Nun erinnern wir an die Konvention, dass die Komponenten von v V (bzgl. B) einen Spaltenvektor. v 1 v 2 v =

Größe: px
Ab Seite anzeigen:

Download "Nun erinnern wir an die Konvention, dass die Komponenten von v V (bzgl. B) einen Spaltenvektor. v 1 v 2 v ="

Transkript

1 eim Rechnen mit Linearformen in V zusammen mit Vektoren in V ist es von Vorteil, mit der Dualbasis zu einer gewählten asis von V zu arbeiten Hierzu einige Erläuterungen Wie ede asis von V kann die Dualbasis = {ϑ 1, ϑ 2,, ϑ n } benutzt werden, um eine beliebige Linearform λ als Linearkombination zu schreiben: λ = λ 1 ϑ 1 + λ 2 ϑ λ n ϑ n (113) Die Komponenten λ i von λ werden in Kurzschreibweise auch als Zeilenvektor zusammengefasst: λ = (λ 1, λ 2,, λ n ) (114) In dieser Schreibweise gilt insbesondere ϑ 1 = (1,,, ), ϑ 2 = (, 1,, ),, ϑ n = (,,, 1) (115) Nun erinnern wir an die Konvention, dass die Komponenten von v V (bzgl ) einen Spaltenvektor bilden: v 1 v 2 v = v n ei Spezialisierung auf die asisvektoren nimmt diese Darstellung als Spaltenvektor eine besonders einfache Form an: 1 e 1 =, e 2 = 1,, e n = 1 (116) Aus der definierenden Eigenschaft ϑ i (e ) = δ i der Dualbasis folgt, dass die Anwendung von ϑ i auf einen Vektor v V die entsprechende Komponente von v (bzgl ) ergibt: v i = ϑ i (v) (i = 1,, n) (117) Umgekehrt erhält man die i-te Komponente λ i der Linearform λ durch Einsetzen des i-ten asisvektors: λ i = λ(e i ) (i = 1,, n) (118) Für eine beliebige Linearform λ und einen beliebigen Vektor v hat man dann λ(v) = ( ) λ i ϑ i v e = λ i v ϑ i (e ) = λ i v i (119) i i, i Dieser Ausdruck lässt sich prägnant mit der Regel Zeile mal Spalte umschreiben: λ(v) = v 2 λ i v i = (λ 1, λ 2,, λ n ) i 8 v 1 v n (12)

2 16 asiswechsel Was passiert nun, wenn wir die asis = {e 1,, e n } wechseln, also durch eine andere asis = {ẽ 1,, ẽ n } ersetzen? Es gibt mehrere Möglichkeiten des Vorgehens (die am Ende auf das Gleiche hinauslaufen) Hier gehen wir so vor, dass wir die alte asis durch die neue ausdrücken: e = i ẽ i T i (121) Da es sich bei der neuen asis wieder um eine asis handelt, sind die Koeffizienten T i R eindeutig bestimmt Sie lassen sich in Form einer quadratischen Matrix anordnen: T 11 T 12 T 1n T 21 T 22 T 2n (T i ) = (122) T n1 T n2 T nn Nun ist eder Vektor unabhängig von der Wahl der asis Es gilt also v = v e = i ṽ i ẽ i, (123) wobei mit ṽ i die Komponenten von v bezüglich der neuen asis = {ẽ 1,, ẽ n } gemeint sind Durch Einsetzen der eziehung (121) entsteht v =,i v ẽ i T i Da die Komponenten ṽ i eindeutig bestimmt sind, liefert der Koeffizientenvergleich mit (123) das Ergebnis ṽ i = T i v (124) In der alternativen Schreibweise mit Matrizen und Spaltenvektoren sieht das wie folgt aus: ṽ 1 T 11 T 1n v 1 = (125) ṽ n T n1 T nn (Hier wird die Multiplikationsregel für Matrizen und Spaltenvektoren als bekannt vorausgesetzt) Wir wenden uns etzt den Linearformen zu Für die Dualbasis = { ϑ 1,, ϑ n } gilt wieder ϑ i (ẽ ) = δ i Aus Gleichung (121) und dem Ansatz ϑ i = l S il ϑ l folgt hiermit v n δ i = ϑ i (e ) = k ϑ i (ẽ k )T k = k,l S il ϑl (ẽ k )T k = k S ik T k (126) Die Matrix der Koeffizienten S ik ist also invers zur Matrix der Koeffizienten T k : S 11 S 1n T 11 T 1n 1 = (127) S n1 S nn T n1 T nn 1 9

3 (Hier wird die Multiplikationsregel für Matrizen als bekannt vorausgesetzt) Wir schreiben für diesen Zusammenhang auch S i = (T 1 ) i oder S = T 1 Um die Komponenten einer Linearform λ in die neue asis umzurechnen, benützen wir die Gleichung (124) in Kombination mit der Tatsache, dass λ(v) basisunabhängig erklärt ist: λ(v) = λ v = i λ i ṽ i = i, λ i T i v (128) Durch Koeffizientenvergleich folgt λ = λ i i T i Um nach λ i aufzulösen, multiplizieren wir mit S k, summieren über und verwenden die Variante T is k = δ ik von Gleichung (126) So entsteht λ i = λ S i (129) Resumée Unter einem asiswechsel e = i ẽit i ändern sich die Komponenten eines Vektors v bzw einer Linearform λ wie folgt: ṽ i = T i v, λi = λ (T 1 ) i (13) In Worten: die als Spaltenvektor arrangierten Komponenten von v werden durch (Links-)Multiplikation mit der Matrix T transformiert Hingegen werden die als Zeilenvektor arrangierten Komponenten von λ durch Rechtsmultiplikation mit der inversen Matrix T 1 transformiert: (T 1 ) 11 (T 1 ) 1n ( λ 1,, λ n ) = (λ 1,, λ n ) (131) (T 1 ) n1 (T 1 ) nn emerkung Die invariante (dh basisunabhängige) Paarung V V R, (λ, v) λ(v) zwischen Linearformen und Vektoren ist fundamental für sehr viele eziehungen in der Physik Im eispiel von Abschnitt 14 haben wir bereits die Paarung Kraft Verschiebung Energie(änderung) kennengelernt Weitere eispiele von diesem Typ sind Kraft Geschwindigkeit Leistung, Impuls Geschwindigkeit kinetische Energie ( 2), Drehimpuls Winkelgeschwindigkeit Rotationsenergie ( 2), elektrische Feldstärke Verschiebung elektrische Spannung, elektrische Feldstärke Stromdichte Leistungsdichte Für diese Paarungen spielt die Geometrie des Raumes keine Rolle 1

4 17 Lineare Abbildungen Definition Sei A : U V eine Abbildung zwischen zwei Vektorräumen U, V Die Abbildung A heißt linear, falls für alle u, u U und b R gilt: A(u + u ) = A(u) + A(u ), A(b u) = b A(u) (132) Für eine lineare Abbildung L verwenden wir die vereinfachte Notation L(u) Lu eispiel Wählen wir in der obigen Definition V = R, betrachten wir also lineare Abbildungen L : U R, dann handelt es sich um die in Abschnitt 14 eingeführten Linearformen Die linearen Abbildungen L : U V bilden selbst wieder einen Vektorraum mit der durch (A+)(u) = A(u)+(u) erklärten Addition Dieser Vektorraum wird mit Hom(U, V ) bezeichnet Für U = V schreibt man Hom(V, V ) = End(V ) Für V = R haben wir Hom(U, R) = U Matrixdarstellung einer linearen Abbildung Sei L : U V eine lineare Abbildung zwischen endlich-dimensionalen Vektorräumen U und V, also L Hom(U, V ) Durch die Wahl von asen = {e 1,, e n } für U und C = {f 1,, f m } für V wird L eine Matrix (L i ) zugeordnet Dies geschieht durch Le = i f i L i, (133) oder mit Hilfe der Dualbasis C = {φ 1,, φ m } durch L i = φ i (Le ) (134) Nun möchten wir wissen, was unter der linearen Transformation u Lu mit den Komponenten (bzgl bzw C) des Vektors u passiert Dazu schreiben wir u als Linearkombination u = u e and verwenden die Linearität der Abbildung: ( ) Lu = L u e = u L(e ) = u e i L i i, Folglich gilt (Lu) i = φ i (Lu) = L i u In der Schreibweise als Spaltenvektor haben wir (Lu) 1 L 11 L 1n = (Lu) m L m1 L mn C C, u 1 u n Werden zwei lineare Abbildungen L : U V und K : V W hintereinander ausgeführt, KL : U L V K W so erhält man wieder eine lineare Abbildung KL : U W (ezüglich dieser Produktoperation bilden die invertierbaren linearen Abbildungen g End(V ) eine Gruppe namens GL(V ) mit der 11

5 identischen Abbildung v v als neutralem Element) Wichtig ist nun, dass die Zuordnung von linearen Abbildungen zu Matrizen die Gruppenstruktur erhält In anderen Worten: sind, C bzw D asen für U, V bzw W, und sind (K dc ), (L cb ) und ((KL) db ) die entsprechenden Matrizen, dann gilt (KL) db = c K dc L cb (135) Man kann also die Matrix der Hintereinanderausführung KL direkt bilden, oder die Matrizen von K und L individuell bilden und sie dann als Matrizen multiplizieren (wobei die Reihenfolge der Multiplikation gleich bleibt) das Ergebnis ist dasselbe 18 Transponierte einer linearen Abbildung Zu eder linearen Abbildung L : U V existiert die transponierte (oder kanonisch adungierte) Abbildung, L T Sie vermittelt zwischen den dualen Vektorräumen (also U und V ) und ist erklärt durch L T : V U, (L T λ)(u) = λ(lu) (136) Ein wichtiger Spezialfall sind Abbildungen L : V V zwischen einem Vektorraum und seinem eigenen Dualraum Wegen (V ) = V (für dim V < ) ist die Transponierte von L dann wieder eine lineare Abbildung L T : V V Definition Eine lineare Abbildung L : V V heißt symmetrisch (bzw schief-symmetrisch), falls gilt L = L T (bzw L = L T ) emerkung Für eine symmetrische lineare Abbildung L : V V hat man (Lv)(v ) = (Lv )(v) (für alle v, v V ), (137) für eine schief-symmetrische Abbildung gilt Entsprechendes mit geändertem Vorzeichen Die einer symmetrischen Abbildung (durch Wahl einer asis = {e 1,, e n }) zugeordnete Matrix (L i ) hat die Eigenschaft L i = (Le i )(e ) = (Le )(e i ) = L i (138) Für eine schief-symmetrische Abbildung L = L T hat man L i = L i eispiel 1 Der Massentensor eines Teilchens im anisotropen Medium ist eine symmetrische lineare Abbildung M, die der Geschwindigkeit v den entsprechenden Impuls p zuordnet: M : v p = Mv, M = M T (139) eispiel 2 Der Trägheitstensor (z eines starren Körpers) ist eine symmetrische lineare Abbildung I, die die Winkelgeschwindigkeiten ω in den entsprechenden Drehimpuls L transformiert: I : ω L = Iω, I = I T (14) 12

6 eispiel 3 Der Leitfähigkeitstensor σ eines elektrisch leitenden Materials ist (in linearer Näherung) eine lineare Abbildung, die elektrische Feldstärken E in elektrische Stromdichten transformiert: σ : E = σe (141) Es gilt die sog Onsager-Relation σ() T = σ( ) (mit der magnetischen Feldstärke) 19 Affiner Raum Der egriff des Vektorraums an sich ergibt noch kein befriedigendes Modell für den (physikalischen) Raum Deshalb nehmen wir folgende Erweiterung vor Definition Unter einem affinen Raum (M, V, +) versteht man eine Menge M von Punkten zusammen mit einem Vektorraum V und einer Addition M V M, (p, v) p + v, mit den Eigenschaften: (i) Es gilt eine Variante des Assoziativgesetzes: p + (u + v) = (p + u) + v für alle p M und u, v V (ii) Zu edem Paar (p, q) M M existiert genau ein Vektor v V mit p = q + v Wir schreiben p q := v und nennen p q den Differenzvektor zu (p, q) eispiel Die Menge aller Punkte auf einer Geraden zusammen mit dem Vektorraum aller Translationen längs der Geraden bildet eine 1-dimensionalen affinen Raum Definition Ein affines Koordinatensystem {p ; e 1,, e n } besteht aus einem ausgezeichneten Punkt p (dem Koordinatenursprung ) zusammen mit einer asis {e 1,, e n } von V Die affinen Koordinaten x i : M R (i = 1,, n) definiert man durch x i (p) = ϑ i (p p ), wobei {ϑ 1,, ϑ n } die Dualbasis zu {e 1,, e n } ist Den Ausdruck p = p + x 1 (p) e x n (p) e n nennen wir die Koordinatendarstellung des Punktes p Man beachte, dass gilt x i (p + av) = x i (p) + a ϑ i (v) (p M, a R, v V ) 13

1.7 Lineare Abbildungen

1.7 Lineare Abbildungen 1.7 Lineare Abbildungen Definition. Sei A : U V eine Abbildung zwischen zwei Vektorräumen U, V. Die Abbildung A heißt linear, falls für alle u, u U und b R gilt: A(u + u ) = A(u) + A(u ), A(b u) = b A(u).

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

1.14 Vektorprodukt im R 3

1.14 Vektorprodukt im R 3 1.14 Vektorprodukt im R 3 Wir kommen jetzt zu einer besonderen Operation, die nur im dreidimensionalen Euklidischen Vektorraum definiert werden kann. Definition. Sei V der dreidimensionale Euklidische

Mehr

Vektoren - Basiswechsel - Matrix

Vektoren - Basiswechsel - Matrix Vektoren - asiswechsel - Matrix 1. Prinzip er Zusammenhang zwischen zwei asissystemen sollen formal eleganter durchgeführt werden. Ein Nachteil des "einfachen" Verfahrens - siehe Seite V0 - ist, dass teilweise

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

09. Lineare Abbildungen und Koordinatentransformationen

09. Lineare Abbildungen und Koordinatentransformationen 09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ:

2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105. gramms kommutativ: 2.8. ABBILDUNGSMATRIZEN UND BASISWECHSEL 105 gramms kommutativ: V ϕ W ψ X c B c C c D K n x MC B(ϕ) x K m x MC D (ψ) x K l x M C D (ψ)mb C (ϕ) x Dies bedeutet, dass das gesamte Diagramm kommutativ ist.

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

Lineare Abbildungen - I

Lineare Abbildungen - I Lineare Abbildungen - I Definition. Seien V und W K-Vektorräume (über demselben K). Eine Abbildung F : V W heißt K-linear, wenn L1) F (v + w) = F (v) + F (w) v, w V L2) F (λv) = λf (v) v V, λ K. Somit

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 31. Mai 2016 Stefan Ruzika 9: Lineare Abbildungen und Matrizen 31. Mai 2016 1 / 16 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 6 (WS 2010/2011) Abgabetermin: Donnerstag, 27. November http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzugen zur Vorlesung: Der Vollständigkeit

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 4 Einführung Vektoren und Translationen

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

2.4 Lineare Abbildungen und Matrizen

2.4 Lineare Abbildungen und Matrizen 24 Lineare Abbildungen und Matrizen Definition 24 Seien V, W zwei K-Vektorräume Eine Abbildung f : V W heißt lineare Abbildung (lineare Transformation, linearer Homomorphismus, Vektorraumhomomorphismus

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Kapitel 7. Lineare Abbildungen. 7.1 Motivation

Kapitel 7. Lineare Abbildungen. 7.1 Motivation Kapitel 7 Lineare Abbildungen 71 Motivation Verschieben, Drehen und Scheren sind parallelentreu, dh sie lassen sich auch als Abbildung zwischen Vektorräumen fomulieren Die Verschiebung, beispielsweise,

Mehr

Lineare Algebra. 6. Übungsstunde. Steven Battilana.

Lineare Algebra. 6. Übungsstunde. Steven Battilana. Lineare Algebra 6. Übungsstunde Steven attilana stevenb@student.ethz.ch November, 6 Lineare Abbildungen Eine Abbildung f : X Y heisst injektiv, falls x, x X : x x fx fx. In Worten: erschiedene Elemente

Mehr

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie

Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

Tensoren auf einem Vektorraum

Tensoren auf einem Vektorraum ANHANG A Tensoren auf einem Vektorraum In diesem Anhang werden einige Definitionen und Ergebnisse betreffend Tensoren ohne Anspruch auf mathematische Strenge zusammengestellt. Das Ziel ist, den modernen

Mehr

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der 7 Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Folgerung: Drehmatrizen haben die Determinante. Folgerung: Drehmatrizen sind orthogonale Matrizen, das heißt D = D

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung

4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung 43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder

Mehr

9. Übung zur Linearen Algebra I -

9. Übung zur Linearen Algebra I - 9. Übung zur Linearen lgebra I - Lösungen Kommentare an Hannes.Klarner@FU-erlin.de FU erlin. WS 2009-10. ufgabe 33 Sei ϕ : X X eine lineare bbildung, dim(x) = n und ϕ n = 0, ϕ n 1 0. (i) Zu Zeigen: x X,

Mehr

Matrix. Unter einer (m n)-matrix (m, n N) über einem Körper K versteht man ein Rechteckschema. a m,1 a m,2 a m,n. A = (a i,j ) = Matrix 1-1

Matrix. Unter einer (m n)-matrix (m, n N) über einem Körper K versteht man ein Rechteckschema. a m,1 a m,2 a m,n. A = (a i,j ) = Matrix 1-1 Matrix Unter einer (m n)-matrix (m, n N) über einem Körper K versteht man ein Rechteckschema a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = (a i,j ) =.... a m,1 a m,2 a m,n Matrix 1-1 Matrix Unter einer (m n)-matrix

Mehr

1 Eigenschaften von Abbildungen

1 Eigenschaften von Abbildungen Technische Universität München Christian Neumann Ferienkurs Lineare Algebra für Physiker Vorlesung Dienstag WS 2008/09 Thema des heutigen Tages sind zuerst Abbildungen, dann spezielle Eigenschaften linearer

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Kurzübersicht Lineare Algebra. Vorlesung Multivariate Analysemethoden WS 2006/2007 (G. Meinhardt)

Kurzübersicht Lineare Algebra. Vorlesung Multivariate Analysemethoden WS 2006/2007 (G. Meinhardt) Kurzübersicht Lineare Algebra Vorlesung Multivariate Analysemethoden WS 2006/2007 (G. Meinhardt 21.11.2006 1 Lineare Gleichungen System linearer Gleichungen, allgemeine Form: a 11 x 1 + a 12 x 2 + + a

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen Kapitel 2 Lineare Algebra II 21 Lineare Abbildungen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 21 Definition Eine

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

5 Die Allgemeine Lineare Gruppe

5 Die Allgemeine Lineare Gruppe 5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

3 Bilinearformen und quadratische Formen

3 Bilinearformen und quadratische Formen 3 Bilinearformen und quadratische Formen Sei V ein R Vektorraum. Definition: Eine Bilinearform auf V ist eine Abbildung s : V V R, welche linear in beiden Variablen ist, d.h.: Für u, v, w V und λ, µ R

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

U = U, v i λ i = o und (z.b.) λ 1 0. i=1 1 = i=2. i=2

U = U, v i λ i = o und (z.b.) λ 1 0. i=1 1 = i=2. i=2 7 Lineare Unabhängigkeit, asis Existenzsatz M Am Ende des vorigen Paragraphen betrachteten wir bei vorgegebener Teilmenge T eines K-Vektorraumes V das Erzeugnis U von T in V. Die ildung des Erzeugnisses

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

4.4 Eigenwerte und Eigenvektoren

4.4 Eigenwerte und Eigenvektoren 4.4-1 4.4 Eigenwerte und Eigenvektoren 4.4.1 Die Eulersche Gleichung Der Drehimpulsvektor kann folgendermaßen geschrieben werden, (1) worin die e i o Einheitsvektoren in Richtung der Hauptachsen sind,

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( ) Ferienkurs Mathematik für Physiker I WS 206/7 Ferienkurs Mathematik für Physiker I Skript Teil 2 (28.03.207) Vektorräume Bevor wir zur Definition eines Vektorraumes kommen erinnern wir noch einmal kurz

Mehr

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele:

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele: L2. Vektorräume Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer Beispiele: Masse, Volumen, Energie, Arbeit, Druck, Temperatur 2) Vektoren: vollständig

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Lineare Abbildungen und Matrizen In diesem Kapitel geht es um den grundlegenden Zusammenhang zwischen linearen Abbildungen und Matrizen. Die zentrale Aussage ist, dass nach anfänglicher Wahl von Basen

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Das innere Produkt von zwei Vektoren in V entspricht dem standard Skalarprodukt ihrer Komponenten bezüglich einer Orthonormalbasis von V.

Das innere Produkt von zwei Vektoren in V entspricht dem standard Skalarprodukt ihrer Komponenten bezüglich einer Orthonormalbasis von V. L5.6 Orthogonale und unitäre Matrizen (invertierbare Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) Reelles inneres Produkt in -Vektorraum [siehe L3.1b]: 'reeller Vektorraum' (i)

Mehr

5. Matrizen und Determinanten

5. Matrizen und Determinanten technische universität dortmund Dortmund, im Januar 01 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 1 und Matrizen und

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 9 20. Mai 2010 Kapitel 9. Matrizen und Determinanten Der Begriff der Matrix Die transponierte Matrix Definition 84. Unter einer (reellen) m n-matrix

Mehr

2 Matrizenrechnung und Lineare Gleichungssysteme

2 Matrizenrechnung und Lineare Gleichungssysteme Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der

Mehr

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) = Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

1 Definitionen: 6 Punkte gesamt

1 Definitionen: 6 Punkte gesamt ANTWORTEN zum KOLLOQIUM zur Einführung in die Lineare Algebra Hans G. Feichtinger Sommersemester 2014 Fr., 25. Juli 2014, 10:00, Fakultät f. Mathematik Punktezahl: (1) 6 (2) 9 (3) 5 (4) 10 TOTAL (von 30):

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr