehr

Übungen zur Physikvorlesung für Wirtschaftsingenieure WS2003

Übungen zur Physikvorlesung für Wirtschaftsingenieure WS2003 Übunen zur Physikvrlesun für Wirtschaftsinenieure WS2003 Lösunsvrschläe zum Übunsblatt 2 1. Ein June verma einen Schlaball unter einem Abwurfwinkel vn 30 52m weit zu werfen. Welche Weite könnte er bei

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Probeklausur xj = 3x

Probeklausur xj = 3x Probeklausur.) (4P) Bestimmen Sie die Lösungen von j4 xj = 3x.) (3P) Berechnen Sie mittels Horner-Schema die Polynomdivision f(x) : (x+) mit Rest, wobei f(x) = x 3 +x 5 ist. Welchen Funktionswert können

Mehr

Physik für berufliche Gymansien und Berufsoberschulen

Physik für berufliche Gymansien und Berufsoberschulen Kircher (Hrs.) Physik für berufliche Gymansien und Berufsoberschulen Formelsammlun Merkur Verla Rinteln Formelsammlun 3 I Wichtie Formeln und Formelzeichen A Formeln Kräfte.1 Elementare Wechselwirkunen

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Bewegungen - Freier Fall eines Massenpunktes

Bewegungen - Freier Fall eines Massenpunktes Beweunen - Freier Fall eines Massenpunktes Daniel Wunderlich Ausarbeitun zum Vortra im Proseminar Analysis (Wintersemester 008/09, Leitun PD Dr. Gudrun Thäter) Zusammenfassun: Diese Ausarbeitun behandelt

Mehr

Darstellungstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthogonalität

Darstellungstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthogonalität Darstellunstheorie II - Reduzibilität, Maschkes Theorem, Schurs Lemma, Orthoonalität Tom Weber 18.11.2015 Inhaltsverzeichnis 1 Reduzibilität 2 1.1 G-Modul................................ 2 1.2 Orthonormalbasen..........................

Mehr

Aufgabe 11: Windanlage

Aufgabe 11: Windanlage Zentrale schritliche Abiturprüunen im Fach Mathematik Auabe 11: Windanlae Das Foto zeit einen Darrieus-Windenerie-Konverter. Der Wind setzt die drei Blätter um die vertikale Achse in Drehun; die Blätter

Mehr

Kurvendiskussion. Lösung: lok. + glob. Maximum bei x = 3 (lok.+glob. Min bei x = 6, lok. Min. bei x = 1) (lok.+glob.) Minimum bei x = 1

Kurvendiskussion. Lösung: lok. + glob. Maximum bei x = 3 (lok.+glob. Min bei x = 6, lok. Min. bei x = 1) (lok.+glob.) Minimum bei x = 1 Kurvendiskussion Vorzeigeaufgabe: Gegeben ist die Funktion f(x) = x 3 + 9x 4x + 6, x [, 3] Bestimmen Sie alle Stellen, an denen f ein lokales oder globales Extremum annimmt. Zusatz: Wie sieht es bei f(x)

Mehr

Hochschule Düsseldorf University of Applied Sciences. 19. November 2015 HSD. Physik. Energie II

Hochschule Düsseldorf University of Applied Sciences. 19. November 2015 HSD. Physik. Energie II Physik Energie II Arbeit bei variabler Kraft Was passiert wenn sich F in W = Fx ständig ändert? F = k x Arbeit bei variabler Kraft W = F dx Arbeit bei variabler Kraft F = k x W = F dx = ( k x)dx W = F

Mehr

(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1

(0 4) 4 :( 2) Bestimmung von Geradengleichungen Aufgabe 1 Bestimmun von Geradenleichunen Auabe Geeben ist die Geradenleichun (x) = -x +. Gesucht sind die Schnittpunkte mit den Koordinatenachsen. Lösun: Mit der y-achse (x=0): S y (0 ) Mit der x-achse (y=0): x

Mehr

F u n k t i o n e n Rationale Funktionen

F u n k t i o n e n Rationale Funktionen F u n k t i o n e n Rationale Funktionen Die erste urkundlich erwähnte Rechenmaschine wurde 163 von Wilhelm Schickard in einem Brief an Johannes Kepler knapp beschrieben. Die Maschine besteht aus einem

Mehr

5. Tutorium zur Analysis I für M, LaG und Ph

5. Tutorium zur Analysis I für M, LaG und Ph Fachbereich Mathematik Prof. Dr. K.-H. Neeb Dipl.-Math. Rafaël Dahmen, Dipl.-Math. Stefan Waner 5. Tutorium zur Analysis I für M, LaG und Ph Aufaben und Lösunen Sommersemester 2007 18.5.2007 Definition:

Mehr

Dritte Schularbeit Mathematik Klasse 7A G am

Dritte Schularbeit Mathematik Klasse 7A G am Dritte Schularbeit Mathematik Klasse 7A G am 31.03.2016 Wiederholung für Abwesende SCHÜLERNAME: Punkte im Basisteil: / 24 Punkte im Vertiefungsteil: /24 Davon Kompensationspunkte: /4 Note: Notenschlüssel:

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Daniel Bilic; Martin Raiber; Hannes Heinzmann

Daniel Bilic; Martin Raiber; Hannes Heinzmann Physik- Praktikum Daniel Bilic; Martin Raiber; Hannes Heinzmann M5 Schwinunen mit Auftrieb 1. Vertikale Schwinun eines Reaenzlases im Wasser Versuchsdurchführun: a) Wir füllten ein Reaenzlas so weit mit

Mehr

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS /3 Keine Abgabe. Aufgabe Es seien die folgenden Vektorfelder in R 3

Mehr

1. Lineare Funktionen

1. Lineare Funktionen Grundwissen zu den Geraden. Lineare Funktionen Geraden sind die Graphen linearer Funktionen. Dazu müssen wir zuerst den Beriff Funktion und dann den Beriff linear klären.. Funktion Eine Funktion ist eine

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

Fehlerrechnung - Physikalisches Anfängerpraktikum

Fehlerrechnung - Physikalisches Anfängerpraktikum Fehlerrechnun - Physikalisches Anfänerpraktikum Philipp B.Bahavar 1. November 01 1 Grundrößen der Fehlerrechnun 1.1 Der Mittelwert 1.1.1 Definition x = x = 1 n Im Folenden steht x für den Mittelwert einer

Mehr

Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor

Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor Bergische Universität Wuppertal Klausur zur Mathematik für Ingenieure - Bachelor.9.4 Prof. Dr. M. Heilmann, Apl. Prof. Dr. G. Herbort, Aufgabe Punkte. Zeigen Sie für alle n IN mittels Induktion die Gleichung

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

HTL Steyr Ausflussvorgänge Seite 1 von 10

HTL Steyr Ausflussvorgänge Seite 1 von 10 HTL Steyr Ausflussvoräne Seite 1 von 10 Ausflussvoräne Nietrost Bernhard, bernhard.nietrost@htl-steyr.ac.at Mathematische / Fachliche Inhalte in Stichworten: Differentialleichunen 1. Ordnun, analytische

Mehr

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum.

Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum. Mathematisch-Naturwissenschaftliche Fakultät I der Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum Versuchsprotokoll zum Fadenpendel (F3) am Arbeitsplatz 3 durcheführt

Mehr

Überprüfung der 2.Ableitung

Überprüfung der 2.Ableitung Übungen zum Thema: Extrempunkte ganzrationaler Funktionen Lösungsmethode: Überprüfung der.ableitung Version: Ungeprüfte Testversion vom 8.9.7 / 1. h 1. Finde lokale Extrema der unten aufgeführten ganzrationalen

Mehr

1. Nach-Klausur - LK Physik Sporenberg - Q1/

1. Nach-Klausur - LK Physik Sporenberg - Q1/ . Nach-Klausur - LK Physik Sporenber - / 0.04.03.Aufabe: Geeben ist eine flache Rechteckspule mit n 00 indunen, der Höhe h 0 cm, der Breite b 3,0 cm und den Anschlüssen und (siehe Skizze). Diese Spule

Mehr

Lösung II Veröffentlicht:

Lösung II Veröffentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse, ist gegeben durch x = 3m 30(m/s)t + 2(m/s 3 )t 3, wobei x in Metern und t in Sekunden angeben wird (a) Die Position des Teilchens bei

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

MANIT1 Mathematik: Analysis 1 Herbstsemester 2018

MANIT1 Mathematik: Analysis 1 Herbstsemester 2018 MANIT1 Mathematik: Analysis 1 Herbstsemester 18 Dr. Christoph Kirsch ZHAW Winterthur und Zürich Aufgabe 1 : Lösung 1 a) Gemäss Satz 1 der Vorlesung sind die Kandidaten für lokale Extrema der Funktion f

Mehr

1 Funktionen und ihre Ableitungen

1 Funktionen und ihre Ableitungen 1 Funktionen und ihre Ableitungen 1.1 Funktionen Wir nennen eine Grösse y eine Funktion von x, wenn der Wert von y von demjenigen von x abhängt: Zu jedem x wird in eindeutiger Weise ein Wert von y zugeordnet.

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung II

Abitur 2017 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

MN Ein dünnwandiges Kreisrohr ( t d) steht unter einem Innendruck p

MN Ein dünnwandiges Kreisrohr ( t d) steht unter einem Innendruck p Aufabe : MN Ein dünnwandies Kreisrohr ( t d) steht unter eine Innendruck p i = 5 ² r p i t 5, 0 N/ n 0, 0,3 0,0 E= = r= t= a) b) Berechnen ie die resultierenden pannunen in Länsrichtun s sowie in tanentialer

Mehr

(Unvollständige) Zusammenfassung Analysis Grundkurs

(Unvollständige) Zusammenfassung Analysis Grundkurs (Unvollständige) Zusammenfassung Analysis Grundkurs. Ableitungs und Integrationsregeln (Folgende 0 Funktionen sind alles Funktionen aus dem Zentralabitur Grundkurs.) a) f(t) = 0,0t e 0,t b) f(t) = t 3

Mehr

6 Die Bedeutung der Ableitung

6 Die Bedeutung der Ableitung 6 Die Bedeutung der Ableitung 24 6 Die Bedeutung der Ableitung Wir wollen in diesem Kapitel diskutieren, inwieweit man aus der Kenntnis der Ableitung Rückschlüsse über die Funktion f ziehen kann Zunächst

Mehr

2. Klausur Physik Leistungskurs Klasse Dauer: 90 min

2. Klausur Physik Leistungskurs Klasse Dauer: 90 min . Klusur Physik Leistunskurs Klsse 11 8. 1. 1 Duer: 9 in 1. Wird ein Dch neu einedeckt, können die Dchzieel it eine Krn uf ds Dch befördert werden. Dzu brint der Motor eine bestite Krft uf. Wie roß ist

Mehr

Lösung zur Klausur Technische Mechanik III Universität Siegen, Fachbereich Maschinenbau,

Lösung zur Klausur Technische Mechanik III Universität Siegen, Fachbereich Maschinenbau, Lösun zur Klausur Technische Mechanik III Universität Sieen, Fachbereich Maschinenbau, 9.02.2008 Aufabe 1 (10 Punkte) y m 2 u M R MR v 0 h r x A l B s C Ein römischer Katapultwaen (Masse ) rollt beladen

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7 Folgen und Reihen. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 2. Untersuchen Sie folgende Folgen auf Monotonie, Beschränktheit, Häufungspunkte und Konvergenz,

Mehr

Übungen zum Ferienkurs Physik für Elektroingenieure Wintersemester 2015 / 16

Übungen zum Ferienkurs Physik für Elektroingenieure Wintersemester 2015 / 16 Übunen zum Ferienkurs Physik für Elektroinenieure Wintersemester 2015 / 16 Rupert Heider Nr. 1 17.03.2016 Aufabe 1 : Flieender Pfeil Sie schießen vom Boden aus einen Pfeil in einem Winkel α zur Horizontalen

Mehr

ANALYSIS I FÜR TPH WS 2018/19 7. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 7. Übung Übersicht 7. Übung Übersicht Aufgaben zu Kapitel 1, 11 und (ein wenig) 12 Aufgabe 1: Kurvendiskussion (i) Aufgabe 2: Kurvendiskussion (ii) Aufgabe 3: ( ) Kurvendiskussion (iii) Aufgabe 4: ( ) Beweis einer Ungleichung

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79 Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine

Mehr

a S 1 S 2 S G e z a/2 e y e x a/2 Abbildung 1: Werbetafel.

a S 1 S 2 S G e z a/2 e y e x a/2 Abbildung 1: Werbetafel. VU Modellbildun Beispiele zu Kpitel : Mechnische Systeme 1.) Geeben ist die in Abbildun 1 drestellte Werbetfel mit der Msse m. Die Werbetfel ist mittels zwei Seilen S 1 und S n einer Wnd befestit. Außerdem

Mehr

Herbst 2009 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik III für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2009 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik III für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 Frae 1 ( Punkte) Der skizzierte Mechanismus besteht aus drei Stäben, die über Drehelenke miteinander verbunden sind. Der Stab 1 wird mit der konstanten Winkeleschwindikeit ω 1 anetrieben. 3

Mehr

3. Approximation von Funktionen und Extremwertprobleme im R n

3. Approximation von Funktionen und Extremwertprobleme im R n 3. Approximation von Funktionen und Extremwertprobleme im R n Wie in D ist es wichtig Funktionen mit mehreren Variablen durch Polynome lokal approximieren zu können. Polynome lassen sich im Gegensatz zu

Mehr

9 Lineare Differentialgleichungen

9 Lineare Differentialgleichungen $Id: lineartex,v 3 //8 ::37 hk Exp hk $ 9 Lineare Differentialgleichungen 9 Homogene lineare Differentialgleichungen Wir beschäftigen uns gerade mit den homogenen linearen Differentialgleichungen, also

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt ) Physik ET, WS Aufaben mit Lösun. Übun (KW 44). Übun (KW 44) Aufabe (M.3 Schräer Wurf ) Ein Ball soll vom Punkt P (x, y ) (, ) aus unter einem Winkel α zur Horizontalen schrä nach oben eworfen werden. (a)

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann 6.9.6 Bergische Universität Wuppertal Aufgabe ( Punkte Modul: Mathematik I und II, Bachelor Maschinenbau a Zeigen Sie durch Induktion nach n die Summenformel

Mehr

1.6 Homomorphismen von Gruppen

1.6 Homomorphismen von Gruppen 16 Homomorphismen von Gruppen 161 Definition Es seien (G, ) und (G, ) zwei Gruppen Eine Abbildun : G G heißt (Gruppen-) Homomorphismus, falls für alle ab, Gilt: (a b) (a) (b) Die obie Gleichun wird Homomorphie-Eienschaft

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

2. Klausur zur Theoretischen Physik II

2. Klausur zur Theoretischen Physik II PD Dr. Burkhard Dünwe SS 2006 Dipl.-Phys. Ulf D. Schiller 2. Klausur zur Theoretischen Physik II 22. Juli 2006 Name:............................................................ Matrikelnummer:...................................................

Mehr

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Fortsetzung der komlexen Zahlen : 9. Radizieren und Potenzen a) Berechnen Sie (1+i) 20 und geben Sie das Resultat als Polarkoordinaten

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Arbeitsblätter Förderplan EF

Arbeitsblätter Förderplan EF Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen

Mehr

Übungsaufgaben zu Kapitel 1 bis 4 (Studiengang Produktionstechnik)

Übungsaufgaben zu Kapitel 1 bis 4 (Studiengang Produktionstechnik) Hochschule für Technik und Wirtschaft Dresden Wintersemester 8/9 Fakultät Informatik/Mathematik Prof. Dr. B. Jung Übungsaufgaben zu Kapitel bis 4 (Studiengang Produktionstechnik) Aufgabe : Vereinfachen

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

System: Das mathematische Pendel

System: Das mathematische Pendel System: Das mathematische Pendel Verhaltensbeschreibun durch eine Formel (für die Größen) Zuan zur Formel Nutzun der Formel Näherun Datennahme Beispiel für modulares Vorehen Benötites und Benutztes: (Winkel

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Mathematik I Herbstsemester 2018 Kapitel 3: Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 3: Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 39 3. Differentialrechnung Einführung Ableitung elementarer Funktionen Ableitungsregeln Kettenregel Ableitung

Mehr