VORBEREITUNG: GALVANOMETER

Größe: px
Ab Seite anzeigen:

Download "VORBEREITUNG: GALVANOMETER"

Transkript

1 VORBEREITUN: ALVANOMETER FREYA NAM, RUPPE 6, DONNERSTA SCHWINVERHALTEN DES ALVANOMETERS Das alvanometern ist ein sensibles Messgerät mit dem auch kleine Ströme und Spannungen gemessen werden können. Es besteht aus einer Drehspule, die sich im Magnetfeld eines Permanentmagneten befindet. Fließt ein Strom durch die Drehspule so wirkt ein Drehmomemt. Durch Spiralfedern wird ein rücktreibendes mechanisches Drehmoment erzeugt. Dieses bewirkt, dass die Drehspule nachdem sie ausgelenkt wurde allmählich wieder in ihre Ausgangslage zurückkehrt. Dabei führt die Spule eine gedämpfte Schwingung aus. Die Auslenkung ist proportional zum fließenden Strom. Sie kann mit einem Lichtstrahl mithilfe eines Spiegels auf einer Messskala sichtbar gemacht werden. Freie ungedämpfte Schwingung. Die Bewegungsgleichung für harmonische Drehschwingungen ohne Dämpfung lautet: d ϕ(t) dt + ω 0ϕ(t) = 0 Die allgemeine Lösung dieser DL ist: ϕ(t) = ϕ 0 cos(ω 0 t + ψ) Amplitude ϕ 0 und Phase ψ werden durch die Anfangsbedingungen festgelegt. Freie gedämpfte Schwingungen. Die Federn erzeugen bei einer Auslenkung der Drehspule um den Winkel ϕ ein rücktreibendes Drehmoment. Das Angreifen des Drehmoments bedeutet eine Drehbeschleunigung: Θ d ϕ dt = M Die Torsion erwirkt ein egendrehmoment der röße: M T = Dϕ Die Luftreibung tritt nur bei Bewegung auf, und ist demnach von ϕ abhängig: M R = ρ ϕ Die Selbstinduktion ergibt ein resultierendes Drehmoment von M I = ϕ R + R i wobei R der Vorwiderstand und R i der Innenwiderstand des alvanometers sind. Das esamtdrehmoment ist definiert als M = I wobei die s.g. alvanometerkonstante ist und I der Strom durch die Spule. Setzt man alle egendrehmomente in die Bewegungsgleichung ein so erhält man:

2 Θ ϕ + (ρ + ) ϕ + Dϕ = I R + R i Diese leichung nennt man alvanometergleichung. Um diese leichung zu lösen, löst man zuerst die zugehörige homogene Differentialgleichung: Mit ω 0 := D Θ und β := Θ ) Θ ϕ + (ρ + ϕ + Dϕ = 0 R i + R a ϕ + ) (ρ + ϕ + D Θ R i + R a Θ ϕ = 0 ( ) ρ + R i+r vereinfacht sich das zu: ϕ + β ϕ + ω0ϕ = 0 Mit dem Ansatz ϕ(t) = ce λt erhält man λ, = β ± β ω0. Definiere zudem ω = ω0 β. Unterscheide nach Stärke der Dämpfung: Schwingfall. Schwachen Dämpfung: ω 0 > β, ω reell. Es ergibt sich eine gedämpfte periodische Bewegung. Für den Schwingfall lautet die allgemeine Lösung: ϕ(t) = e βt (A cos ωt + B sin ωt); A, B R Kriechfall. ω 0 < β überdämpft. Man erhält: ϕ(t) = e βt (Ae ωt + Be ωt ) Die Schwingung Konvergiert schnell. Aperiodischer renzfall. ω 0 = β Das System kehrt nach einem Ausschlag in seine Ruhelage zurück. Die allgemeine Lösung ist : ϕ(t) = e βt (A + Bt). VOREXPERIMENTE () Durch elektrostatische Aufladung fließt ein kleiner Strom durch den Körper. Also ist ein Ausschlag des alvanometers zu erwarten. () Im Metall wir durch das Regeln Energie in Form von Reibungswärme freigesetzt. Dabei können sich Elektronen lösen. Diese bewirken einen Strom, der vom alvanometer angezeigt wird. (3) Wenn das alvanometer nicht angeschlossen ist, zeigt es keinen Ausschlag. Wird ein Widerstand angelegt, so ist eventuell mit einem leichten Ausschlag zu rechnen.

3 .. Der alvanometerausschlag α wird in Abhängigkeit vom Vorwiderstand R gemessen. Trägt man den Kehrwert des Ausschlags α über dem Vorwiderstand R auf, so lassen sich mithilfe der Ausgleichsgeraden Innenwiderstand R und Stromempfindlichkeit C I bestimmen. Im statischen Fall ist ϕ = ϕ = 0 und damit M = D ˆϕ = I Der Ausschlag α = rϕ ist der Stromstärke proportional: α = C I I Da R 3 >> R 4 gilt: I ges U0 R 3 Damit ist der Strom durch das alvanometer: Damit ist: I = U 0 R 4 R 3 R 4 + R 5 + R α = C I I = R 3 (R 4 + R 5 + R ) = R 3 R 5 + R 3(R + R 4 ) C I U 0 R 4 C I U 0 R 4 C I U 0 R 4 C I lässt sich aus der Steigung m bestimmen: m = R 3 C I U 0 R 4 C I = R 3 mu 0 R 4 Für R 5 = 0 verschwindet der Steigungsterm. Nun lässt sich der Innenwiderstand des alvanometers R bestimmen: α = R 3 C I U 0 R 4 (R 4 + R ) R = C IU 0 R 4 αr 3 R 4.. Hier soll wieder der Innenwiderstand des alvanometers R bestimmt werden. Die Schaltung wird nach Abbildung 3 auf dem Aufgabenblatt aufgebaut. Wieder wird der alvanometerausschlag α in Abhängigkeit vom Vorwiderstand R gemessen. Wie in Aufgabe.. wird dann der Innenwiderstand des alvanometers mithilfe der Auftragung von α über R bestimmt. Wir verwenden analog zu Aufgabe.. die Näherung I ges U0 R. Offene Brücke. alvanometerstrom: Damit: I = U 0 (R + R 3 ) R (R + R + R 3 + R 4 ) α = C I I = R (R + R + R 3 + R 4 ) R = C I U 0 (R + R 3 ) C I U 0 (R + R 3 ) R 4+ R (R + R + R 3 ) C I U 0 (R + R 3 ) Aus der leichung der Ausgleichsgeraden lässt sich C I bestimmen: C I = R mu 0 (R + R 3 ) 3

4 eschlossene Brücke. Der Widerstand des Potentiometers ist nun sehr klein gegen den Vorwiderstand und kann vernachlässigt werden. alvanometerstrom: Damit: I = U 0 R R (R + R ) α = R (R + R ) C I U 0 R Für α ergibt sich eine Konstante. Die Auftragung von α über R ergibt also eine horizontale erade. Der alvanometerausschlag ist unabhängig vom Widerstand. Für den Innenwiderstand des alvanometers ergibt sich nach leichsetzen der beiden eradengleichungen: R = R R 4 R 3 R ergibt sich als Schnittpunkt der beiden eraden, weil die Schaltung ähnlich der Wheatstone schen Brücke aufgebaut ist: Im Schnittpunkt fließt kein Strom durch die Brücke..3. Hier wird der alvanometerausschlag α in Abhängigkeit von der Spannung U gemessen. Die Schaltung wird nach Abbildung 4 auf dem Aufgabenblatt aufgebaut. Für den Strom ergibt sich näherungsweise I ges U0 R 5 Damit ergibt sich: α = C I I = C I U 0 R 5 Der Innenwiderstand des alvanometers R kann nicht mit einem gewöhnlichen Ohmmeter gemessen werden, da der Prüfstrom des Ohmmeters so hoch ist, dass er das sensible alvanometer beschädigen könnte. Schaltet man einen Widerstand parallel, so bewirkt dieser eine Dämpfung des alvanometers. Die statische Spannungsempfindlichkeit berechnet sich zu C U = C I R. 3 Sobald der Strom ausgeschaltet wird, nimmt die Lorentzkraft ab und die Spule im Kern des alvanometers schwingt zurück. Das Dämpfungsverhältnis lässt sich über die Ausschläge α i berechnen: k = αn α n+ Aus dem Dämpfungsverhältnis k und der direkt gemessenen Periodendauer T erhält man die Abklingkonstante β Ra = ln k T. Nun wird (β Ra β ) über R a aufgetragen und die Ausgleichsgerade bestimmt. (β Ra β ) = Θ (R a + R ). Die Frequenz des ungedämpften alvanometers beträgt: ( ) π ω 0 = + β Wir verwenden m = Θ, ω 0 = D Θ, C I = D und berechnen damit, Θ und D: 4 T

5 =, Θ = mc I ω 0 mc I ω4 0, D = mc I ω 0 Dabei ist C I = ϕ Spiegel I. Mit Abstand r zwischen Spiegel und Messholz gilt a = ϕ Spiegel r. Somit gilt: C I = C I r Die Schaltung wird nach Abbildung 5 auf dem Aufgabenblatt aufgebaut. 4 In dieser Aufgabe soll die Wirkung von kürzeren Stromstößen untersucht werden. Diese werden durch Kondensatorentladungen erzeugt: Idt = Q = CU Da der Stromverlauf exponetiell ist, wird eine vollständige Entladung erst bei t erreicht. Deshalb kann die Stromstoßdauer T a nicht genau angegeben werden. Nach T a = 3RC ist etwa 95% der Ladung angeflossen. Bei Messungen mit Dämpfungskonstanten größer als β müssen Widerstände parallel zum alvanometer geschaltet werden. Dann ist Q < CU. Experimentell bestimmt man bei kurzer Stoßdauer T a (d.h. R klein) die ballistische Stoßempfindlichkeit durch C b = Die experimentell bestimmten Werte sollen mit den theoretisch berechneten verglichen werden. Rechnerisch ergibt sich: ϕ Q C b = Θω 0 Die fluxmetrische Empfindlichkeit im Kriechfall beträgt: C b = R + R a Mit ballistischen Messungen kann man Elektrizitätsmengen messen, die als kurz dauernder Stromstoß durch die Spule des alvanometers entladen werden. Das Prinzip ist ähnlich, wie beim Schuss in einen Pendel-Sandsack, wo der Impuls bestimmt wird, der sich als Produkt von Masse und eschwindigkeit ergibt. 5

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch alvanometer Armin Burgmeier (347488) ruppe 5 3. Januar 008 0 Funktionsweise des alvanometers Das alvanometer ist ein hochempfindliches Strommessinstrument. Es basiert auf der Lorentzkraft,

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

Galvanometer. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Galvanometer. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 005/06 Julian Merkert (999) Versuch: P-4 Galvanometer - Vorbereitung - Vorbemerkung Ein Galvanometer ist ein Messinstrument, mit dem sich sehr

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

MR - Mechanische Resonanz Blockpraktikum Herbst 2005

MR - Mechanische Resonanz Blockpraktikum Herbst 2005 MR - Mechanische Resonanz, Blockpraktikum Herbst 5 7. September 5 MR - Mechanische Resonanz Blockpraktikum Herbst 5 Assistent Florian Jessen Tübingen, den 7. September 5 Vorwort In diesem Versuch ging

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Galvanometer. Versuch: P Vorbereitung - Inhaltsverzeichnis

Galvanometer. Versuch: P Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Jens Küchenmeister (25380) Versuch: P-4 Galvanometer - Vorbereitung - Elektrische Ströme erzeugen Magnetfelder, welche Kräfte oder Drehmomente

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907 Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1 AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN TOBIAS FREY & FREYA GNAM, GRUPPE 6, DONNERSTAG 1. AUFGABE 1 An das Winkel-Zeit-Diagramm (Abb. 1) haben wir eine einhüllende e-funktion der Form e = Ae βt angelegt.

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 1 esonanz und Phasenverschiebung bei der mechanischen Schwingung Aufgaben 1. Bestimmen Sie die Frequenz der freien gedämpften Schwingung

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

2. Freie gedämpfte Schwingungen

2. Freie gedämpfte Schwingungen 2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Elektrische Messverfahren

Elektrische Messverfahren Vorbereitung Elektrische Messverfahren Carsten Röttele 20. Dezember 2011 Inhaltsverzeichnis 1 Messungen bei Gleichstrom 2 1.1 Innenwiderstand des µa-multizets...................... 2 1.2 Innenwiderstand

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Physikalisches Grundpraktikum Abteilung Mechanik

Physikalisches Grundpraktikum Abteilung Mechanik M6 Physikalisches Grundpraktikum Abteilung Mechanik Resonanzkurven 1 Vorbereitung Physikalische Größen der Rotationsbewegung, Zusammenhang zwischen Drehmoment, Winkelbeschleunigung und Trägheitsmoment,

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN 1 PHYSIK FÜR MASCHINENBAU SCHWINUNEN UND WELLEN Vorstellung: Professor Kilian Singer und Dr. Sam Dawkins (Kursmaterie teilweise von Dr. Saskia Kraft-Bermuth) EINFÜHRUN Diese Vorlesung behandelt ein in

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne

Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Schwingungen Donnerstag, der 31.07.008 Inhaltsverzeichnis 1 Einleitung: Schwingungen und Wellen 1

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

15. Elektromagnetische Schwingungen

15. Elektromagnetische Schwingungen 5. Elektromagnetische Schwingungen Elektromagnetischer Schwingkreis Ein Beispiel für eine mechanische harmonische Schwingung wäre eine schwingende Feder, die im Normalfall durch den uftwiderstand gedämpft

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel

Musterprotokoll am Beispiel des Versuches M 12 Gekoppelte Pendel * k u r z g e f a s s t * i n f o r m a t i v * s a u b e r * ü b e r s i c h t l i c h Musterprotokoll am Beispiel des Versuches M 1 Gekoppelte Pendel M 1 Gekoppelte Pendel Aufgaben 1. Messen Sie für

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

2. Schwingungen eines Einmassenschwingers

2. Schwingungen eines Einmassenschwingers Baudynamik (Master) SS 2017 2. Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen 2.1.1 Freie ungedämpfte Schwingungen 2.1.2 Federzahlen und Federschaltungen 2.1.3 Freie gedämpfte Schwingungen

Mehr

Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator

Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator I. Physikalisches Institut, Raum HS102 Stand: 23. Juni 2014 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner

Mehr

Praktikumsprotokoll: Gekoppelte Pendel

Praktikumsprotokoll: Gekoppelte Pendel Praktikumsprotokoll: Gekoppelte Pendel Robin Marzucca, Andreas Liehl 19. Januar 011 Protokoll zum Versuch Gekoppelte Pendel, durchgeführt am 13.01.011 an der Universität Konstanz im Rahmen des physikalischen

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

POHLsches 1 Drehpendel

POHLsches 1 Drehpendel POHLsches 1 Drehpendel Aufgabenstellung: Charakterisieren Sie das Schwingungsverhalten eines freien sowie eines periodisch angeregten Drehpendels. Stichworte zur Vorbereitung: Schwingungen, harmonische

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

Physikprotokoll: Massenträgheitsmoment. Issa Kenaan Torben Zech Martin Henning Abdurrahman Namdar

Physikprotokoll: Massenträgheitsmoment. Issa Kenaan Torben Zech Martin Henning Abdurrahman Namdar Physikprotokoll: Massenträgheitsmoment Issa Kenaan 739039 Torben Zech 738845 Martin Henning 736150 Abdurrahman Namdar 739068 1. Juni 2006 1 Inhaltsverzeichnis 1 Vorbereitung zu Hause 3 2 Versuchsaufbau

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E6 Elektrische Resonanz Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den.. INHALTSVERZEICHNIS. Einleitung. Theoretische Grundlagen. Serienschaltung von Widerstand R, Induktivität L

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Übungsblatt 06 Grundkurs IIIb für Physiker

Übungsblatt 06 Grundkurs IIIb für Physiker Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen Allgemeine Grundlagen. Gleichstromkreis.. Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j d d :Stromelement :Flächenelement.. Die Grundelemente

Mehr

6.4.4 Elihu-Thomson ****** 1 Motivation

6.4.4 Elihu-Thomson ****** 1 Motivation V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring

Mehr

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit

Mehr

4.5 Gekoppelte LC-Schwingkreise

4.5 Gekoppelte LC-Schwingkreise 4.5. GEKOPPELTE LC-SCHWINGKEISE 27 4.5 Gekoppelte LC-Schwingkreise 4.5. Versuchsbeschreibung Ein elektrischer Schwingkreis kann induktiv mit einem zweiten erregten Schwingkreis 2 koppeln. Der Kreis wird

Mehr

4.3 Schwingende Systeme

4.3 Schwingende Systeme Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine

Mehr

Einstein-de-Haas-Versuch

Einstein-de-Haas-Versuch Einstein-de-Haas-Versuch Versuch Nr. 5 Vorbereitung - 7. Januar 23 Ausgearbeitet von Martin Günther und Nils Braun Einführung 2 Aufbau und Durchführung Das hier vorgestellte Experiment von Einstein und

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

M13. Gekoppeltes Pendel

M13. Gekoppeltes Pendel M3 Gekoppeltes Pendel In diesem Versuch werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken werden die Schwingungsdauern

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

Aufgaben zum Thema Elektromagnetische Schwingungen

Aufgaben zum Thema Elektromagnetische Schwingungen Aufgaben zum Thema Elektromagnetische Schwingungen 10.03.2011 1.Aufgabe: a)an eine vertikal aufgehängte Schraubenfeder wird ein Körper mit der Masse m = 0,30 kg gehängt. Dadurch wird die Feder um x = 1,2

Mehr

1.Schulaufgabe aus der Physik Lösungshinweise

1.Schulaufgabe aus der Physik Lösungshinweise 1.Schulaufgabe aus der Physik Lösungshinweise Gruppe A Aufgabe 1 (Grundwissen) Größe Energie Stromstärke Widerstand Ladung Kraft Buchstabe E I R Q F Einheit Joule: J Ampere: A Ohm: Ω Coulomb: C Newton:

Mehr

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 3: Drehschwingungen Durchgeführt am 27.10.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 23. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 23. 06.

Mehr

M6 PhysikalischesGrundpraktikum

M6 PhysikalischesGrundpraktikum M6 PhysikalischesGrundpraktikum Abteilung Mechanik Resonanzkurven 1 Vorbereitung Physikalische Größen der Rotationsbewegung, Zusammenhang zwischen Drehmoment, Winkelbeschleunigung und Trägheitsmoment,

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 6

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 6 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 6 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

Der Pohlsche Resonator

Der Pohlsche Resonator Physikalisches Praktikum für das Hauptfach Physik Versuch 01 Der Pohlsche Resonator Sommersemester 005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent:

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Robert-Bosch-Gymnasium

Robert-Bosch-Gymnasium Seite - 1 - Gedämpfte, Resonanz am Drehpendel 1. Theoretische und technische Grundlagen Ein flaches Kupferspeichenrad ist in der Mitte leicht drehbar gelagert; die Gleichgewichtslage wird dabei durch zwei

Mehr

Praktikumsprotokoll: Torsions-Oszillator

Praktikumsprotokoll: Torsions-Oszillator Praktikumsprotokoll: Torsions-Oszillator Robin Marzucca, Andreas Liehl 07. Dezember 010 Protokoll zum Versuch Torsions-Oszillator, durchgeführt am 16.1.010 an der Universität Konstanz im Rahmen des physikalischen

Mehr

Resonanzverhalten eines Masse-Feder Systems (M10)

Resonanzverhalten eines Masse-Feder Systems (M10) Resonanzverhalten eines Masse-Feder Systems M0) Ziel des Versuches In diesem Versuch werden freie, freie gedämpfte und erzwungene Schwingungen an einem Masse-Feder System untersucht Die Resonanzkurven

Mehr

Laborversuche zur Physik I. Versuch I-03: Pohlsches Rad

Laborversuche zur Physik I. Versuch I-03: Pohlsches Rad Laborversuche zur Physik I Versuch I-03: Pohlsches Rad Versuchsleiter: Autoren: Kuschel Kai Dinges Michael Beer Gruppe: 15 Versuchsdatum: 5.12.2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise 2 2.1 Inbetriebnahme...................................

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr