VHDL - CORDIC Verfahren
|
|
|
- Adolf Krause
- vor 8 Jahren
- Abrufe
Transkript
1 VHDL - CORDIC Verfahren Marc Reichenbach und Michael Schmidt Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 04/12 1 / 30
2 Gliederung Motivation und Geschichte des CORDIC-Verfahrens CORDIC-Verfahren Der verallgemeinerte CORDIC 2 / 30
3 Motivation oft Standardfunktionen benötigt meistens nur mit hohem Aufwand zu berechnen spezielle iterative Algorithmen ohne Verwendung von Multiplikationen dadurch Einsparung von Chipfläche 3 / 30
4 Standardfunktionen Sinus Cosinus Tangens Exponentialfunktion Logarithmusfunktion Arcus- und Areafunktionen Quadratwurzel Multiplikation, Division 4 / 30
5 Einsparung von Chipfläche Multiplikationen sehr zeitintensiv Multiplikationswerke sehr groß Technologien damals LSI, MSI, SSI: Anzahl der Transistoren begrenzt Technologien heute Verwendung schneller Multiplizierer Einsatz in platzkritischen Technologien wie FPGA Einsatz bei massiv parallelen Architekturen 5 / 30
6 Alternative Technologien Lookup-Tabellen viel Platzverbrauch für jede Funktionen eine eigene notwendig Interpolation zwischen den Werten BKM (Bit) Algorithmen iterative shift-and-add Algorithmus nur für Logarithmus- und Expotentialfunktionen geeignet Taylorreihe Beispiel Sinus an a = 0: sin(x) = x + x 3 3! + x 5 5! + x 7 7! + x 9 9!... benötigt auch Multiplikationen 6 / 30
7 CORDIC Entwicklung CORDIC-Verfahren von Volder (1959) und Walther (1971) entwickelt Konvergenzverfahren auf Basis von Koordinatentransformation Verfahren benötigt nur einfache Operationen Addition (RCA) Schiebeoperationen (Multiplexer) Abfragen (Multiplexer) Tabellenzugriff (ROM, Counter) alle Standardfunktionen damit umsetzbar 7 / 30
8 CORDIC - Veröffentlichungen und Einsatz Volder 1959: The CORDIC Trigonometric Computing Technique. sin, cos, arctan, sqrt CORDIC - coordinate rotation digital computing Walther 1971: A unified algorithm for elementary functions. sinh, cosh, e, ln, div Einsatz in den ersten Generationen der HP Taschenrechner CORDIC-Prozessor als ASIC in Roboter-Steuergung: Timmermann et al.: A CMOS floating-point vector-arithmetic unit 8 / 30
9 Prinzip des CORDIC-Verfahren Berechnung Sinus bzw. Cosinus wird auf Koordinatentransformationen zurückgeführt Drehung eines Vektors (x 0, y 0 ) um einen Winkel Θ in einen Vektor (x n, y n ) mathematisch durch Multiplikation mit sog. Rotationsmatrix durchführbar (x n,y n ) Θ xn y n ] ] cos Θ sin Θ = sin Θ cos Θ x0 y 0 ] (x 0,y 0 ) 9 / 30
10 CORDIC - Sinus und Kosinus durch Drehung des Vektors (1, 0) um Θ ist sin Θ und cos Θ berechenbar xn ] ] y n cos Θ sin Θ = sin Θ cos Θ ] 1 0 sin Θ (x n,y n ) Θ cos Θ (1,0) 10 / 30
11 CORDIC - Umformung in den Tangenz durch mathematische Umformung nur noch Abhänigkeit von einer Winkelfuntion tan Θ wichtig um Multiplikationen durch Schiebeoperationen nach rechts zu ersetzen Drehung um den Winkel Θ wird nun durch Folge von Drehungen um Teilwinkel α i realisiert xn y n ] = xn y n ] ] cos Θ sin Θ = sin Θ cos Θ cos Θ = tan 2 Θ tan 2 Θ x0 y 0 ] ] 1 tan Θ tan Θ 1 x0 y 0 ] 11 / 30
12 CORDIC - Einführung Teilwinkel Teilwinkel α i sind bereits vorab definiert Teilwinkel so gewählt, dass der gewünschte Winkel Θ als Linearkombination der Teilwinkel α i darstellbar ist n 1 Θ = σ i α i σ i { 1, 1} i=0 d.h., der Winkel Θ wird durch eine alternierende Approximation angenährt bedeutet, dass man vor- und zurückdreht ist man bei einer Teildrehung zu weit gegangen, d.h. über den Winkel Θ hinaus, so muss man im nächsten Schritt wieder zurückdrehen die Drehrichtung wird durch den Parameter σ i gesteuert 12 / 30
13 CORDIC - Linearkombination der Teilwinkel zur Steuerung des Vorzeichens bzw. der Drehrichtung wird Hilfsvariable z i eingeführt z 0 wird mit dem gewünschten Drehwinkel Θ initialisiert Θ α 1 α 1 +α 2 α 1 +α2+α3 α 1 +α 2 +α 3 -α 4 α 4 (x n,y n ) α 3 α 2 α 1 Θ z 0 = Θ (1,0) { 1 z i 0 z i+1 = z i σ i α i σ i = 1 z i < 0 13 / 30
14 CORDIC - Eliminierung der Multiplikationen Mathematischer Ausdruck einer Teildrehung: xi+1 y i+1 ] = tan 2 α i Eliminierung der Multiplikationen: wesentliche Idee hinter dem Verfahren 1 σ i tan α i σ i tan α i 1 ersetze Multiplikationen durch Schiebeoperationen ] xi y i ] tan α i = 2 i i = 0... n 1 14 / 30
15 CORDIC - Iteration ohne Multiplikation Teildrehung um α i xi+1 y i+1 k i = ] 1 σi 2 = k i i ] σ i 2 i tan 2 α i = xi y i i ] da es sich bei den Teilwinkeln α i um bekannte Werte handelt, können die k i vorab zusammengefasst werden 15 / 30
16 CORDIC - Iterationsformeln Iterationsformeln x i+1 = x i σ i 2 i y i y i+1 = y i + σ i 2 i x i z i+1 = z i σ i arctan (2 i) Faktor k k = n 1 i= i 16 / 30
17 CORDIC - Initialwerte Lösung des Systems von Differenzengleichungen ist x n = x 0 cos z 0 y 0 sin z 0 y n = y 0 cos z 0 + x 0 sin z 0 Durch geeignete Wahl der Initialwerte ist damit Sinus und Cosinus berechenbar x 0 = 1 y 0 = 0 x n = cos z 0 y 0 = sin z 0 Achtung: Um den Wert k zu klein! k = n 1 i= i 17 / 30
18 CORDIC - Initialwert k Multiplikation nicht notwendig, wenn Startwert gut gewählt x 0 = x 0 k = k y 0 = y 0 k = 0 k (x n,y n ) (x n,y n ) k (1,0) (1,0) 18 / 30
19 CORDIC - Vektormodus eben gezeigtes Verfahren verfolgte Strategie die z-komponente gegen 0 streben zu lassen dies wird Rotationsmodus genannt es gibt aber auch die Möglichkeit, mit der zweiten Variable y i gegen 0 zu kovergieren Θ (x 0, y 0 ) (x n, 0) x 0 cos Θ = x0 2 + y 0 2 sin Θ = y 0 x y 2 0 tan Θ = y 0 x 0 (x y 0 2 ) 1/2 = x n 19 / 30
20 CORDIC - Funktionalität des Vektormodus diese Strategie wird Vektormodus genannt graphisch gesehen kann dann auf der x-achse die Länge des Vektors (x 0, y 0 ) abgelesen werden werden gleichzeitig in der dritten Komponente alle z alle Teilwinkel aufsummiert, erhält z n den Winkel identisch mit arctan(y 0 /x 0 ) Iterationsformeln identisch wie beim Rotationsmodus zur Bestimmung des Vorzeichens σ i muss nun die Variable y i abgefragt werden 20 / 30
21 CORDIC - wichtige Formeln des Vektormodus Zusammenfassung in Formeln Länge eines Vektors / Wurzel: x n = x0 2 + y 0 2 Winkel eines Vektors / arctan: z n = z 0 + Θ = z 0 + arctan(y 0 /x 0 ) Vorzeichen für die Iterationen: { 1, y i 0 σ i = 1, y i < 0 21 / 30
22 CORDIC - Erweiterung zum allgemeinen CORDIC bisher gezeigten Iterationsformeln erlauben die Berechnung der Wurzelfunktion des Arkustangens der trigonometrischen Funktionen Walther erweiterte 1971 das von Volder für zyklische Koordinatensysteme entwickelte Verfahren auf lineare und hyperbolische Koordinatensysteme 22 / 30
23 CORDIC - Norm eines Vektors x 2 + m y 2 x 2 + y 2 x x 2 y 2 m=1 zyklisches KOS m=0 lineares KOS m=-1 hyperbolisches KOS 23 / 30
24 CORDIC - Veralgemeinerte Rotationsmatrix xi+1 y i+1 ] = tan 2 (α i m) 1 σ i m tan(αi m) tan(α σ i m) i m 1 ] xi y i ] m = 1 zyklisch 1 ] σ i tan α i σ i tan α i 1 tan α i = 2 i m = 0 linear ] 1 0 σ i α i 1 α i = 2 i m = 1 hyperbolisch ] 1 σ i tanh α i σ i tanh α i 1 tanh α i = 2 i 24 / 30
25 CORDIC - Verallgemeinerte Iterationsformeln Iterationsformeln x i+1 = x i mσ i 2 F (i) y i y i+1 = y i + σ i 2 F (i) x i z i+1 = z i σ i α i i wenn m = 0 m = 1 1, 2, 3, 4, 4, 5, 6,..., F (i) = 13, 13, 14, 15,..., 40, 40, 41,... wenn m = 1 25 / 30
26 CORDIC - Die Funktion F (i) Zahlen 4, 13, 40, k, 3k + 1 treten im hyperbolischen Fall doppelt auf Grund ist Konvergenz für die Einhaltung der Konvergenz muss für verschiedene Teilwinkel α i gelten α i n 1 j=i+1 α i < α d.h., jeder Teilwinkel einer Iteration kann durch alle folgenden Teilwinkel bis auf einen Restfehler kompensiert werden 26 / 30
27 CORDIC - Konvergenz der Teilwinkel Restfehler des Gesamtverfahrens ist durch den Teilwinkel der letzten Iteration definiert damit Kompensation möglich ist, muss Nachfolgewinkel mindestens die Hälfte des Vorhergehenden betragen α i α i für zirkulares und lineares Koordinatensystem erfüllt für hyperbolisches nicht: eine Winkeldrehung muss an bestimmten Fällen eventuell wieder vollständig rückgängig gemacht werden 27 / 30
28 CORDIC - Übersicht Betriebsart m Funktion Rotationsmodus 1 x n = x 0 cos z 0 y 0 sin z 0 z n 0 y n = y 0 cos z 0 + x 0 sin z 0 0 x n = x 0 y n = y 0 + z 0 x 0-1 x n = x 0 cosh z 0 + y 0 sinh z 0 y n = y 0 cosh z 0 + x 0 sinh z 0 Vektormodus 1 x n = (x0 2 + y 0 2) y n 0 z n = z 0 + arctan(y 0 /x 0 ) 0 x n = x 0 z n = z 0 + y 0 /x 0-1 x n = x0 2 y 0 2 z n = z 0 + Atanh(y 0 /x 0 ) 28 / 30
29 CORDIC - Berechenbare Funktionen e z = cosh z + sinh z e z = cosh z sinh z z = (z )2 (z 1 4 )2 tan z = sin z cos z ln z = 2Atanh( z 1 sinh z z+1 ) tanh z = cosh z 29 / 30
30 CORDIC - Architektur x i+1 = x i mσ i 2 F (i) y i y i+1 = y i + σ i 2 F (i) x i z i+1 = z i σ i α i x i y i z i 2 -F(i) Shift Shift α i mσ i σ i +/- +/- +/- σ i x i+1 y i+1 z i+1 30 / 30
Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29
Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die
1. Definition der trigonometrischen Funktionen für beliebige Winkel
1 Trigonometrie 2 1. Definition der trigonometrischen Funktionen für beliebige Winkel In einem Kreis mit Mittelpunkt M(0,0) und Radius r ist der zunächst spitze Winkel α gezeichnet. α legt auf dem Kreis
3.2. Polarkoordinaten
3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.
Definition von Sinus und Cosinus
Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,
2.3.4 Drehungen in drei Dimensionen
2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1
Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =
Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...
KAPITEL 1. Komplexe Zahlen
KAPITEL Komplexe Zahlen. Lernziele im Abschnitt: Komplexe Zahlen............... Was sind komplexe Zahlen?......................3 Komplexe Zahlenebene....................... 3.4 Grundrechenarten in C.......................
Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen
Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie
Die elementaren trigonometrischen Funktionen und ihre Umkehrfunktionen sind: Funktion Kurzzeichen Umkehrfunktion Kurzzeichen Sinus
trigonometrische Funktionen Übersicht über die trigonometrischen Funktionen Die elementaren trigonometrischen Funktionen und ihre Umkehrfunktionen sind: Funktion Kurzzeichen Umkehrfunktion Kurzzeichen
Mathematik für Naturwissenschaften Aufgaben mit Ergebnissen Differenzialrechnung
Hans Walser Mathematik für Naturwissenschaften Aufgaben mit sen 3 3 4 4 5 5 6 6 7 Differenzialrechnung Differenzialrechnung, Aufgaben ii Inhalt Steigung... Beweis?... 3 Spiel mit Eponenten... 4 Ableitung...
27 Taylor-Formel und Taylor-Entwicklungen
136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen
Die Bedeutung der Areafunktionen
Die Bedeutung der Areafunktionen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 8. März 003 Die Umkehrfunktionen der hyperbolischen Funktionen heißen Areafunktionen. Woher dieser Name kommt, und
Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):
Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe
1 Fraktale Eigenschaften der Koch-Kurve
Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................
Brückenkurs Mathematik. Mittwoch Freitag
Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs
Mathematische und statistische Hilfsmittel für Pharmazeuten
Mathematische und statistische Hilfsmittel für Pharmazeuten Dr. Helga Lohöfer Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Fassung vom September 2003 Inhaltsverzeichnis I Elementare
Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =
1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass
Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth
Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter
Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner
Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Stoff für den Einstufungstest Mathematik in das 2. Jahr AHS 1) Gleichungen/ Gleichungssysteme/ Terme Lineare Gleichungen
Multiplikation und Division in Polarform
Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin
Trignonometrische Funktionen 6a
Schuljahr 2015/16 [email protected] Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )
Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2
Etra-Mathematik-Übung: 005--9 Aufgabe : Geben Sie die Nullstellen der Funktion f() sin ( * Pi) an! Skizze: Wertetabelle: X - ½ Pi ½ Pi sin ( ½ Pi) -,0-6,0 -,57-7,57-0,96 -,5 -,5 -,57-6,07 + 0, -,0 -,0
Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya
Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................
3. DIE EXPONENTIALFUNKTION UND VERWANDTES
3. DIE EXPONENTIALFUNKTION UND VERWANDTES (1) DIE KOMPLEXE EXPONENTIALFUNKTION Für α = (a n ) n=0mit a n := 1, (n IN) gilt r α = lim n (n + 1)! = lim n (n + 1) =. Damit konvergiert die zugehörige Potenzreihe
Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik
2.9 Die komplexen Zahlen
LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in
Formelsammlung spezieller Funktionen
Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert
Zusammenfassung Vektorrechnung und Komplexe Zahlen
Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................
Theoretische Physik 1, Mechanik
Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische
Themen des schulinternen Curriculums Mathematik
Brüche I Figuren und Körper I Rechnen in N und Z Größen Beschreibende Statistik Themen des schulinternen Curriculums Mathematik Klasse 5 Fragebögen auswerten Diagramme erstellen und Informationen daraus
Selbsttest Mathematik des FB 14 der Universität Kassel
Selbsttest Mathematik des F 1 der Universität Kassel Der folgende Selbsttest soll Ihnen helfen Ihre mathematischen Fähigkeiten besser einzuschätzen, um zu erkennen, ob Ihre Mathematikkenntnisse für einen
mentor Lernhilfe: Mathematik 10. Klasse Baumann
mentor Lernhilfe: Mathematik 10. Klasse Geometrie: Winkelfunktionen, Trigonometrie, Additionstheoreme, Vektorrechnung von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 10. Klasse Baumann schnell
Arbeitsblatt 1 Einführung in die Vektorrechnung
Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,
12 3 Komplexe Zahlen. P(x y) z = x + jy
2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)
Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden
Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der
Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7
Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3
2.3 Exponential- und Logarithmusfunktionen
26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche
11 Spezielle Funktionen und ihre Eigenschaften
78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen
Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4)
Lösung zur Übung 1 Aufgabe 1 In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom im Zentrum des Würfels liegt. Wie groß ist der Tangens des halben H-C-H Bindungswinkels?
Mathematik für Ingenieure mit Maple
Thomas Westermann Mathematik für Ingenieure mit Maple Bandl: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 4., neu bearbeitete
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 18 In dieser Vorlesung führen wir weitere wichtige Funktionen über ihre Potenzreihen ein. Die Hyperbelfunktionen Der Verlauf
Matrizen und Drehungen
Matrizen und Drehungen 20. Noember 2003 Diese Ausführungen sind im wesentlichen dem Skript zur Vorlesung Einführung in die Theoretische Physik I und II on PD Dr. Horst Fichtner entnommen. Dieses entstand
Mathematik 1 für Naturwissenschaften
Hans Walser Mathematik für Naturwissenschaften Modul 0 Einführung Hans Walser: Modul 0, Einführung ii Inhalt Zahlen.... Natürliche Zahlen.... Ganze Zahlen.... Rationale Zahlen.... Reelle Zahlen... Smbole....
= 2 i 2= 2 2 i, z 4. = 1.5, z 8
Mathematik 1 - Übungsblatt 11 Aufgabe 1 (komplexe Zahlen) Gegeben sind folgende komplexe Zahlen in der Darstellung als Normalform mit Real- und Imaginärteil z=x i y - oder wegen der Vertauschbarkeit von
Körper sind nullteilerfrei
Mathematik I für Informatiker Komplexe Zahlen p. 1 Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a = 0 oder b = 0. Beweis: Aus a b = 0 und a 0 folgt also b =
++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1
Hauptachsentransformation. Einleitung Schneidet man den geraden Kreiskegel mit der Gleichung = + und die Ebene ++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen +2 + +dx+ey+f = 0. Die
KOMPLEXE ZAHLEN UND LINEARE GLEICHUNGSSYSTEME
KOMPLEXE ZHLEN UND LINERE GLEICHUNGSSYSTEME Vektoren Definition: Parallelverschiebung, Pfeil(e) mit Länge und Richtung. Darstellung Eigenschaften Komponenten Graphisch Länge, Betrag Zwischenwinkel Vektorarten
Inhaltsverzeichnis. 1 Lineare Algebra 12
Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer
1.1. Geradengleichung aus Steigung und y-achsenabschnitt
Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:
Trigonometrische Funktionen
Abbildungsverzeichnis Inhaltsverzeichnis Trigonometrische Funktionen Die hier behandelten trigonometrischen Funktionen sind sin, cos, tan, cot. Es zeigt sich, dass die Umkehrfunktionen der trigonometrischen
Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren
Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man
Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09
Musterlösung zu Blatt 1 der Vorlesung Analysis I WS08/09 Schriftliche Aufgaben Aufgabe 1. Beweisskizze a): Wir benutzen die Stetigkeit von sin und cos und sin π/) = 1, sinπ/) = 1, cos π/) = cosπ/) = 0,
Microsoft Rechner. Kurzanleitung ohne Maus
Microsoft Rechner Kurzanleitung ohne Maus Förderzentrum für die integrative Beschulung blinder und hochgradig sehbehinderter Schülerinnen und Schüler (FIBS) Astrid Leutbecher Korrekturhinweise, Anmerkungen,
Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)
Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........
Formelsammlung Mathematik Grundkurs Inhalt
Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches
Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64
1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:
Vektoren, Vektorräume
Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010
1. ( e -x + e -(- x) 1. . ( e x + e - x ) . ( e x - e - x 2. Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Analysis Übung 15 Folie 1
04.03.04 Übung 5a Analysis, Abschnitt.5, Folie Definition der hyperbolischen Funktionen: sinus hyperbolicus: sinh( ). ( e - e - ) cosinus hyperbolicus: cosh( ). ( e + e - ) tangens hyperbolicus: sinh(
ELEMENTAR-MATHEMATIK
WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968 Inhaltsverzeichnis
Skriptum zum Praktikum Einführung in die Mathematik 2
Skriptum zum Praktikum Einführung in die Mathematik Tobias Hell & Georg Spielberger Letzte Änderung:. Februar 0 Universität Innsbruck WS 00/ Inhaltsverzeichnis Präliminarien 4 Rechnen mit Potenzen und
Analysis I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :
K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis
Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).
Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra
A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische
11.3 Komplexe Potenzreihen und weitere komplexe Funktionen
.3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt
Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg
Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen
Der Graph einer Funktion ist eine Kurve in einem ebenen Koordinatensystem.
. Reelle Funktionen. Grundbegriffe Wenn man den Elementen einer Menge D (Definitionsbereich) in eindeutiger Weise die Elemente einer Menge B (Bildbereich; Wertebereich; Wertevorrat) zuordnet, spricht man
Blatt 10. Hamilton-Formalismus- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus
Vorkurs der Ingenieurmathematik
Jürgen Wendeler 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Vorkurs der Ingenieurmathematik Mit 249 Aufgaben
Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).
Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,
13 Die trigonometrischen Funktionen
13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion
Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung
Kurt Meyberg Peter Vachenauer Höhere Mathematik 1 Differential- und Integralrechnung Vektor- und Matrizenrechnung Vierte, korrigierte Auflage Mit 450 Abbildungen Springer Inhaltsverzeichnis Kapitel 1.
Skalarprodukt und Orthogonalität
Skalarprodukt und Orthogonalität Skalarprodukt und Orthogonalität in R n Wir erinnern an das euklidische Skalarprodukt im R 2 : Wir erinnern an das euklidische Skalarprodukt im R 2 : < a, b >:= α 1 β 1
Teil I.2 Lösen von Bestimmungsgleichungen
Brückenkurs Mathematik Teil I.2 Lösen von Bestimmungsgleichungen Staatliche Studienakademie Leipzig Studienrichtung Informatik Dr. Susanne Schneider 12. September 2011 Bestimmungsgleichungen 1 Reelle Zahlen
Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte
Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,
Teleskopreihen und -produkte
Schweizer Mathematik-Olympiade smo osm Teleskopreihen und -produkte Aktualisiert: 5 Juli 06 vers 00 Oft kann man Summen und Produkte geschickt umformen, sodass sie eine besonders einfache Struktur erhalten
Trigonometrische und hyperbolische Funktionen
Trigonometrische und hyperbolische Funktionen Üben und Vertiefen durch Analogien Thilo Steinkrauß Herder-Gymnasium Berlin 9.09.203 / 22 Felix Klein 2 Kreis: Sinus und Cosinus Hyperbel: Sinus hyperbolicus
Kurven nach Formeln erstellen, Teil 3
Kurven nach Formeln erstellen, Teil 3 Im dritten Teil möchte ich sie mit Funktionen und Konstanten vertraut machen, die sie in der Dialogbox Kurve nach Formel verwenden können. Dann werden wir uns ein
Mathematik für Physiker 1
Klaus Weltner Mathematik für Physiker 1 Basiswissen für das Grundstudium der Experimentalphysik 14. überarbeitete Auflage mit 231 Abbildungen und CD-ROM verfasst von Klaus Weltner, Hartmut Wiesner, Paul-Bernd
E. AUSBAU DER INFINITESIMALRECHNUNG 17. UMKEHRFUNKTIONEN (INVERSE FUNCTION)
160 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Formelsammlung Analytische Geometrie
Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..
Erwin Grüner 10.11.2005
FB Psychologie Uni Marburg 10.11.2005 Themenübersicht in R Arithmetische Operator Wirkung + Addition - Subtraktion * Multiplikation / Division ˆ Exponentiation %/% Integerdivision %% Modulo Vergleichsoperatoren
Algorithmen zur Division
Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest
Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres
Analysis, Woche 3 Komplexe Zahlen I A 3. Etwas Imaginäres Zusätzlich zu den reellen Zahlen führen wir das Symbol i ein und wir vereinbaren: i. Wir möchten die reellen Zahlen erweitern mit i. Das heißt,
Mathematik anschaulich dargestellt
Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra
Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge
Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.
Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.
(4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist
Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen
1/5 Erinnerung: Kongruenzsätze SSS, SWS, WSW, SsW Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen Grundwissen: Elementare Sätze über Dreiecke: o Winkelsumme 180 0 o Dreiecksungleichung
1 Vorlesungen: und Vektor Rechnung: 1.Teil
1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg
Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:
Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:
VHDL - Grundlagen des Pointrenderings
VHDL - Grundlagen des Pointrenderings Marc Reichenbach, Timo Nieszner Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 2013 1 / 25 Rendern von Dreiecksnetzen Quelle: Inf9, CG-Slides grobmaschiges
Algorithmen zur Integer-Multiplikation
Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke
KREISFUNKTIONEN. Allgemeines
KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.
1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur...
Grundlagen Mathe V Inhaltsverzeichnis 1 ALLGEMEINE HINWEISE... 1-1 1.1 Das Fach Mathematik für Wirtschaftswissenschaftler... 1-1 1.2 Bisheriger Aufbau der Klausur... 1-1 1.3 Zugelassene Hilfsmittel und
