Deskriptive Statistik

Größe: px
Ab Seite anzeigen:

Download "Deskriptive Statistik"

Transkript

1 Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltenen Informationen und Strukturen. Im Vordergrund stehen dabei Informationen über die Verteilung der Merkmalsausprägungen einzelner Merkmale univariate Statistik und der Kombinationen von Merkmalsausprägungen mehrerer Merkmale bi- oder multivariate Statistik (Suche nach Zusammenhängen/Abhängigkeiten). Die verwendeten Techniken hängen vom Skalenniveau der einbezogenen Merkmale (Variablen) ab. 1

2 Typische Fragestellungen: Wertebereich, Verteilung (z.b. deren Form) und Kenngrößen einzelner Merkmale (univariate Statistik) und von Merkmalspaaren (bivariate Statistik)... Ähnlichkeiten und Unterschiede in der Verteilung von mehreren Merkmalen Abhängigkeiten zwischen Merkmalen Verdichtung der Information, Datenreduktion Ähnlichkeits- und Gruppenstruktur der Objekte Absonderliches Verhalten einzelner Objekte 2

3 Auch bei Fragestellungen der multivariaten Statistik beginnt die Analyse zunächst mit der Betrachtung einzelner Merkmale, d.h. ihrer univariaten Verteilungen. 3

4 Univariate Eindimensionale Daten [univariate data]: Pro Objekt i (i = 1,..., n; n Stichprobenumfang) wird ein Merkmal X durch Messung, Befragung oder Beobachtung erhoben, z. B. Bildungsstand, Gehalt, Wohngegend oder Wahlverhalten der befragten Person. Das Resultat ist jeweils ein Wert (die Merkmalsausprägung) x i. 4

5 Bivariate Zweidimensionale Daten [bivariate data]: Pro Objekt i (i = 1,..., n) werden zwei Merkmale X und Y gemeinsam erhoben, z. B. Bildungsstand und Gehalt, Bildungsstand und Wohngegend oder Wohngegend und Wahlverhalten der befragten Person. Resultat ist jeweils ein Paar (x i, y i ) von Merkmalsausprägungen. 5

6 Darstellung univariater Verteilungen Ausgangspunkt bei eindimensionalen Daten ist die Urliste, d.h. das Ergebnis der Registrierung der Beobachtungen (Merkmalsausprägungen) x 1, x 2,..., x n des Merkmals X. Dies entspricht einer Spalte der Datenmatrix; in der Regel werden Zahlen(-kodes) verwendet. 6

7 Bezeichnungen: n heißt Stichprobenumfang [sample size] a 1,..., a k bezeichnen die verschiedenen in der Urliste vorliegenden Merkmalsausprägungen des Merkmals X. Da Ausprägungen mehrfach in der Urliste auftreten können, gilt stets k n. Handelt es sich um Daten mit mindestens ordinalem Skalenniveau, so wollen wir annehmen, dass die Ausprägungen geordnet a 1 < a 2 <... < a k vorliegen. 7

8 h(a j ) = h j bezeichnet die absolute Häufigkeit [absolute frequency] der Ausprägung a j in der Urliste, d.h. die Anzahl der x i aus x 1, x 2,..., x n mit x i = a j. f(a j ) = f j := h j /n heißt relative Häufigkeit [relative frequency] der Ausprägung a j. (h 1,..., h k ) heißt absolute Häufigkeitsverteilung [... distribution]. (f 1,..., f k ) heißt relative Häufigkeitsverteilung. 8

9 Beispiel (Verkehrsmittel): Benutzte Verkehrsmittel (Merkmal X) von n = 100 Urlaubern bei der letzten Auslandsreise (Nominalskala). Verwendete Kodierung: a 1 = 1 a 2 = 2 a 3 = 3 a 4 = 4 a 5 = 5 entspricht Bahn... Bus... Flugzeug... PKW... Sonstige Es gilt k = = n. 9

10 Anfang der Urliste: Person i x i

11 Bestimmen der absoluten (h(a j ) = h j ) und relativen Häufigkeiten (f(a j ) = f j ) für das Auftreten der verschiedenen Merkmalsausprägungen (a j ) und Erstellen einer Häufigkeitstabelle mit der absoluten und relativen Häufigkeitsverteilung (Tabellieren der Verteilung). Strichliste: 1 Bahn 7 2 Bus 9 3 Flugzeug 29 4 PKW 53 5 Sonstige 2 11

12 Häufigkeitstabelle: Ausprägung a j abs. Häufigkeiten h j rel. Häufigkeiten f j 1 7 7/100 = /100 = /100 = /100 = /100 = 0.02 Summe: /100 = 1.00 k h j = n j=1 k f j = 1 j=1 12

13 Relative Häufigkeiten sind günstig zur Bewertung und für den Vergleich von Anteilen einsetzbar (Prozentsätze bezogen auf den Stichprobenumfang). Allein aus relativen Häufigkeiten kann allerdings nicht mehr auf die absoluten Häufigkeiten geschlossen werden. Absolute oder relative Häufigkeiten lassen sich mit Balken- [bar chart] oder Kreisdiagrammen [Pie chart] grafisch darstellen. 13

14 SPSS berechnet in Häufigkeitstabellen neben den absoluten Häufigkeiten verschiedene Prozentsätze: Prozent: relative Häufigkeiten bezogen auf die gesamte Stichprobe mit Stichprobenumfang n. Gültige Prozente: relative Häufigkeiten bezogen nur auf die gültigen Werte; der Stichprobenumfang n wird dabei um die Anzahl der in PASW/SPSS vereinbarten fehlenden Werte reduziert. Kumulierte Prozente: kumulierte gültige Prozente; nur für Merkmale mit mindestens ordinalem Skalenniveau sinnvoll. 14

15 Speziell bei umfangreicheren metrischen Datensätzen ist oft die Anzahl k der verschiedenen Ausprägungen des beobachteten Merkmals groß und die Häufigkeit für ihr Auftreten sind klein (k n). Entsprechende Häufigkeitstabellen sind unübersichtlich. Ein Ausweg ist dann die Vergröberung des Datenmaterials durch Klassenbildung. 15

16 Beispiel (Körpergrößen): Population von n = 200 Kindern, 10 Jahre alt, gemessenes Merkmal X: Körperhöhe in cm (Verhältnisskala). Sehr viele verschiedene Messwerte, Häufigkeitstabelle unübersichtlich. Ausweg: Klasseneinteilung, Bildung von Messwertklassen, Daten werden gruppiert 16

17 Klasse Häufigkeit

18 Die Klassenbildung erfolgt so, dass die Ordnung erhalten bleibt, d.h. nur benachbarte Werte werden zusammengefasst. Die Klasseneinteilung muss disjunkt und vollständig sein und sollte möglichst (bis auf die Randklassen) die gleiche Breite verwenden. Faustregel zur Wahl der Anzahl der Klassen: Anzahl n. 18

19 Die Klassenbildung ist auch für ordinale Daten anwendbar; es dürfen nur benachbarte Ausprägungen zusammengefasst werden. Bei kategorialen (nominalen) Daten ggf. nach der Kausalstruktur (inhaltlichen Ähnlichkeiten) vorgehen. Mit jeder Klassenbildung (Vergröberung) ist ein Informationsverlust verbunden. Grafische Darstellung der gruppierten Daten: Balkendiagramm, Kreisdiagramm 19

20 Grafische Darstellung der (zunächst) ungruppierten Originaldaten (mindestens intervallskaliert): Histogramm [histogram]: Bei Histogrammen (z.b. in SPSS) übernimmt der Rechner die Klasseneinteilung und stellt die sich ergebende Häufigkeitsverteilung durch eine Balkengrafik dar, wobei die Balken für benachbarte Klassen lückenlos aufeinander folgen. Am Rechner sollte man bei Histogrammen Zahl und Lage der Klassen (Anfangspunkt) variieren, um eine genauere Vorstellung von der Form der Werteverteilung zu bekommen. Die Form ergibt sich dabei durch das Verbinden der Werte für die Balkenhöhen in den Klassenmitten (Häufigkeitspolygon [frequency or density function]). 20

21 Stamm Blatt Diagramm [stem and leaf display] Siehe Literatur bzw. PC-Praktika (SPSS: Stengel Blatt) Analysieren Deskriptive Statistiken Explorative Datenanalyse: Diagramme Weitere Möglichkeiten zur Darstellung stetiger Verteilungen bieten gleitende Histogramme und Kerndichteschätzer. 21

22 Typische Verteilungsformen (a) glockenförmige Verteilung: sehr häufig, z.b. immer dann, wenn das untersuchte Merkmal additiv durch viele kleine zufällige Effekte überlagert wird; symmetrisch; z.b. Messfehler (Summe aus vielen kleinen Fehlern). (b) U förmige Verteilung: extreme Werte treten am häufigsten auf; z.b. vorherrschen extremer Meinungen (Polarisierungen). (c) J förmige Verteilung: ein Extrem tritt am häufigsten auf, monotones Abfallen der Häufigkeiten zum anderen Extrem; z.b. Wartezeiten (zwischen Anrufen). 22

23 (d) eingipflige (unimodale) schiefe Verteilung: asymmetrisch; tritt oft als theoretische Verteilung positiver statistischer Prüfgrößen auf, z.b. χ 2 Verteilung, siehe später. (e) zweigipflige (bimodale) Verteilung: Mischung zweier unterschiedlicher Populationen; z.b. Körpergröße von Männern und Frauen, Mischverteilung. (f) schmalgipflige Verteilung: Werte streuen nur wenig. (g) breitgipflige Verteilung: Werte streuen stark. 23

24 Kumulierte Häufigkeiten entstehen durch Summieren der absoluten oder relativen Häufigkeiten nach der Größe der Ausprägungen (Kodes) des untersuchten Merkmals, also von links beginnend. Es ist mindestens eine Ordinalskala erforderlich. 24

25 Im Beispiel Körpergrößen ergibt sich: Klasse Häufigkeit kumulierte Häufigkeiten = = = = = =

26 Grafische Darstellung der kumulierten Häufigkeiten: Summenpolygon. Hier ergibt sich z.b.: 158 Kinder hatten eine Größe von unter (oder gleich) cm 26

27 Empirische Verteilungsfunktion [empirical distribution function] Voraussetzung: mindestens ordinalskalierte Daten Fragestellung: Welcher Anteil der Daten ist kleiner oder gleich einem vorgegebenen Wert x? 27

28 Empirische Verteilungsfunktion (kumulierte relative Häufigkeitsverteilung) eines Merkmals X: Wir bestimmen für jede reelle Zahl x den Anteil der Datenwerte, die kleiner oder gleich x sind. Die Funktion F mit F (x) = Anzahl d. Beob. x i mit x i x Stichprobenumfang n = j=1,...,k mit a j x ist die empirische Verteilungsfunktion oder kumulierte relative Häufigkeitsverteilung des Merkmals X mit den beobachteten Merkmalsausprägungen x 1, x 2,..., x n. f j 28

29 F ist eine monoton wachsende Treppenfunktion, die an den Stellen a 1,..., a k um die entsprechenden relativen Häufigkeiten f 1,..., f k nach oben springt. Es gilt F (x) = 0 für alle x < a 1 und F (x) = 1 für alle x a k. 29

30 Beispiel (Studiendauer): Studiendauer in Semester von n = Studierenden (Verhältnisskala). Häufigkeitsverteilung: a j h j f j F (a j )

31 Mit Hilfe der empirischen Verteilungsfunktion lassen sich Häufigkeitsverteilungen, Anteilswerte und empirische Quantile (siehe später) bestimmen. 31

32 Geordnete Stichprobe und Ränge [ordered data set and ranks] Gegeben seien (mindestens) ordinale Daten! Das Ordnen der Urliste x 1, x 2,..., x n liefert die geordnete Stichprobe x (1), x (2),..., x (n) mit x (1) x (2)... x (n). Beispiel (Körpergröße von Kindern, Auszug, n = 10): Urliste: 154, 130, 148, 153, 149, 142, 138, 152, 137, 140 geordnete Stichprobe: 130, 137, 138, 140, 142, 148, 149, 152, 153,

33 Seien nun alle Merkmalsausprägungen unterschiedlich (!), d.h. es gelte k = n. Dann gelten für die geordnete Stichprobe x (1), x (2),..., x (n) die strengen Ungleichungen x (1) < x (2) <... < x (n) Die Ränge der Daten sind dann definiert als Rg(x (i) ) := i d.h. x (i) ist der i te Wert in der geordneten Stichprobe. 33

34 Beispiel (Forts.): x i Rg(x i ) x (i) Rg(x (i) )

35 Die Definition der Ränge ist komplizierter, wenn Werte mehrfach auftreten (Bindungen [ties or tied ranks]). Siehe Literatur. SPSS: Transformieren Rangfolge bilden Das Untermenü Rangbindungen erlaubt verschiedene Definitionen von Rängen bei vorliegenden Bindungen. 35

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Kapitel 2. Häufigkeitsverteilungen

Kapitel 2. Häufigkeitsverteilungen 6 Kapitel 2 Häufigkeitsverteilungen Ziel: Darstellung bzw Beschreibung (Exploration) einer Variablen Ausgangssituation: An n Einheiten ω,, ω n sei das Merkmal X beobachtet worden x = X(ω ),, x n = X(ω

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

1 Verteilungen und ihre Darstellung

1 Verteilungen und ihre Darstellung GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen

Mehr

3. Deskriptive Statistik

3. Deskriptive Statistik 3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung)

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Einführung in die Statistik mit EXCEL und SPSS Ein

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52

a 1 < a 2 <... < a k. 2 Häufigkeitsverteilungen 52 2 Häufigkeitsverteilungen 2.0 Grundbegriffe Ziel: Darstellung bzw. Beschreibung (Exploration) einer Variablen. Ausgangssituation: An n Einheiten ω 1,..., ω n sei das Merkmal X beobachtet worden. x 1 =

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen

Mehr

3 Häufigkeitsverteilungen

3 Häufigkeitsverteilungen 3 Häufigkeitsverteilungen 3.1 Absolute und relative Häufigkeiten 3.2 Klassierung von Daten 3.3 Verteilungsverläufe 3.1 Absolute und relative Häufigkeiten Datenaggregation: Bildung von Häufigkeiten X nominal

Mehr

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen.

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen. 4. Analyse univariater Daten: Übersicht Mathematik ist die Wissenschaft der reinen Zahl, Statistik die der empirischen Zahl Von univariaten Daten spricht man, wenn bei der Datenerhebung nur ein Merkmal

Mehr

Kapitel 3: Eindimensionale Häufigkeitsverteilungen

Kapitel 3: Eindimensionale Häufigkeitsverteilungen Kapitel 3: Eindimensionale Häufigkeitsverteilungen. Unklassierte Daten...29 a) Häufigkeitsverteilung...29 b) Tabellen und Graphiken...3 c) Summenhäufigkeiten...34 2. Klassierte Daten...38 a) Größenklassen...38

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

MODUL 4 UNIVARIATE DATENANALYSE HÄUFIGKEITEN UND DIAGRAMME PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK)

MODUL 4 UNIVARIATE DATENANALYSE HÄUFIGKEITEN UND DIAGRAMME PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK) INSTITUT FÜR ERZIEHUNGSWISSENSCHAFT - UNIVERSITÄT SALZBURG PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK) GÜNTER HAIDER WS 1997/98 MODUL 4 UNIVARIATE DATENANALYSE HÄUFIGKEITEN UND

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Häufigkeiten und ihre Verteilung, oder: Zusammenfassende Darstellungen einzelner Variablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische Darstellung von Datenmaterial

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung:

Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung: Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung: k ( np) np B( n, p; k) Poi( np, k) e k! falls gilt: p

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit

Häufigkeitsverteilungen und Statistische Maßzahlen. Häufigkeitsverteilungen und Statistische Maßzahlen. Variablentypen. Stichprobe und Grundgesamtheit TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Häufigkeitsverteilungen und Statistische Maßzahlen Statistik SS Variablentypen Qualitative

Mehr

2. Deskriptive Statistik

2. Deskriptive Statistik Philipps-Universitat Marburg 2.1 Stichproben und Datentypen Untersuchungseinheiten: mogliche, statistisch zu erfassende Einheiten je Untersuchungseinheit: ein oder mehrere Merkmale oder Variablen beobachten

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

Vorlesung: Statistik für Kommunikationswissenschaftler

Vorlesung: Statistik für Kommunikationswissenschaftler Vorlesung: Statistik für Kommunikationswissenschaftler Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München WiSe 2009/2010 Übungen zur Veranstaltung Mittwoch: 14.15-15.45 HG DZ007 Cornelia Oberhauser

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Einführung in die statistische Datenanalyse I

Einführung in die statistische Datenanalyse I Einführung in die statistische Datenanalyse I Inhaltsverzeichnis 1. EINFÜHRUNG IN THEORIEGELEITETES WISSENSCHAFTLICHES ARBEITEN 2 2. KRITIERIEN ZUR AUSWAHL STATISTISCH METHODISCHER VERFAHREN 2 3. UNIVARIATE

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Karin Waldherr & Pantelis Christodoulides 4. November 2009 Karin Waldherr & Pantelis Christodoulides Psychologische Methodenlehre und Statistik I 1/56 Informationen,

Mehr

4. Auswertung eindimensionaler Daten

4. Auswertung eindimensionaler Daten 4. Auswertung eindimensionaler Daten Ziel dieses Kapitels: Präsentation von Methoden zur statistischen Auswertung eines einzelnen Merkmals 64 Bezeichnungen (Wiederholung): Merkmalsträger: e 1,..., e n

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Analyse von Kontingenztafeln

Analyse von Kontingenztafeln Analyse von Kontingenztafeln Mit Hilfe von Kontingenztafeln (Kreuztabellen) kann die Abhängigkeit bzw. die Inhomogenität der Verteilungen kategorialer Merkmale beschrieben, analysiert und getestet werden.

Mehr

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller Physica-Lehrbuch Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch von Christine Duller Neuausgabe Einführung in die Statistik mit EXCEL und SPSS Duller schnell

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Wahrscheinlichkeits - rechnung und Statistik

Wahrscheinlichkeits - rechnung und Statistik Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Daten, Datentypen, Skalen

Daten, Datentypen, Skalen Bildung kommt von Bildschirm und nicht von Buch, sonst hieße es ja Buchung. Daten, Datentypen, Skalen [main types of data; levels of measurement] Die Umsetzung sozialwissenschaftlicher Forschungsvorhaben

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 03 Hochschule Augsburg : Gliederung Einführung Deskriptive Statistik 3 Wahrscheinlichkeitstheorie

Mehr

Einfache statistische Auswertungen mit dem TI-Nspire

Einfache statistische Auswertungen mit dem TI-Nspire 1. Neues Dokument und darin eine neue Seite anlegen Als Typ 6: Lists & Spreadsheet wählen. Darin die Messwerte in einer Spalte erfassen. Dies ergibt die Urliste. Wenn mehrere Messwerte vorliegen, die diejenigen,

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Sommersemester 2008 Aufgabe 1 I) Einige Mitarbeiter

Mehr

Analyse bivariater Kontingenztafeln

Analyse bivariater Kontingenztafeln Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden.

- Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. Normalverteilung und Standardnormalverteilung als Beispiel einer theoretischen Verteilung - Normalverteilung (Gaußverteilung) kann auf sehr viele Zufallsprozesse angewendet werden. - Stetige (kontinuierliche),

Mehr

Grafische Darstellung von Häufigkeitsverteilungen (1)

Grafische Darstellung von Häufigkeitsverteilungen (1) Grafische Darstellung von Häufigkeitsverteilungen () Grafische Darstellungen dienen... - Einführung - der Unterstützung des Lesens und Interpretierens von Daten. der Veranschaulichung mathematischer Begriffe

Mehr

1. Datei Informationen

1. Datei Informationen 1. Datei Informationen Datei vorbereiten (Daten, Variablen, Bezeichnungen und Skalentypen) > Datei Dateiinformation anzeigen Arbeitsdatei 2. Häufigkeiten Analysieren Deskriptive Statistik Häufigkeiten

Mehr

Verteilungen und ihre Darstellungen

Verteilungen und ihre Darstellungen Verteilungen und ihre Darstellungen Übung: Stamm-Blatt-Diagramme Wie sind die gekennzeichneten Beobachtungswerte eweils zu lesen? Tragen Sie in beiden Diagrammen den Wert 0.452 an der richtigen Stelle

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive

Mehr

Kapitel 13 Häufigkeitstabellen

Kapitel 13 Häufigkeitstabellen Kapitel 13 Häufigkeitstabellen Die gesammelten und erfaßten Daten erscheinen in der Datendatei zunächst als unübersichtliche Liste von Werten. In dieser Form sind die Daten jedoch wenig aussagekräftig

Mehr

Verteilungsfunktion und dquantile

Verteilungsfunktion und dquantile Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung).

Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). Aufgabe 1: Nehmen Sie Stellung zu den folgenden Behauptungen (richtig/falsch mit stichwortartiger Begründung). a) Die Anzahl der voneinander verschiedenen Beobachtungswerte eines statistischen Merkmals

Mehr

2. Eindimensionale (univariate) Datenanalyse

2. Eindimensionale (univariate) Datenanalyse 2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

1.5 Berechnung von Rangzahlen

1.5 Berechnung von Rangzahlen 1.5 Berechnung von Rangzahlen Bei vielen nichtparametrischen Verfahren spielen die so genannten Rangzahlen eine wesentliche Rolle, denn über diese werden hier die Prüfgrößen berechnet. Dies steht im Gegensatz

Mehr

Statistik I im Sommersemester 2006

Statistik I im Sommersemester 2006 Statistik I im Sommersemester 2006 Themen am 23.4.2007: Univariate Häufigkeitsverteilungen I Darstellung univariater Verteilungen in Häufigkeitstabellen Verteilungsfunktionen und Quantile Grafische Darstellungen

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Beschreibung von Daten

Beschreibung von Daten Kapitel 1 Beschreibung von Daten 1.1 Beispiele zum Üben 1.1.1 Aufgaben Achtung: die Nummerierung ist nicht ident mit der im Buch; Bsp. 1-1 enspricht Bsp 2-20 im Buch, 1-2 2-21 im Buch usw. 1 1 In einem

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (2)

Auswertung und Darstellung wissenschaftlicher Daten (2) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber SPSS-Andrea Payrhuber Ergebnisse dem Skalenniveau der einzelnen Daten entsprechend darstellen. nominalskalierte Daten. ordinalskalierte

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Statistik I für Humanund Sozialwissenschaften

Statistik I für Humanund Sozialwissenschaften Statistik I für Humanund Sozialwissenschaften 1 Übung Lösungsvorschlag Gruppenübung G 1 Auf einer Touristeninsel in der Karibik wurden in den letzten beiden Juliwochen morgens zur gleichen Zeit die folgenden

Mehr

Bitte am PC mit Windows anmelden!

Bitte am PC mit Windows anmelden! Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung

Mehr

TÜV Service tested Prüfgrundlagen

TÜV Service tested Prüfgrundlagen TÜV Service tested Prüfgrundlagen 60 Grundsätzliche Prüfgrundlagen Für die Auszeichnung TÜV Service tested müssen drei Voraussetzungen erfüllt sein: 1. Die Gesamtzufriedenheit muss von den Kunden des Unternehmens

Mehr

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch 1 2 - Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch Badewannenkurve. -mit der Badewannenkurve lässt

Mehr

STATISTIK. Erinnere dich

STATISTIK. Erinnere dich Thema Nr.20 STATISTIK Erinnere dich Die Stichprobe Drei Schüler haben folgende Noten geschrieben : Johann : 4 6 18 7 17 12 12 18 Barbara : 13 13 12 10 12 3 14 12 14 15 Julia : 15 9 14 13 10 12 12 11 10

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik 2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

Univariate Kennwerte mit SPSS

Univariate Kennwerte mit SPSS Univariate Kennwerte mit SPSS In diesem Paper wird beschrieben, wie eindimensionale Tabellen und Kennwerte mit SPSS erzeugt werden. Eine Herleitung der Kennwerte und eine inhaltliche Interpretation der

Mehr

Übung Statistik I Statistik mit Stata SS07-21.05.2007 6. Grafiken und Wiederholung

Übung Statistik I Statistik mit Stata SS07-21.05.2007 6. Grafiken und Wiederholung Übung Statistik I Statistik mit Stata SS07-21.05.2007 6. Grafiken und Wiederholung Andrea Kummerer (M.A.) Oec R. I-53 Sprechstunde: Di. 15-16 Uhr Andrea.Kummerer@sowi.uni-goettingen.de Statistik mit Stata

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1

Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 1 1 Deskriptive Statistik Lösungen zu Blatt 1 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 1 (a) Es sollen die mathematischen Vorkenntnisse der Studenten, die die Vorlesung Statistik I für Statistiker,

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?

1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?

Mehr

Datenanalyse aus einer Urliste

Datenanalyse aus einer Urliste Datenanalyse aus einer Urliste Worum geht es in diesem Modul? Geordneter Datensatz und Extremwerte Empirische Verteilungsfunktion Bestimmung von Quantilen Spezielle Quantile Median und Angeln Fünf-Zahlen-Zusammenfassung

Mehr

Skalenniveau Grundlegende Konzepte

Skalenniveau Grundlegende Konzepte Skalenniveau Grundlegende Konzepte M E R K M A L / V A R I A B L E, M E R K M A L S A U S P R Ä G U N G / W E R T, C O D I E R U N G, D A T E N - M A T R I X, Q U A N T I T A T I V E S M E R K M A L, Q

Mehr

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann

Mehr

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung

Deskriptivstatistik a) Univariate Statistik Weiters zum Thema der statistischen Informationsverdichtung 20 Weiters zum Thema der statistischen Informationsverdichtung M a ß z a h l e n Statistiken bei Stichproben Parameter bei Grundgesamtheiten Maßzahlen zur Beschreibung univariater Verteilungen Maßzahlen

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr