VHDL - CORDIC Verfahren

Größe: px
Ab Seite anzeigen:

Download "VHDL - CORDIC Verfahren"

Transkript

1 VHDL - CORDIC Verfahren Marc Reichenbach und Michael Schmidt Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 04/12 1 / 30

2 Gliederung Motivation und Geschichte des CORDIC-Verfahrens CORDIC-Verfahren Der verallgemeinerte CORDIC 2 / 30

3 Motivation oft Standardfunktionen benötigt meistens nur mit hohem Aufwand zu berechnen spezielle iterative Algorithmen ohne Verwendung von Multiplikationen dadurch Einsparung von Chipfläche 3 / 30

4 Standardfunktionen Sinus Cosinus Tangens Exponentialfunktion Logarithmusfunktion Arcus- und Areafunktionen Quadratwurzel Multiplikation, Division 4 / 30

5 Einsparung von Chipfläche Multiplikationen sehr zeitintensiv Multiplikationswerke sehr groß Technologien damals LSI, MSI, SSI: Anzahl der Transistoren begrenzt Technologien heute Verwendung schneller Multiplizierer Einsatz in platzkritischen Technologien wie FPGA Einsatz bei massiv parallelen Architekturen 5 / 30

6 Alternative Technologien Lookup-Tabellen viel Platzverbrauch für jede Funktionen eine eigene notwendig Interpolation zwischen den Werten BKM (Bit) Algorithmen iterative shift-and-add Algorithmus nur für Logarithmus- und Expotentialfunktionen geeignet Taylorreihe Beispiel Sinus an a = 0: sin(x) = x + x 3 3! + x 5 5! + x 7 7! + x 9 9!... benötigt auch Multiplikationen 6 / 30

7 CORDIC Entwicklung CORDIC-Verfahren von Volder (1959) und Walther (1971) entwickelt Konvergenzverfahren auf Basis von Koordinatentransformation Verfahren benötigt nur einfache Operationen Addition (RCA) Schiebeoperationen (Multiplexer) Abfragen (Multiplexer) Tabellenzugriff (ROM, Counter) alle Standardfunktionen damit umsetzbar 7 / 30

8 CORDIC - Veröffentlichungen und Einsatz Volder 1959: The CORDIC Trigonometric Computing Technique. sin, cos, arctan, sqrt CORDIC - coordinate rotation digital computing Walther 1971: A unified algorithm for elementary functions. sinh, cosh, e, ln, div Einsatz in den ersten Generationen der HP Taschenrechner CORDIC-Prozessor als ASIC in Roboter-Steuergung: Timmermann et al.: A CMOS floating-point vector-arithmetic unit 8 / 30

9 Prinzip des CORDIC-Verfahren Berechnung Sinus bzw. Cosinus wird auf Koordinatentransformationen zurückgeführt Drehung eines Vektors (x 0, y 0 ) um einen Winkel Θ in einen Vektor (x n, y n ) mathematisch durch Multiplikation mit sog. Rotationsmatrix durchführbar (x n,y n ) Θ xn y n ] ] cos Θ sin Θ = sin Θ cos Θ x0 y 0 ] (x 0,y 0 ) 9 / 30

10 CORDIC - Sinus und Kosinus durch Drehung des Vektors (1, 0) um Θ ist sin Θ und cos Θ berechenbar xn ] ] y n cos Θ sin Θ = sin Θ cos Θ ] 1 0 sin Θ (x n,y n ) Θ cos Θ (1,0) 10 / 30

11 CORDIC - Umformung in den Tangenz durch mathematische Umformung nur noch Abhänigkeit von einer Winkelfuntion tan Θ wichtig um Multiplikationen durch Schiebeoperationen nach rechts zu ersetzen Drehung um den Winkel Θ wird nun durch Folge von Drehungen um Teilwinkel α i realisiert xn y n ] = xn y n ] ] cos Θ sin Θ = sin Θ cos Θ cos Θ = tan 2 Θ tan 2 Θ x0 y 0 ] ] 1 tan Θ tan Θ 1 x0 y 0 ] 11 / 30

12 CORDIC - Einführung Teilwinkel Teilwinkel α i sind bereits vorab definiert Teilwinkel so gewählt, dass der gewünschte Winkel Θ als Linearkombination der Teilwinkel α i darstellbar ist n 1 Θ = σ i α i σ i { 1, 1} i=0 d.h., der Winkel Θ wird durch eine alternierende Approximation angenährt bedeutet, dass man vor- und zurückdreht ist man bei einer Teildrehung zu weit gegangen, d.h. über den Winkel Θ hinaus, so muss man im nächsten Schritt wieder zurückdrehen die Drehrichtung wird durch den Parameter σ i gesteuert 12 / 30

13 CORDIC - Linearkombination der Teilwinkel zur Steuerung des Vorzeichens bzw. der Drehrichtung wird Hilfsvariable z i eingeführt z 0 wird mit dem gewünschten Drehwinkel Θ initialisiert Θ α 1 α 1 +α 2 α 1 +α2+α3 α 1 +α 2 +α 3 -α 4 α 4 (x n,y n ) α 3 α 2 α 1 Θ z 0 = Θ (1,0) { 1 z i 0 z i+1 = z i σ i α i σ i = 1 z i < 0 13 / 30

14 CORDIC - Eliminierung der Multiplikationen Mathematischer Ausdruck einer Teildrehung: xi+1 y i+1 ] = tan 2 α i Eliminierung der Multiplikationen: wesentliche Idee hinter dem Verfahren 1 σ i tan α i σ i tan α i 1 ersetze Multiplikationen durch Schiebeoperationen ] xi y i ] tan α i = 2 i i = 0... n 1 14 / 30

15 CORDIC - Iteration ohne Multiplikation Teildrehung um α i xi+1 y i+1 k i = ] 1 σi 2 = k i i ] σ i 2 i tan 2 α i = xi y i i ] da es sich bei den Teilwinkeln α i um bekannte Werte handelt, können die k i vorab zusammengefasst werden 15 / 30

16 CORDIC - Iterationsformeln Iterationsformeln x i+1 = x i σ i 2 i y i y i+1 = y i + σ i 2 i x i z i+1 = z i σ i arctan (2 i) Faktor k k = n 1 i= i 16 / 30

17 CORDIC - Initialwerte Lösung des Systems von Differenzengleichungen ist x n = x 0 cos z 0 y 0 sin z 0 y n = y 0 cos z 0 + x 0 sin z 0 Durch geeignete Wahl der Initialwerte ist damit Sinus und Cosinus berechenbar x 0 = 1 y 0 = 0 x n = cos z 0 y 0 = sin z 0 Achtung: Um den Wert k zu klein! k = n 1 i= i 17 / 30

18 CORDIC - Initialwert k Multiplikation nicht notwendig, wenn Startwert gut gewählt x 0 = x 0 k = k y 0 = y 0 k = 0 k (x n,y n ) (x n,y n ) k (1,0) (1,0) 18 / 30

19 CORDIC - Vektormodus eben gezeigtes Verfahren verfolgte Strategie die z-komponente gegen 0 streben zu lassen dies wird Rotationsmodus genannt es gibt aber auch die Möglichkeit, mit der zweiten Variable y i gegen 0 zu kovergieren Θ (x 0, y 0 ) (x n, 0) x 0 cos Θ = x0 2 + y 0 2 sin Θ = y 0 x y 2 0 tan Θ = y 0 x 0 (x y 0 2 ) 1/2 = x n 19 / 30

20 CORDIC - Funktionalität des Vektormodus diese Strategie wird Vektormodus genannt graphisch gesehen kann dann auf der x-achse die Länge des Vektors (x 0, y 0 ) abgelesen werden werden gleichzeitig in der dritten Komponente alle z alle Teilwinkel aufsummiert, erhält z n den Winkel identisch mit arctan(y 0 /x 0 ) Iterationsformeln identisch wie beim Rotationsmodus zur Bestimmung des Vorzeichens σ i muss nun die Variable y i abgefragt werden 20 / 30

21 CORDIC - wichtige Formeln des Vektormodus Zusammenfassung in Formeln Länge eines Vektors / Wurzel: x n = x0 2 + y 0 2 Winkel eines Vektors / arctan: z n = z 0 + Θ = z 0 + arctan(y 0 /x 0 ) Vorzeichen für die Iterationen: { 1, y i 0 σ i = 1, y i < 0 21 / 30

22 CORDIC - Erweiterung zum allgemeinen CORDIC bisher gezeigten Iterationsformeln erlauben die Berechnung der Wurzelfunktion des Arkustangens der trigonometrischen Funktionen Walther erweiterte 1971 das von Volder für zyklische Koordinatensysteme entwickelte Verfahren auf lineare und hyperbolische Koordinatensysteme 22 / 30

23 CORDIC - Norm eines Vektors x 2 + m y 2 x 2 + y 2 x x 2 y 2 m=1 zyklisches KOS m=0 lineares KOS m=-1 hyperbolisches KOS 23 / 30

24 CORDIC - Veralgemeinerte Rotationsmatrix xi+1 y i+1 ] = tan 2 (α i m) 1 σ i m tan(αi m) tan(α σ i m) i m 1 ] xi y i ] m = 1 zyklisch 1 ] σ i tan α i σ i tan α i 1 tan α i = 2 i m = 0 linear ] 1 0 σ i α i 1 α i = 2 i m = 1 hyperbolisch ] 1 σ i tanh α i σ i tanh α i 1 tanh α i = 2 i 24 / 30

25 CORDIC - Verallgemeinerte Iterationsformeln Iterationsformeln x i+1 = x i mσ i 2 F (i) y i y i+1 = y i + σ i 2 F (i) x i z i+1 = z i σ i α i i wenn m = 0 m = 1 1, 2, 3, 4, 4, 5, 6,..., F (i) = 13, 13, 14, 15,..., 40, 40, 41,... wenn m = 1 25 / 30

26 CORDIC - Die Funktion F (i) Zahlen 4, 13, 40, k, 3k + 1 treten im hyperbolischen Fall doppelt auf Grund ist Konvergenz für die Einhaltung der Konvergenz muss für verschiedene Teilwinkel α i gelten α i n 1 j=i+1 α i < α d.h., jeder Teilwinkel einer Iteration kann durch alle folgenden Teilwinkel bis auf einen Restfehler kompensiert werden 26 / 30

27 CORDIC - Konvergenz der Teilwinkel Restfehler des Gesamtverfahrens ist durch den Teilwinkel der letzten Iteration definiert damit Kompensation möglich ist, muss Nachfolgewinkel mindestens die Hälfte des Vorhergehenden betragen α i α i für zirkulares und lineares Koordinatensystem erfüllt für hyperbolisches nicht: eine Winkeldrehung muss an bestimmten Fällen eventuell wieder vollständig rückgängig gemacht werden 27 / 30

28 CORDIC - Übersicht Betriebsart m Funktion Rotationsmodus 1 x n = x 0 cos z 0 y 0 sin z 0 z n 0 y n = y 0 cos z 0 + x 0 sin z 0 0 x n = x 0 y n = y 0 + z 0 x 0-1 x n = x 0 cosh z 0 + y 0 sinh z 0 y n = y 0 cosh z 0 + x 0 sinh z 0 Vektormodus 1 x n = (x0 2 + y 0 2) y n 0 z n = z 0 + arctan(y 0 /x 0 ) 0 x n = x 0 z n = z 0 + y 0 /x 0-1 x n = x0 2 y 0 2 z n = z 0 + Atanh(y 0 /x 0 ) 28 / 30

29 CORDIC - Berechenbare Funktionen e z = cosh z + sinh z e z = cosh z sinh z z = (z )2 (z 1 4 )2 tan z = sin z cos z ln z = 2Atanh( z 1 sinh z z+1 ) tanh z = cosh z 29 / 30

30 CORDIC - Architektur x i+1 = x i mσ i 2 F (i) y i y i+1 = y i + σ i 2 F (i) x i z i+1 = z i σ i α i x i y i z i 2 -F(i) Shift Shift α i mσ i σ i +/- +/- +/- σ i x i+1 y i+1 z i+1 30 / 30

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29

Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.2/29 Dynamische Systeme und Zeitreihenanalyse Komplexe Zahlen Kapitel 3 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Komplexe Zahlen 3 p.0/29 Motivation Für die

Mehr

1. Definition der trigonometrischen Funktionen für beliebige Winkel

1. Definition der trigonometrischen Funktionen für beliebige Winkel 1 Trigonometrie 2 1. Definition der trigonometrischen Funktionen für beliebige Winkel In einem Kreis mit Mittelpunkt M(0,0) und Radius r ist der zunächst spitze Winkel α gezeichnet. α legt auf dem Kreis

Mehr

3.2. Polarkoordinaten

3.2. Polarkoordinaten 3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

KAPITEL 1. Komplexe Zahlen

KAPITEL 1. Komplexe Zahlen KAPITEL Komplexe Zahlen. Lernziele im Abschnitt: Komplexe Zahlen............... Was sind komplexe Zahlen?......................3 Komplexe Zahlenebene....................... 3.4 Grundrechenarten in C.......................

Mehr

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie

Mehr

Die elementaren trigonometrischen Funktionen und ihre Umkehrfunktionen sind: Funktion Kurzzeichen Umkehrfunktion Kurzzeichen Sinus

Die elementaren trigonometrischen Funktionen und ihre Umkehrfunktionen sind: Funktion Kurzzeichen Umkehrfunktion Kurzzeichen Sinus trigonometrische Funktionen Übersicht über die trigonometrischen Funktionen Die elementaren trigonometrischen Funktionen und ihre Umkehrfunktionen sind: Funktion Kurzzeichen Umkehrfunktion Kurzzeichen

Mehr

Mathematik für Naturwissenschaften Aufgaben mit Ergebnissen Differenzialrechnung

Mathematik für Naturwissenschaften Aufgaben mit Ergebnissen Differenzialrechnung Hans Walser Mathematik für Naturwissenschaften Aufgaben mit sen 3 3 4 4 5 5 6 6 7 Differenzialrechnung Differenzialrechnung, Aufgaben ii Inhalt Steigung... Beweis?... 3 Spiel mit Eponenten... 4 Ableitung...

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Die Bedeutung der Areafunktionen

Die Bedeutung der Areafunktionen Die Bedeutung der Areafunktionen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 8. März 003 Die Umkehrfunktionen der hyperbolischen Funktionen heißen Areafunktionen. Woher dieser Name kommt, und

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Mathematische und statistische Hilfsmittel für Pharmazeuten

Mathematische und statistische Hilfsmittel für Pharmazeuten Mathematische und statistische Hilfsmittel für Pharmazeuten Dr. Helga Lohöfer Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Fassung vom September 2003 Inhaltsverzeichnis I Elementare

Mehr

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x =

Mathematik = x 2 + x 2 = x + x 2 25x = 146 x = 1 Prof. Dr. Matthias Gerdts Dr. Sven-Joachim Kimmerle Wintertrimester 014 Mathematik 1 + Übung 1 Gleichungen mit Wurzeln Bestimmen Sie alle Lösungen der folgenden Gleichungen. Beachten Sie dabei, dass

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner

Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Stoff für den Einstufungstest Mathematik in das 2. Jahr AHS 1) Gleichungen/ Gleichungssysteme/ Terme Lineare Gleichungen

Mehr

Multiplikation und Division in Polarform

Multiplikation und Division in Polarform Multiplikation und Division in Polarform 1-E1 1-E Multiplikation und Division in Polarform: Mathematisches Rüstzeug n m b b = b n+m bn bm = bn m ( b n )m = b n m Additionstheoreme: cos 1 = cos 1 cos sin

Mehr

Trignonometrische Funktionen 6a

Trignonometrische Funktionen 6a Schuljahr 2015/16 [email protected] Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )

Mehr

Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2

Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2 Etra-Mathematik-Übung: 005--9 Aufgabe : Geben Sie die Nullstellen der Funktion f() sin ( * Pi) an! Skizze: Wertetabelle: X - ½ Pi ½ Pi sin ( ½ Pi) -,0-6,0 -,57-7,57-0,96 -,5 -,5 -,57-6,07 + 0, -,0 -,0

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

3. DIE EXPONENTIALFUNKTION UND VERWANDTES

3. DIE EXPONENTIALFUNKTION UND VERWANDTES 3. DIE EXPONENTIALFUNKTION UND VERWANDTES (1) DIE KOMPLEXE EXPONENTIALFUNKTION Für α = (a n ) n=0mit a n := 1, (n IN) gilt r α = lim n (n + 1)! = lim n (n + 1) =. Damit konvergiert die zugehörige Potenzreihe

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Formelsammlung spezieller Funktionen

Formelsammlung spezieller Funktionen Lehrstuhl A für Mathematik Aachen, en 70700 Prof Dr E Görlich Formelsammlung spezieller Funktionen Logarithmus, Eponential- un Potenzfunktionen Natürlicher Logarithmus Der Logarithmus ist auf (0, ) efiniert

Mehr

Zusammenfassung Vektorrechnung und Komplexe Zahlen

Zusammenfassung Vektorrechnung und Komplexe Zahlen Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Themen des schulinternen Curriculums Mathematik

Themen des schulinternen Curriculums Mathematik Brüche I Figuren und Körper I Rechnen in N und Z Größen Beschreibende Statistik Themen des schulinternen Curriculums Mathematik Klasse 5 Fragebögen auswerten Diagramme erstellen und Informationen daraus

Mehr

Selbsttest Mathematik des FB 14 der Universität Kassel

Selbsttest Mathematik des FB 14 der Universität Kassel Selbsttest Mathematik des F 1 der Universität Kassel Der folgende Selbsttest soll Ihnen helfen Ihre mathematischen Fähigkeiten besser einzuschätzen, um zu erkennen, ob Ihre Mathematikkenntnisse für einen

Mehr

mentor Lernhilfe: Mathematik 10. Klasse Baumann

mentor Lernhilfe: Mathematik 10. Klasse Baumann mentor Lernhilfe: Mathematik 10. Klasse Geometrie: Winkelfunktionen, Trigonometrie, Additionstheoreme, Vektorrechnung von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 10. Klasse Baumann schnell

Mehr

Arbeitsblatt 1 Einführung in die Vektorrechnung

Arbeitsblatt 1 Einführung in die Vektorrechnung Arbeitsblatt Einführung in die Vektorrechnung Allgemein Vektoren sind physikalische Größen und durch ihre Richtung und ihren Betrag festgelegt. Geometrisch wird ein Vektor durch einen Pfeil dargestellt,

Mehr

12 3 Komplexe Zahlen. P(x y) z = x + jy

12 3 Komplexe Zahlen. P(x y) z = x + jy 2 3 Komplexe Zahlen 3 Komplexe Zahlen 3. Grundrechenoperationen Definition Die Menge C = {z = a + jb a, b IR; j 2 = } heißt Menge der komplexen Zahlen; j heißt imaginäre Einheit. (andere Bezeichnung: i)

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4)

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4) Lösung zur Übung 1 Aufgabe 1 In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom im Zentrum des Würfels liegt. Wie groß ist der Tangens des halben H-C-H Bindungswinkels?

Mehr

Mathematik für Ingenieure mit Maple

Mathematik für Ingenieure mit Maple Thomas Westermann Mathematik für Ingenieure mit Maple Bandl: Differential- und Integralrechnung für Funktionen einer Variablen, Vektor- und Matrizenrechnung, Komplexe Zahlen, Funktionenreihen 4., neu bearbeitete

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 18 In dieser Vorlesung führen wir weitere wichtige Funktionen über ihre Potenzreihen ein. Die Hyperbelfunktionen Der Verlauf

Mehr

Matrizen und Drehungen

Matrizen und Drehungen Matrizen und Drehungen 20. Noember 2003 Diese Ausführungen sind im wesentlichen dem Skript zur Vorlesung Einführung in die Theoretische Physik I und II on PD Dr. Horst Fichtner entnommen. Dieses entstand

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 0 Einführung Hans Walser: Modul 0, Einführung ii Inhalt Zahlen.... Natürliche Zahlen.... Ganze Zahlen.... Rationale Zahlen.... Reelle Zahlen... Smbole....

Mehr

= 2 i 2= 2 2 i, z 4. = 1.5, z 8

= 2 i 2= 2 2 i, z 4. = 1.5, z 8 Mathematik 1 - Übungsblatt 11 Aufgabe 1 (komplexe Zahlen) Gegeben sind folgende komplexe Zahlen in der Darstellung als Normalform mit Real- und Imaginärteil z=x i y - oder wegen der Vertauschbarkeit von

Mehr

Körper sind nullteilerfrei

Körper sind nullteilerfrei Mathematik I für Informatiker Komplexe Zahlen p. 1 Körper sind nullteilerfrei Für Elemente a, b eines Körpers gilt stets: Aus a b = 0 folgt a = 0 oder b = 0. Beweis: Aus a b = 0 und a 0 folgt also b =

Mehr

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1 Hauptachsentransformation. Einleitung Schneidet man den geraden Kreiskegel mit der Gleichung = + und die Ebene ++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen +2 + +dx+ey+f = 0. Die

Mehr

KOMPLEXE ZAHLEN UND LINEARE GLEICHUNGSSYSTEME

KOMPLEXE ZAHLEN UND LINEARE GLEICHUNGSSYSTEME KOMPLEXE ZHLEN UND LINERE GLEICHUNGSSYSTEME Vektoren Definition: Parallelverschiebung, Pfeil(e) mit Länge und Richtung. Darstellung Eigenschaften Komponenten Graphisch Länge, Betrag Zwischenwinkel Vektorarten

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Abbildungsverzeichnis Inhaltsverzeichnis Trigonometrische Funktionen Die hier behandelten trigonometrischen Funktionen sind sin, cos, tan, cot. Es zeigt sich, dass die Umkehrfunktionen der trigonometrischen

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09 Musterlösung zu Blatt 1 der Vorlesung Analysis I WS08/09 Schriftliche Aufgaben Aufgabe 1. Beweisskizze a): Wir benutzen die Stetigkeit von sin und cos und sin π/) = 1, sinπ/) = 1, cos π/) = cosπ/) = 0,

Mehr

Microsoft Rechner. Kurzanleitung ohne Maus

Microsoft Rechner. Kurzanleitung ohne Maus Microsoft Rechner Kurzanleitung ohne Maus Förderzentrum für die integrative Beschulung blinder und hochgradig sehbehinderter Schülerinnen und Schüler (FIBS) Astrid Leutbecher Korrekturhinweise, Anmerkungen,

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Formelsammlung Mathematik Grundkurs Inhalt

Formelsammlung Mathematik Grundkurs Inhalt Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

1. ( e -x + e -(- x) 1. . ( e x + e - x ) . ( e x - e - x 2. Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Analysis Übung 15 Folie 1

1. ( e -x + e -(- x) 1. . ( e x + e - x ) . ( e x - e - x 2. Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Analysis Übung 15 Folie 1 04.03.04 Übung 5a Analysis, Abschnitt.5, Folie Definition der hyperbolischen Funktionen: sinus hyperbolicus: sinh( ). ( e - e - ) cosinus hyperbolicus: cosh( ). ( e + e - ) tangens hyperbolicus: sinh(

Mehr

ELEMENTAR-MATHEMATIK

ELEMENTAR-MATHEMATIK WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968 Inhaltsverzeichnis

Mehr

Skriptum zum Praktikum Einführung in die Mathematik 2

Skriptum zum Praktikum Einführung in die Mathematik 2 Skriptum zum Praktikum Einführung in die Mathematik Tobias Hell & Georg Spielberger Letzte Änderung:. Februar 0 Universität Innsbruck WS 00/ Inhaltsverzeichnis Präliminarien 4 Rechnen mit Potenzen und

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Der Graph einer Funktion ist eine Kurve in einem ebenen Koordinatensystem.

Der Graph einer Funktion ist eine Kurve in einem ebenen Koordinatensystem. . Reelle Funktionen. Grundbegriffe Wenn man den Elementen einer Menge D (Definitionsbereich) in eindeutiger Weise die Elemente einer Menge B (Bildbereich; Wertebereich; Wertevorrat) zuordnet, spricht man

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Vorkurs der Ingenieurmathematik

Vorkurs der Ingenieurmathematik Jürgen Wendeler 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Vorkurs der Ingenieurmathematik Mit 249 Aufgaben

Mehr

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung

Kurt Meyberg Peter Vachenauer. Höhere Mathematik 1. Differential- und Integralrechnung Vektor- und Matrizenrechnung Kurt Meyberg Peter Vachenauer Höhere Mathematik 1 Differential- und Integralrechnung Vektor- und Matrizenrechnung Vierte, korrigierte Auflage Mit 450 Abbildungen Springer Inhaltsverzeichnis Kapitel 1.

Mehr

Skalarprodukt und Orthogonalität

Skalarprodukt und Orthogonalität Skalarprodukt und Orthogonalität Skalarprodukt und Orthogonalität in R n Wir erinnern an das euklidische Skalarprodukt im R 2 : Wir erinnern an das euklidische Skalarprodukt im R 2 : < a, b >:= α 1 β 1

Mehr

Teil I.2 Lösen von Bestimmungsgleichungen

Teil I.2 Lösen von Bestimmungsgleichungen Brückenkurs Mathematik Teil I.2 Lösen von Bestimmungsgleichungen Staatliche Studienakademie Leipzig Studienrichtung Informatik Dr. Susanne Schneider 12. September 2011 Bestimmungsgleichungen 1 Reelle Zahlen

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Teleskopreihen und -produkte

Teleskopreihen und -produkte Schweizer Mathematik-Olympiade smo osm Teleskopreihen und -produkte Aktualisiert: 5 Juli 06 vers 00 Oft kann man Summen und Produkte geschickt umformen, sodass sie eine besonders einfache Struktur erhalten

Mehr

Trigonometrische und hyperbolische Funktionen

Trigonometrische und hyperbolische Funktionen Trigonometrische und hyperbolische Funktionen Üben und Vertiefen durch Analogien Thilo Steinkrauß Herder-Gymnasium Berlin 9.09.203 / 22 Felix Klein 2 Kreis: Sinus und Cosinus Hyperbel: Sinus hyperbolicus

Mehr

Kurven nach Formeln erstellen, Teil 3

Kurven nach Formeln erstellen, Teil 3 Kurven nach Formeln erstellen, Teil 3 Im dritten Teil möchte ich sie mit Funktionen und Konstanten vertraut machen, die sie in der Dialogbox Kurve nach Formel verwenden können. Dann werden wir uns ein

Mehr

Mathematik für Physiker 1

Mathematik für Physiker 1 Klaus Weltner Mathematik für Physiker 1 Basiswissen für das Grundstudium der Experimentalphysik 14. überarbeitete Auflage mit 231 Abbildungen und CD-ROM verfasst von Klaus Weltner, Hartmut Wiesner, Paul-Bernd

Mehr

E. AUSBAU DER INFINITESIMALRECHNUNG 17. UMKEHRFUNKTIONEN (INVERSE FUNCTION)

E. AUSBAU DER INFINITESIMALRECHNUNG 17. UMKEHRFUNKTIONEN (INVERSE FUNCTION) 160 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

Erwin Grüner 10.11.2005

Erwin Grüner 10.11.2005 FB Psychologie Uni Marburg 10.11.2005 Themenübersicht in R Arithmetische Operator Wirkung + Addition - Subtraktion * Multiplikation / Division ˆ Exponentiation %/% Integerdivision %% Modulo Vergleichsoperatoren

Mehr

Algorithmen zur Division

Algorithmen zur Division Algorithmen zur Division Umkehrung der Multiplikation: Berechnung von q = a / b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom aktuellen Rest

Mehr

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres

Analysis 1, Woche 3. Komplexe Zahlen I. 3.1 Etwas Imaginäres Analysis, Woche 3 Komplexe Zahlen I A 3. Etwas Imaginäres Zusätzlich zu den reellen Zahlen führen wir das Symbol i ein und wir vereinbaren: i. Wir möchten die reellen Zahlen erweitern mit i. Das heißt,

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge

Mathematik 1. ^A Springer. Albert Fetzer Heiner Fränkel. Lehrbuch für ingenieurwissenschaftliche Studiengänge Albert Fetzer Heiner Fränkel Mathematik 1 Lehrbuch für ingenieurwissenschaftliche Studiengänge Mit Beiträgen von Akad. Dir. Dr. rer. nat. Dietrich Feldmann Prof. Dr. rer. nat. Albert Fetzer Prof. Dr. rer.

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen 1/5 Erinnerung: Kongruenzsätze SSS, SWS, WSW, SsW Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen Grundwissen: Elementare Sätze über Dreiecke: o Winkelsumme 180 0 o Dreiecksungleichung

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

VHDL - Grundlagen des Pointrenderings

VHDL - Grundlagen des Pointrenderings VHDL - Grundlagen des Pointrenderings Marc Reichenbach, Timo Nieszner Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 2013 1 / 25 Rendern von Dreiecksnetzen Quelle: Inf9, CG-Slides grobmaschiges

Mehr

Algorithmen zur Integer-Multiplikation

Algorithmen zur Integer-Multiplikation Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke

Mehr

KREISFUNKTIONEN. Allgemeines

KREISFUNKTIONEN. Allgemeines KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.

Mehr

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur...

1 ALLGEMEINE HINWEISE Das Fach Mathematik für Wirtschaftswissenschaftler Bisheriger Aufbau der Klausur... Grundlagen Mathe V Inhaltsverzeichnis 1 ALLGEMEINE HINWEISE... 1-1 1.1 Das Fach Mathematik für Wirtschaftswissenschaftler... 1-1 1.2 Bisheriger Aufbau der Klausur... 1-1 1.3 Zugelassene Hilfsmittel und

Mehr