Beispiel für eine Profilanalyse Daten: POKIII_AG1_V03.sav

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Beispiel für eine Profilanalyse Daten: POKIII_AG1_V03.sav"

Transkript

1 Beispiel für eine Daten: POKIII_AG1_V03.sav Es soll überprüft werden, ob es geschlechtsspezifische Unterschiede bei den Einstellungen zum Tanz gibt. Aus dem Fragebogen der AG 1 des POK III wurden folgende fünf Items ausgewählt: Tanz ist ein wichtiger Bestandteil meines Lebens (F10_02) Ich lasse mich vom Tanzstil anderer beeinflussen. (F10_06) Ich tanze auch wenn ich mich beobachtet fühle (F10_13). Tanz steigert mein Körperempfinden (F10_14). Ich empfinde meinen Tanzstil als individuell (F10_14). Die Antworten wurden auf einer fünfstufige Skala erhoben (1 = trifft nicht zu; 5 = trifft völlig zu). Im Übrigen ist eine nur sinnvoll, wenn die Antwortskalen gleich skaliert sind. Eine soll überprüfen, ob sich (a) generell die Geschlechter unterscheiden, (b) die Items unterschiedlich beurteilt wurden und (c) Wechselwirkungen zwischen dem Geschlecht und den Items zu beobachten waren. Formal handelt es sich um ein zweifaktorielles Design mit Messwiederholung auf einem Faktor, wobei der Messwiederholungsfaktor multivariat und der between -Faktor univariat behandelt werden. 1. Die Befehle Es wird das allgemeine lineare Modell und dann Meßwiederholung aufgerufen. Im neuen Fenster muss dann dem Messwiederholungsfaktor ein Name gegeben werden und die Anzahl der Stufen genannt werden. Anschließend auf Hinzufügen klicken. Beispiel für eine.doc - 1 -

2 Nach dem Klicken auf Hinzufügen verschwinden die Angaben und tauchen im Fenster als tanz(5) auf. Theoretisch könnte ein weiterer Messwiederholungsfaktor erstellt werden. Anschließend auf Definieren klicken In diesem neuen Fenster müssen jetzt die Variablen übertragen werden: Oben ( Innersubjektvariablen die Variablen, die den Messwiederholungsfaktor bilden, unter die Variablen, die die normalen Variablen sind ( Zwischensubjektfaktoren ), hier das Geschlecht (F01_02). Die Eintragungen müssen dann so aussehen (über die Pfeile einfügen). Anschließend sind noch Angaben zu den Diagrammen und den Optionen zu machen. Beispiel für eine.doc - 2 -

3 Da Sie unterschiedliche Profile für die Geschlechter haben wollen, geben Sie bei separate Linien das Geschlecht an (F01_02) und die neue künstliche Variable tanz als horizontale Achse. Klicken Sie anschließend auf Hinzufügen, und die Diagrammanforderung erscheint im Fenster Hier können Sie die ungewichteten Mittelwerte (= geschätzte Randmittel) aufrufen. Markieren Sie auf der linken Seite die gewünschten Mittelwerte und übertragen Sie diese mit dem Pfeil nach rechts. Es ist sinnvoll, noch zusätzlich die deskriptiven Statistik, die Homogenitätstest und vor allem die Effektgröße eta² (ein PRE-Koeffizient) sich ausgeben zu lassen Klicken Sie anschließen auf Weiter und dann auf OK. Beispiel für eine.doc - 3 -

4 Die Befehle können Sie über Einfügen ins Syntaxfenster übertragen und protokollieren: GLM f10_02 f10_06 f10_13 f10_14 f10_15 BY f01_02 /WSFACTOR = tanz 5 Polynomial /METHOD = SSTYPE(3) /PLOT = PROFILE( tanz*f01_02 ) /EMMEANS = TABLES(f01_02) /EMMEANS = TABLES(tanz) /EMMEANS = TABLES(f01_02*tanz) /PRINT = DESCRIPTIVE ETASQ HOMOGENEITY /CRITERIA = ALPHA(.05) /WSDESIGN = tanz /DESIGN = f01_ Die Ergebnisse: Die SPSS-Ausgaben werden unredigiert wiedergegeben. Innersubjektfaktoren Abhängige Variable F10_02 F10_06 F10_13 F10_14 F10_15 Zwischensubjektfaktoren Wertelabel N F01_02 Geschlecht Es werden die Variablen der within -Stufen und die between -Stufen genannt, letztere auch mit den Zellenbesetzungen. Der Messwiederholungsfaktor hat dann also ein N = 144. Box-Test auf Gleichheit der Kovarianzenmatrizen a Box-M-Test F df1 df2 Signifikanz Prüft die Nullhypothese, daß die beobachteten Kovarianzen- matrizen der abhängigen Variablen über die Gruppen gleich sind. a. Design: Intercept+F01_02 Innersubjekt-Design: Der (multivarate) Box-Test überprüft die Gleichheit der Varianz- Kovarianzmatrizen. In diesem Fall kann die Nullhypothese beibehalten werden, die Matrizen der beiden Geschlechter unterscheiden sich nicht. Damit ist eine Voraussetzung erfüllt. Anmerkung: Der Box-Test ist sehr sensitiv, d.h. die Nullhypothese wird selten beibehalten. Beispiel für eine.doc - 4 -

5 Multivariate Tests b Effekt * F01_02 a. Exakte Statistik b. Pillai-Spur Wilks-Lambda Hotelling-Spur Größte charakteristische Wurzel nach Roy Pillai-Spur Wilks-Lambda Hotelling-Spur Größte charakteristische Wurzel nach Roy Partielles Wert F Hypothese df Fehler df Signifikanz Eta-Quadrat a a a a a a a a Design: Intercept+F01_02 Innersubjekt-Design: In dieser Tabelle sind die Ergebnisse der Parallelism- und Flatness -Hypothesen wiedergegeben. 1. Die Fragestellung, ob die Profile parallel verlaufen, wird durch die multivariate Interaktion * F01_02 überprüft. In der multivariaten Auswertung der Interaktion werden für jede Person die Differenzen zwischen den Stufen des Messwiederholungsfaktors gebildet, bei dieser Auswertung gibt es also vier Differenzen, die eine Neigung ( slope ) haben und es wird überprüft, ob sich diese slopes statistisch signifikant unterscheiden. Wenn ja, bedeutet dies, dass die Profile nicht parallel verlaufen. Die mutivariaten Kriterien (Pillai-Spur, Wilks-Lambda) sind bei einer gesetzten Irrtumswahrscheinlichkeit von 5 % statistisch signifikant (F = bei 4 und 139 Freiheitsgraden), der p-wert von liegt unter Die Nullhypothese die Profile verlaufen parallel muss abgelehnt werden. Es gibt also eine Interaktion zwischen Geschlecht und den einzelnen Items der Einstellungen zum Tanzen. Die erklärte Varianz beträgt 8.4 % (partielles eta²). Dies ist auch revers an Wilks Lambda (.916) zu erkennen. 2. Da die Interaktion statistisch signifikant ist, ist die Überprüfung der beiden anderen Hypothesen eigentlich nicht mehr notwendig. Sie sollen hier zur Demonstration vorgestellt werden. Die Ergebnisse zeigen einen statistisch signifikanten Unterschied (Pillai-Spur =.424, F[4, 139] = Die fünf Items werden also unterschiedlich beurteilt. Transformierte Variable: Mittel Quelle Intercept F01_02 Fehler Tests der Zwischensubjekteffekte Quadratsum Mittel der Partielles me vom Typ III df Quadrate F Signifikanz Eta-Quadrat In diesem Ausdruck wird die level -Hypothese überprüft, ob es generell geschlechtsspezifische Unterschiede gibt. Hierzu wird für jede Person der Mittelwert aus den fünf Einstellungsitems gebildet. Die Nullhypothese es gibt keine Unterschiede muss abgelehnt werden (F[1, 142] = 8.737, p <.05). Es sind also generell, über alle Items hinweg geschlechtsspezifische Unterschiede vorhanden. Beispiel für eine.doc - 5 -

6 Zur Interpretation der Ergebnisse müssen die Mittelwerte betrachtet werden: 1. Geschlecht Geschlecht Standardf 95% Konfidenzintervall Mittelwert ehler Untergrenze Obergrenze Die Mittelwerte für die level - Hypothese zeigen, dass Frauen generell höhere Einstufungen abgaben als Männer Standardf 95% Konfidenzintervall Mittelwert ehler Untergrenze Obergrenze Die Mittelwerte für die flatness -Hypothese zeigen, dass Item 3 (Ich tanze auch, wenn ich mich beobachtet fühle) die höchste Zustimmung erhielt und Item 2 (Ich lasse mich vom Tanzstil anderer beeinflussen) die geringste. Deskriptive Statistiken F10_02 Tanz ist ein wichtiger Bestandteil meines Lebens. F10_06 Ich lasse mich vom Tanzstil anderer beeinflussen. F10_13 Ich tanze auch wenn ich mich beobachtet fühle. F10_14 Tanz steigert mein Körperempfinden. F10_15 Ich empfinde meinen Tanzstil als individuell. F01_02 Geschlecht Standardab Mittelwert weichung N In einer mit zwei Faktoren stimmen die deskriptiven Statistiken mit den ungewichteten Mittelwerten natürlich überein. Diese Tabelle muss inspiziert werden, um heraus zu bekommen, wo die Interaktion zwischen den Items und dem Geschlecht zum Tragen kommt. Am besten eignet sich hierfür eine Grafik. Beispiel für eine.doc - 6 -

7 Die Original-SPSS-Grafik sieht so aus (verkleinert): 3,4 Geschätztes Randmittel von MEASURE_1 3,2 3,0 2,8 Geschätztes Randmittel 2,6 2,4 2,2 2,0 1, Geschlecht weiblich männlich 5 Die Grafik sieht nach einer Bearbeitung so aus: wichtig. Bestandteil Geschlecht und Einstellung zum Tanzen Beeinfl.durch andere auch bei Beobachtung Körperempfinden Geschlecht weiblich Stil individuell männlich 1,8 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 Mittelwerte Die Grafik zeigt zuerst noch einmal die geschlechtsspezifischen Unterschiede über alle Items hinweg, d.h. bei allen Items haben die Frauen höhere Werte als die Männer. Die Interaktion ist vermutlich auf die Items 4 und 1 zurückzuführen: Die Steigerung des Körperempfindens ist bei Männern nicht ganz so ausgeprägt wie bei Frauen, auch ist für Männer weitaus weniger als für Frauen der Tanz ein wichtiger Bestandteil des Lebens. Die geringsten Unterschiede sind zu erkennen, wenn es um das Tanzen unter Beobachtung geht. Für eine statistische Absicherung dieser Interpretation müssten Interaktionskontraste berechnet werden. Auf diese Berechnungen soll verzichtet werden. Beispiel für eine.doc - 7 -

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine zweifaktorielle Varianzanalyse mit Messwiederholung auf einem Faktor (univariate Lösung) Daten: POKIII_AG4_V06.SAV Hypothese: Die physische Attraktivität der Bildperson und das Geschlecht

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 6 behandelten zweifaktoriellen

Mehr

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav Beispiel für eine multivariate Varianzanalyse () Daten: POKIV_Terror_V12.sav Es soll überprüft werden, inwieweit das ATB-Syndrom (Angst vor mit den drei Subskalen affektive Angst von, Terrorpersistenz,

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Hypothesentests mit SPSS. Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV

Hypothesentests mit SPSS. Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV Hypothese: Typische Eigenschaften von Terroristen (Prototypikalität) und die nationale Herkunft (Ausländer vs. Deutsche) haben

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Kapitel 6 FRAGESTELLUNG 1.1. Öffne die Datei teenagework.sav.

Kapitel 6 FRAGESTELLUNG 1.1. Öffne die Datei teenagework.sav. Kapitel 6 FRAGESTELLUNG 1.1 Öffne die Datei teenagework.sav. Für eine grafische Darstellung bietet sich ein Boxplot an. Dazu gehe auf Grafiken / Boxplot. Im anschließenden Menü wähle Einfach aus und drücke

Mehr

Einführung in die Varianzanalyse mit SPSS

Einführung in die Varianzanalyse mit SPSS Einführung in die Varianzanalyse mit SPSS SPSS-Benutzertreffen am URZ Carina Ortseifen 6. Mai 00 Inhalt. Varianzanalyse. Prozedur ONEWAY. Vergleich von k Gruppen 4. Multiple Vergleiche 5. Modellvoraussetzungen

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen. Wir besprechen hier die zwei in Kapitel 1.1 thematisierten

Mehr

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav.

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav. Kapitel 5 FRAGESTELLUNG 1 Öffne die Datei alctobac.sav. Zuerst werden wir ein Streudiagramm erstellen, um einen grafischen Überblick von diesem Datensatz zu erhalten. Gehe dazu auf Grafiken / Streudiagramm

Mehr

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben ÜBERSICHT: Testverfahren bei abhängigen (verbundenen) Stichproben parametrisch nicht-parametrisch 2 Gruppen t-test bei verbundenen

Mehr

Univariate Kennwerte mit SPSS

Univariate Kennwerte mit SPSS Univariate Kennwerte mit SPSS In diesem Paper wird beschrieben, wie eindimensionale Tabellen und Kennwerte mit SPSS erzeugt werden. Eine Herleitung der Kennwerte und eine inhaltliche Interpretation der

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung 1 Berechnung der Effektstärke und der beobachteten Teststärke einer einfaktoriellen Varianzanalyse

Mehr

Varianzananalyse. How to do

Varianzananalyse. How to do Varianzananalyse How to do Die folgende Zusammenfassung zeigt beispielhaft, wie eine Varianzanalyse mit SPSS durchgeführt wird und wie die Ergebnisse in einem Empra-Bericht oder in einer Bachelor- oder

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung 1 Effektstärke und empirische Teststärke einer zweifaktoriellen Varianzanalyse ohne Messwiederholung

Mehr

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Im folgenden sollen Analyseverfahren dargestellt werden, die zwei oder mehr Gruppen hinsichtlich ihrer zentralen Tendenz in einer einzelnen Variablen

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen.

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen. Explorative Datenanalyse Erstmal die Grafiken: Aufreisskraft und Temperatur 3 1-1 N = 1 15 17 Temperatur Diagramm 3 1 95% CI -1 N = 1 15 17 Temperatur Etwas positive Tendenz ist beim Wechsel der Temperatur

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für einen chi²-test Daten: afrikamie.sav Im Rahmen der Evaluation des Afrikamie-Festivals wurden persönliche Interviews durchgeführt. Hypothese: Es gibt einen Zusammenhang zwischen dem Geschlecht

Mehr

Kapitel 8: Verfahren für Rangdaten

Kapitel 8: Verfahren für Rangdaten Kapitel 8: Verfahren für Rangdaten Der Mann-Whitney U-Test In Kapitel 8.1 dient eine Klassenarbeit in einer Schule als Beispielanwendung für einen U-Test. Wir werden an dieser Stelle die Berechnung dieses

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests. H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab.

SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests. H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab. SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests A parametrisch -- ANOVA Beispieldatei: Seegräser_ANOVA H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab. µ

Mehr

Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005

Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005 Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005 Name: Mat.Nr.: Bearbeitungshinweise: Insgesamt können 40 Punkte erreicht werden. Die Klausur gilt als bestanden, wenn Sie mindestens

Mehr

Mittelwertvergleiche, Teil I: Zwei Gruppen

Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Mittelwertvergleiche:

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine einfache Regressionsanalyse (mit Überprüfung der Voraussetzungen) Daten: bedrohfb_v07.sav Hypothese: Die Skalenwerte auf der ATB-Skala (Skala zur Erfassung der Angst vor terroristischen

Mehr

SPSS III Mittelwerte vergleichen

SPSS III Mittelwerte vergleichen SPSS III Mittelwerte vergleichen A Zwei Gruppen ------------ Zwei-Stichproben t-test Beispieldatei: Seegräser Fragestellung: Unterscheidet sich die Anzahl der Seegräser in Gebieten mit und ohne Seeigelvorkommen

Mehr

Mittelwertvergleiche, Teil II: Varianzanalyse

Mittelwertvergleiche, Teil II: Varianzanalyse FB 1 W. Ludwig-Mayerhofer Statistik II 1 Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil II: FB 1 W. Ludwig-Mayerhofer Statistik II 2 : Wichtigste Eigenschaften Anwendbar auch bei mehr als

Mehr

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis 1. Inhaltsverzeichnis 1. Inhaltsverzeichnis... 1 2. Abbildungsverzeichnis... 1 3. Einleitung... 2 4. Beschreibung der Datenquelle...2 5. Allgemeine Auswertungen...3 6. Detaillierte Auswertungen... 7 Zusammenhang

Mehr

Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben

Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben Es wurden die Körpergrößen von 3 Versuchspersonen, sowie Alter und Geschlecht erhoben. (Jeweils Größen pro Faktorstufenkombination). (a)

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1. LÖSUNG 7 a)

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1. LÖSUNG 7 a) LÖSUNG 7 a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Aufrufen der Varianzanalyse: "Analysieren", "Mittelwerte vergleichen", "Einfaktorielle ANOVA ", "Abhängige Variablen:" TVHOURS;

Mehr

Varianzanalyse (ANOVA: analysis of variance)

Varianzanalyse (ANOVA: analysis of variance) Varianzanalyse (AOVA: analysis of variance) Einfaktorielle VA Auf der Basis von zwei Stichproben wird bezüglich der Gleichheit der Mittelwerte getestet. Variablen müssen Variablen nur nominalskaliert sein.

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgaben zu Kapitel 8 Aufgabe 1 a) Berechnen Sie einen U-Test für das in Kapitel 8.1 besprochene Beispiel mit verbundenen n. Die entsprechende Testvariable punkte2 finden Sie im Datensatz Rangdaten.sav.

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Aufgaben zu Kapitel 7:

Aufgaben zu Kapitel 7: Aufgaben zu Kapitel 7: Aufgabe 1: In einer Klinik sollen zwei verschiedene Therapiemethoden miteinander verglichen werden. Zur Messung des Therapieerfolges werden die vorhandenen Symptome einmal vor Beginn

Mehr

Messwiederholungen und abhängige Messungen

Messwiederholungen und abhängige Messungen Messwiederholungen und abhängige Messungen t Tests und Varianzanalysen für Messwiederholungen Kovarianzanalyse Thomas Schäfer SS 009 1 Messwiederholungen und abhängige Messungen Bei einer Messwiederholung

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

Erste Datenbereinigung

Erste Datenbereinigung Erste Datenbereinigung I. Datenbereinigung klassisch I. Schritt: Praktisch: Auf zwei PCs die Datei herunterladen. Auf dem einen PC wird die Häufigkeitsauszählung durchgeführt, auf dem anderen PC wird die

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Varianzanalyse Statistik

Mehr

Die Korrelation von Merkmalen

Die Korrelation von Merkmalen Die Korrelation von Merkmalen In der Analse von Datenmaterial ist eines der Hauptziele der Statistik eine Abhängigkeit bzw. einen Zusammenhang zwischen Merkmalen zu erkennen. Die Korrelation ermittelt

Mehr

Die Subskala besteht aus folgenden Items (Ausschnitt aus dem Codeplan):

Die Subskala besteht aus folgenden Items (Ausschnitt aus dem Codeplan): Beispiel für eine Itemanalyse mit der SPSS-Prozedur Reliabilitätsanalyse (RELIABILITY) Daten: POKIII_AG1_V06.SAV (POK III, AG 1) Die Skala Körperbewusstsein von Löwe und Clement (1996) 1 besteht aus zwei

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 6-6) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Tutorial: Regression Output von R

Tutorial: Regression Output von R Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Zweifache Varianzanalyse

Zweifache Varianzanalyse Zweifache Varianzanalyse Man kann mittels VA auch den (gleichzeitigen) Einfluss mehrerer Faktoren (unabhängige Variablen) auf ein bestimmtes Merkmal (abhängige Variable) analysieren. Die Wirkungen werden

Mehr

SPSS-Ausgabe 1: Univariate Varianzanalyse. Profildiagramm. [DatenSet1] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav. Seite 1

SPSS-Ausgabe 1: Univariate Varianzanalyse. Profildiagramm. [DatenSet1] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav. Seite 1 SPSS-Ausgabe : Univariate Varianzanalyse [DatenSet] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav Tests der Zwischensubjekteffekte Abhängige Variable: Einkommen Quelle Korrigiertes Modell Konstanter

Mehr

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:..

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:.. Institut für Erziehungswissenschaft der Philipps-Universität Marburg Prof. Dr. Udo Kuckartz Arbeitsbereich Empirische Pädagogik/Methoden der Sozialforschung Wintersemester 004/005 KLAUSUR FEBRUAR 005 /

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Versuchsplanung Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Gliederung Grundlagen der Varianzanalyse Streuungszerlegung und Modellschätzer Modellannahmen und Transformationen

Mehr

Kapitel 3: Der t-test

Kapitel 3: Der t-test Kapitel 3: Der t-test Durchführung eines t-tests für unabhängige Stichproben Dieser Abschnitt zeigt die Durchführung des in Kapitel 3.1 vorgestellten t-tests für unabhängige Stichproben mit SPSS. Das Beispiel

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

Übung 4 im Fach "Biometrie / Q1"

Übung 4 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben.

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben. Einstieg in SPSS In SPSS kann man für jede Variable ein Label vergeben, damit in einer Ausgabe nicht der Name der Variable (der kryptisch sein kann) erscheint, sondern ein beschreibendes Label. Der Punkt

Mehr

Statistik-Quiz Sommersemester

Statistik-Quiz Sommersemester Statistik-Quiz Sommersemester Seite 1 von 8 Statistik-Quiz Sommersemester Die richtigen Lösungen sind mit gekennzeichnet. 1 In einer Gruppe von 337 Probandinnen und Probanden wurden verschiedene Merkmale

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung 1 Teststärkebestimmung a posteriori 4 Berechnen der Effektgröße f² aus empirischen Daten und Bestimmung

Mehr

Einführung in die Induktive Statistik: Varianzanalyse

Einführung in die Induktive Statistik: Varianzanalyse Einführung in die Induktive Statistik: Varianzanalyse Jörg Drechsler LMU München Wintersemester 2011/2012 Varianzanalyse bisher: Vergleich der Erwartungswerte für zwei normalverteilte Variablen durch t-test

Mehr

Statistik II Übung 3: Hypothesentests Aktualisiert am

Statistik II Übung 3: Hypothesentests Aktualisiert am Statistik II Übung 3: Hypothesentests Aktualisiert am 12.04.2017 Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

6. Übung Statistische Tests Teil 1 (t-tests)

6. Übung Statistische Tests Teil 1 (t-tests) Querschnittsbereich 1: Epidemiologie, Medizinische iometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 6. Übung Statistische Tests Teil 1 (t-tests)

Mehr

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr

B. Regressionsanalyse [progdat.sav]

B. Regressionsanalyse [progdat.sav] SPSS-PC-ÜBUNG Seite 9 B. Regressionsanalyse [progdat.sav] Ein Unternehmen möchte den zukünftigen Absatz in Abhängigkeit von den Werbeausgaben und der Anzahl der Filialen prognostizieren. Dazu wurden über

Mehr

INDIGHO: Innovation und demografischer Wandel im Gaststätten- und Hotelgewerbe Altersstrukturanalyse Ergebnisse und Bericht 2013

INDIGHO: Innovation und demografischer Wandel im Gaststätten- und Hotelgewerbe Altersstrukturanalyse Ergebnisse und Bericht 2013 INDIGHO: Innovation und demografischer Wandel im Gaststätten- und Hotelgewerbe Altersstrukturanalyse Ergebnisse und Bericht 2013 Autoren: Hemke, Robert 1 Elsässer, Florian 1 1 Berufsgenossenschaft Nahrungsmittel

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 13 a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Die Variablen sollten hoch miteinander korrelieren. Deshalb sollten die einfachen Korrelationskoeffizienten hoch ausfallen.

Mehr

Kapitel 8: Verfahren für Rangdaten

Kapitel 8: Verfahren für Rangdaten Kapitel 8: Verfahren für Rangdaten Der Mann-Whitney U-Test 1 Der Wilcoxon-Test 5 Der Kruskal-Wallis H-Test 7 Vergleich von Mann-Whitney U-Test und Kruskal-Wallis H-Test 9 Alternativer Lösungsweg für SPSS

Mehr

Kapitel 3. FRAGESTELLUNG 1 und 2. Öffne die Datei commercial.sav. Folgende Darstellung sollte in der Datenansicht erscheinen:

Kapitel 3. FRAGESTELLUNG 1 und 2. Öffne die Datei commercial.sav. Folgende Darstellung sollte in der Datenansicht erscheinen: Kapitel 3 FRAGESTELLUNG 1 und 2 Öffne die Datei commercial.sav. Folgende Darstellung sollte in der Datenansicht erscheinen: Wenn in der SPSS Datenansicht bis nach unten gescrollt wird, kann festgestellt

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Aufgaben zu Kapitel 5:

Aufgaben zu Kapitel 5: Aufgaben zu Kapitel 5: Aufgabe 1: Ein Wissenschaftler untersucht, in wie weit die Reaktionszeit auf bestimmte Stimuli durch finanzielle Belohnung zu steigern ist. Er möchte vier Bedingungen vergleichen:

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Testen von Hypothesen

Mehr

Multivariate Verfahren

Multivariate Verfahren Varianzanalyse 1 Matthias Rudolf & Johannes Müller Multivariate Verfahren Eine praxisorientierte Einführung mit Anwendungsbeispielen in SPSS Praxisbeispiel zur Varianzanalyse: Unfallopfer Inhalt: 1 Beschreibung

Mehr

1. Es sind einfach zu viele! Varianzanalytische Verfahren.

1. Es sind einfach zu viele! Varianzanalytische Verfahren. 1. Es sind einfach zu viele! Varianzanalytische Verfahren. In diesem Kapitel behandeln wir die Varianzanalyse (ANOVA). Varianzanalysen kommen in sehr sehr vielen verschiedenen Gestalten einher. Das Ziel

Mehr

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3

TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3 TESTTHEORIE UND TESTKONSTRUKTION - PRAKTISCHE ANWENDUNG - TEIL 3 Prof. Dr. Franke SS2012 Hochschule Magdeburg-Stendal (FH) M.Sc. Rehabilitationspsychologie Gliederung Reliabilität 1. Überblick 2. Berechnung

Mehr

Datenanalyse mit SPSS Statistik für Fortgeschrittene

Datenanalyse mit SPSS Statistik für Fortgeschrittene Datenanalyse mit SPSS Statistik für Fortgeschrittene Arnd Florack Tel.: 0251 / 83-34788 E-Mail: florack@psy.uni-muenster.de Raum 2.001b Sprechstunde: Dienstags 15-16 Uhr 6. Juni 2000 2 Interpretation von

Mehr

Inhalt OpenOffice Writer: Grafik und Tabelle

Inhalt OpenOffice Writer: Grafik und Tabelle 1 Inhalt OpenOffice Writer: Grafik und Tabelle 1. Grafik...2 1.1.1. Grafik aus einer Datei einfügen...2 1.1.2. Grafik aus einem anderem Dokument oder dem Internet einfügen...2 1.2. Größenänderung einer

Mehr

Übersicht über verschiedene Signifikanztests und ihre Voraussetzungen

Übersicht über verschiedene Signifikanztests und ihre Voraussetzungen SPSSinteraktiv von Signifikanztests - 1 - Übersicht über verschiedene Signifikanztests und ihre Verfahren zur Überprüfung von Unterschieden in der zentralen Tendenz Unterschieden werden können Testsituationen

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Word 2010 Wasserzeichen erstellen

Word 2010 Wasserzeichen erstellen WO.017, Version 1.1 10.11.2014 Kurzanleitung Word 2010 Wasserzeichen erstellen Möchten Sie Ihre Arbeit als Entwurf oder als Kopie kennzeichnen, ehe Sie sie zur Überprüfung versenden, oder möchten Sie im

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Diese Selbstkontrollarbeit bezieht sich auf die Kapitel 1 bis 4 der Kurseinheit 1 (Multivariate Statistik) des Kurses Multivariate Verfahren (883). Hinweise:

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr

Auswertung und Lösung

Auswertung und Lösung Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden

Mehr

Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops

Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops Auswertung: Irina Zamfirescu Auftraggeber: Mag. Klaus Brehm Statistische Auswertung (Signifikanzen) Projekt: Evaluation der Langzeitauswirkung des Imago Paartherapie Workshops Fragestellung: Wirkt sich

Mehr

Grundlagen der Versuchsmethodik, Datenauswertung und -visualisierung

Grundlagen der Versuchsmethodik, Datenauswertung und -visualisierung Grundlagen der Versuchsmethodik, Datenauswertung und -visualisierung Sommersemster 007 Analyse und Modellierung von Blickbewegungen Veranstalter: Hendrik Koesling Grundlagen der Versuchsmethodik, Datenauswertung

Mehr

Teil 2 Beurteilende Statistik mit MATLAB

Teil 2 Beurteilende Statistik mit MATLAB Teil 2 Beurteilende Statistik mit MATLAB 2.1: Vergleich von Mittelwerten Anhand der Beispieldaten für den Einbindigen Traubenwickler aus Abschnitt 1.6 sowie anhand von simulierten Datenlisten wollen wir

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Methodik der multiplen linearen Regression

Methodik der multiplen linearen Regression Methodik der multiplen linearen Regression Sibel Aydemir Statistisches Amt, Direktorium Landeshauptstadt München Name, Stadt Regressionsanalyse: Schritt für Schritt Schritt 1 Schritt 2 Schritt 3 Schritt

Mehr