Lineare (affine) Abbildung

Größe: px
Ab Seite anzeigen:

Download "Lineare (affine) Abbildung"

Transkript

1 Lineare affine Aildung A e 2 a e Wir üerziehen die Eene neen dem vertrauten Quadrat-Gitternetz, das durch die Basisvektoren e und e 2 festgelegt ist, mit einem Parallelogramm-Gitternetz, dessen Maschen durch die Vektoren a und gegeen sind. Jeder Punkt der Eene P kann nun auch durch p = a+ mit den affinen Koordinaten, erfasst werden, z.b. P 2 mit 2,2. = a + = a lautet in Matrizenschreiweise a = a 2 2 und für unser Beispiel =,5,5,5 Hierdurch ist eine lineare Aildung gegeen, die jedem Vektor einen Vektor zuordnet, zw. jedem Punkt P einen Bildpunkt P.

2 Lineare affine Aildung Fortsetzung Die Einheitsvektoren e = und e 2 = werden hierei auf a zw. ageildet und das Einheitsquadrat auf ein Parallelogramm, das von a und aufgespannt wird. Sein Flächeninhalt eträgt = a 2 a 2 2. Folgere daraus, dass zwischen den Flächeninhalten einer Figur F und einer Bildfigur F die Beziehung F = F esteht.. a Auf welchen Punkt wird A 2 vorige Seite ageildet? Ermittle die Flächeninhalte der eiden Vierecke, sowie. Zur Kontrolle: F = 2FE F = 5FE =,25 A e 2 a e 2. Der Kreis wird auf die Ellipse ageildet. Der Nachweis ist nicht verlangt. Hierzu enötigt man die Umkehraildung,4,2 =,4,8 und eine Hauptachsentransformation kein schulischer Inhalt. Ermittle den Flächeninhalt der Ellipse. 2

3 Lineare Aildung A =,8,3,2,7 Jedes Quadratgitternetz allgemeiner Parallelogrammgitternetz wird auf ein Parallelogrammgitternetz ageildet. Hierzu ist zuerst zu zeigen, dass Geraden in Geraden üergehen. = A g: = a+λ u = A a+λ u =... Jede Fläche F lässt sich durch ein feines Quadratgitternetz approimieren. Alle Quadrate werden auf Parallelogramme mit dem -fachen Flächeninhalt ageildet. Für den Flächeninhalt F gilt daher F = F. 3

4 Affine Aildung, iteriert A =,8,3,2,7 = A Wir ilden...aaaa Was fällt dir auf? 4

5 Netz mit Eigenvektoren A =,8,3,2,7...AAAA = A Die Matri a a esitzt die Eigenwerte und a, zugehörige Eigenvektoren sind: und. a Erläutere die Situation. 5

6 Lineare Aildungen. Wie lauten die Gleichungen der Projektion, die elieige Raumpunkte parallel in Richtung des Vektors v = 2 auf die Bildeene E : +z = aildet? 2 Lösung: λ = + z Schnitt einer Geraden mit der Eene = z = z z = z Oder in Matri-Schreiweise: A = Die Aildung wird nun durch = A erfasst Wie ist der Punkt in = A zu verstehen? 3. Eine lineare Aildung sei durch 2 2 gegeen. Bilde das Viereck mit den Eckpunkten A, B,5, C2 2, D,5 a. 4. Wie werden Einheitsvektoren wie e = durch = A ageildet? Welcher Zusammenhang esteht mit der Aildungsmatri? 5. Zeige, dass elieige Aildungen im Raum oder in der Eene = A linear sind, d.h. es ist A λ = λ A und A + = A +A. Was edeuten diese Eigenschaften geometrisch? 6. Begründe, dass ei einer linearen Aildung die Bilder elieiger Vektoren mit den Bildern von Einheitsvektoren ermittelt werden können. 7. Wie lauten die Aildungsmatrizen in der Eene a Spiegelung an der -Achse Spiegelung an der -Achse c Punktspiegelung am Ursprung d Zentrische Streckung mit dem Faktor d e Drehung um 9 um den Ursprung? 8. Wie lautet die Aildungsmatri der Drehung um den Ursprung in der Eene im Raum um die z-achse? 9. Wie ergit sich die Aildungsmatri für die Hintereinanderausführung Verkettung zweier linearer Aildungen? matri, lat. Mutterlei, Uterus 6

7 2. a c d = a+ d+e C 3. D B D C B A = A 4. Die Bilder der Einheitsvektoren sind die Spalten der Aildungsmatri. 5. Durch Nachrechnen wird estätigt: A λ = λ A und A + = A +A Das Bild einer Summe zweier Vektoren, kann auch als Summe der eiden Bildvektoren A, A erhalten werden siehe oige Grafik. Parallelogramme werden auf Parallelogramme ageildet. 6. Vektoren können als Linearkomination von Einheitsvektoren dargestellt werden. Die Bildvektoren ergeen sich als Linearkomination mit denselen Koeffizienten der Bildvektoren der Einheitsvektoren. 7. a Spiegelung an der -Achse Spiegelung an der -Achse c Punktspiegelung am Ursprung d Zentrische Streckung mit dem Faktor d d d e Drehung um 9 um den Ursprung sinϕ ϕ }{{} cosϕ 8. Die Drehung ist eine lineare Aildung, da die Linearitätsedingungen anschaulich erfüllt sind. Daher ergit sich die Aildungsmatri durch die Aildung der Einheitsvektoren. cosϕ sinϕ cosϕ sinϕ A = A = sinϕ cosϕ sinϕ cosϕ 9. A = a c d B = e f g h Sei C durch B A = C festgelegt. Dann gilt: C = ea+fc e+fd ga+hc g+hd C wird als Produkt der Matrizen B und A aufgefasst: C = B A Für die Bildung des Produkts git es eine einfache Merkregel: 7 e f g h a c d

8 Parallelprojektion auf die z-eene Diese lineare Aildungsart ist rechnerisch esonders einfach. Sei die Projektionsrichtung durch den Vektor v = a gegeen. Q wird hierei auf Q a ageildet und allgemeiner P z auf P a + +z, hierzu ist die Gerade durch P mit dem Richtungsvektor v mit der z-eene zu schneiden λ =. Die Aildungsgleichungen lauten = : = a + z = + z oder in Matri-Schreiweise: z = a z Betrachten wir nun die Aildung des Einheitswürfels für a = 2 und = 4. Hierei gilt z. B.: E E 2 4 E 2 E Insgesamt ergit sich das Bild: z 2 4 8

9 Drehung um den Ursprung Erläutere: cosα sinα sinα cosα α = 3 a acosα asinα sinα cosα α α } {{ } cosα sinα a? α = 5 a + acosα + asinα sinα cosα a a acosα sinα asinα+cosα In Matri-Schreiweise: a cosα sinα = sinα cosα a Drehung um die z-achse: a = c cosα sinα sinα cosα a c 9

10 Additionstheoreme a α acosα sinα asinα+cosα Erläutere: α β cosα sinα cosαcosβ sinαsinβ sinαcosβ +sinβcosα α+β cosα+β sinα+β sin α+β = sinα cosβ + sinβ cosα cos α+β = cosα cosβ sinα sinβ

Lineare (affine) Abbildung

Lineare (affine) Abbildung Lineare affine Abbildung A e 2 b a e Wir überziehen die Ebene neben dem vertrauten Quadrat-Gitternetz, das durch die Basisvektoren e und e 2 festgelegt ist, mit einem Parallelogramm-Gitternetz, dessen

Mehr

6 Lineare Abbildungen der euklidischen Ebene

6 Lineare Abbildungen der euklidischen Ebene 6 Lineare Aildungen der euklidischen Eene In diesem Kapitel etrachten wir nur noch lineare Aildungen der euklidischen Eene auf sich seler: f : E E oder f : R 2 R 2 Zudem verwenden wir das Skalarprodukt

Mehr

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ. Eigenwert, Eigenvektor In der Regel hat bei einer linearen Abbildung das Bild eines Vektors eine andere Richtung als das Original r. Bei der Untersuchung der geometrischen Eigenschaften von linearen Abbildungen

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

Exkurs: Klassifikation orthogonaler 2 2-Matrizen.

Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Aussage: Es gilt: (a) Jede orthogonale 2 2 Matrix A mit det(a) = 1 hat das Aussehen cos(α) sin(α) D(α) = sin(α) cos(α), wobei α [0,2π[. Ist sin(α) 0, so

Mehr

IV. Affine Abbildungen

IV. Affine Abbildungen IV. Affine IV. Abbildungen Affine Abbildungen 2 22 IV. Af ne Abbildungen. Kongruenzabbildungen Bei einer Kongruenzabbildung wird jedem Punkt P( der zweidimensionalen Ebene R 2 in eindeutiger Weise ein

Mehr

XIII Geometrische Abbildungen und Matrizen

XIII Geometrische Abbildungen und Matrizen XIII Geometrische Abbildungen und Matrizen Geometrische Abbildungen und Abbildungsgleichungen 0 8 k= R' 6 S' R S P' Q' Q x P Z=O 6 8 0 Fig. Bei einer zentrischen Streckung wird von einem Punkt, dem Zentrum,

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Repräsentation und Transformation von geometrischen Objekten

Repräsentation und Transformation von geometrischen Objekten Repräsentation und Transformation von geometrischen Objekten Inhalt: Grundlagen Überblick Einfache Transformationen in der Ebene Homogene Koordinaten Einfache Transformationen in der Ebene mit homogenen

Mehr

Lösungen der Übungsaufgaben III

Lösungen der Übungsaufgaben III Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion

Mehr

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo Fachbereich Mathematik Prof. J. Lehn Hasan Gündoğan, Nicole Nowak Sommersemester 8 4./5./8. April 4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI, AngGeo Gruppenübung Aufgabe G9 (Multiple Choice Bei

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover

Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen Kapitel 2 Lineare Algebra II 21 Lineare Abbildungen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 21 Definition Eine

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 9. Übungsaufgaben 2007-01-23 1. Beweisen Sie geometrisch, daß die Addition von Vektoren in der Ebene assoziativ ist. Beweis. Man zeichnet die entsprechenden Parallelogramme. 2. Der

Mehr

Teil 3 Abbildungen in der Ebene

Teil 3 Abbildungen in der Ebene Vektor-Geometrie für die Mittelstufe (Sekundarstufe 1) Teil 3 Abbildungen in der Ebene Für Realschulen in Bayern! (Prüfungsstoff!) und für moderne Geometrie-Kurse am Gymnasium Auch in der berstufe zur

Mehr

1 Analytische Geometrie

1 Analytische Geometrie Analytische Geometrie. Grundlagen, Begriffe, Schreibweisen Achsenkreuz Die Achsen heißen in dieser Darstellung x und -Achse. Punkte Punkte werden weiterhin mit großen, lateinischen Buchstaben bezeichnet

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

4 Lineare Abbildungen

4 Lineare Abbildungen 17. November 2008 34 4 Lineare Abbildungen 4.1 Lineare Abbildung: Eine Funktion f : R n R m heißt lineare Abbildung von R n nach R m, wenn für alle x 1, x 2 und alle α R gilt f(αx 1 ) = αf(x 1 ) f(x 1

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen Kapitel 2 Lineare Algebra II 2 Lineare Abbildungen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 2 Definition Eine Abbildung

Mehr

4 Orthogonale Endormorphismen

4 Orthogonale Endormorphismen 4 Orthogonale Endormorphismen Frage: Bei welchen Abbildungen R R bzw. R 3 R 3 bleibt der Abstand zwischen zwei Punkten erhalten? Für α R setzen wir cosα sin α D(α) = und S(α) := sin α cosα ( cos α sin

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 5. Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

Vierte Schularbeit Mathematik Klasse 5B am 24. Mai 2018

Vierte Schularbeit Mathematik Klasse 5B am 24. Mai 2018 Vierte Schulareit Mathematik Klasse 5B am 4. Mai 018 KORREKTURVORLAGE Version 1.0 (13:41 evt. Noch Fehlerchen) Aufgae 1. (P) Zahlenmengen AG 1.1 Kreuzen Sie diejenige Menge an, zu welcher die Zahl 5 10

Mehr

3 Analytische Geometrie der Kongruenzabbildungen

3 Analytische Geometrie der Kongruenzabbildungen 3 Analytische Geometrie der Kongruenzabbildungen 4 3 Analytische Geometrie der Kongruenzabbildungen 3. Grundlagen, Begriffe, Schreibweisen 3.. Achsenkreuz Die Achsen heißen in dieser Darstellung x und

Mehr

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i TU Dresden Fakultät Mathematik Institut für Numerische Mathematik Lösung zur Aufgabe (b des Übungsblattes Ermitteln Sie on der folgenden Matrix alle (komplexen Eigenwerte und zu jedem Eigenwert einen zugehörigen

Mehr

Aufgabe 5: Analytische Geometrie (WTR)

Aufgabe 5: Analytische Geometrie (WTR) Abitur Mathematik: Nordrhein-Westfalen 203 Aufgabe 5 a) () PARALLELOGRAMMEIGENSCHAFTEN NACHWEISEN Zu zeigen ist, dass die gegenüberliegenden Seiten parallel sind, d. h. und. Zunächst ist 0 0 2 0, 3 2 0

Mehr

Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:

Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt: 5 Zur Geometrie euklidischer Bewegungen 5.1 Bewegungen Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:

Mehr

Definition, Abbildungsmatrix, Spiegelung, Projektion

Definition, Abbildungsmatrix, Spiegelung, Projektion Bau und Gestaltung, Mathematik 2, T. Borer Aufgaben 5-2/ Aufgaben 5 Lineare Abbildungen Definition, Abbildungsmatrix, Spiegelung, Projektion Lernziele - beurteilen können, ob eine gegebene Abbildung linear

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare und affine Abbildungen im zweidimensionalen Anschauungsraum R 2

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare und affine Abbildungen im zweidimensionalen Anschauungsraum R 2 Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare und affine Abbildungen im zweidimensionalen Anschauungsraum R Das komplette Material finden Sie hier: School-Scout.de S 1

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen und Matrizen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen und Matrizen Kapitel 2 Lineare Algebra II 2 Lineare Abbildungen und Matrizen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 2 Definition

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya Lineare Transformationen und Determinanten 10-E Ma 1 Lubov Vassilevskaya Lineare Transformation cc Definition: V und W sind zwei Vektorräume. Eine Funktion T nennt man eine lineare Transformation von V

Mehr

Th. Risse, HSB: MAI WS05 1

Th. Risse, HSB: MAI WS05 1 Th. Risse, HSB: MAI WS05 1 Einige Übungsaufgaben zur analytischen Geometrie & linearen Algebra viele weitere Übungsaufgaben mit Lösungen z.b. in Brauch/Dreyer/Haacke, Papula, Stingl, Stöcker, Minorski

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

09. Lineare Abbildungen und Koordinatentransformationen

09. Lineare Abbildungen und Koordinatentransformationen 09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ

Mehr

Vektoren, Skalarprodukt, Ortslinien

Vektoren, Skalarprodukt, Ortslinien .0 Gegeben sind die Punkte A(0/-4), C(0/4), sowie die Pfeile mit α [ 90 ; 90 ]. 4cosα AB = 4sinα+ 4. Zeichne die drei Punkte B, B und B 3 mit α { 30;0;30 } in ein KOS.. Zeige: 4cosα CB =. 4sinα 4.3 Zeige,

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul Lineare Abbildungen. Eigenwerte Lernumgebung. Teil Hans Walser: Modul, Lineare Abbildungen. Eigenwerte. Lernumgebung. Teil ii Inhalt Lineare Abbildung

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Crash-Kurs Komplexe Zahlen

Crash-Kurs Komplexe Zahlen 1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester 9 Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und

Mehr

13. Lineare Algebra und Koordinatenwechsel.

13. Lineare Algebra und Koordinatenwechsel. 3. Lineare Algebra und Koordinatenwechsel. In dieser Vorlesung behandeln wir die Vorzüge von Koordinatenwechseln. Insbesondere werden wir über geeignete Koordinatenwechsle zu einer Klassifikation der lineare

Mehr

Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise!

Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise! Aufgabe 2 Lagebeziehungen von Geraden im Raum Gegeben sind zwei Geraden g und h in 3. =( 3 Die Gerade g ist durch eine Parameterdarstellung X 4 2 Die Gerade h verläuft durch die Punkte A = (0 8 0 und B

Mehr

13 Lineare Abbildungen

13 Lineare Abbildungen 13 Lineare Abbildungen Grob gesprochen sind lineare Abbildungen bei Vektorräumen dasselbe wie Homomorphismen bei Gruppen, nämlich strukturerhaltende Abbildungen. Auch in diesem Kapitel seien V, W Vektorräume.

Mehr

KREISFUNKTIONEN. Allgemeines

KREISFUNKTIONEN. Allgemeines KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Gliederung 4 Invarianten Isometrien (Kongruenzen) Ähnlichkeitsabbildungen Affine Transformationen Projektive Transformationen 2 von

Mehr

D-CHAB Frühlingssemester 2018

D-CHAB Frühlingssemester 2018 D-CHAB Frühlingssemester 2018 Grundlagen der Mathematik II Dr Marcel Dettling Lösung 4 1) Nur für die folgenden Wahlen kann man das Produkt bilden: A A mit Dimension (2, 2) (2, 2) (2, 2): 1 2 A Y mit Dimension

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Einige Lösungsvorschläge für die Klausur zur Vorlesung

Einige Lösungsvorschläge für die Klausur zur Vorlesung Prof Klaus Mohnke Institut für Mathematik Einige Lösungsvorschläge für die Klausur zur Vorlesung Lineare Algebra und analtische Geometrie II* - SS 7 Aufgabe Im R mit dem Standardskalarprodukt ist die folgende

Mehr

2D-Punkt-Transformationen

2D-Punkt-Transformationen Zur Erinnerung Drehung eines beliebigen Punktes B um den Winkel θ um den Koordinaten-Ursprung zum Punkt B : x B r cosα y B r sin α [r, α: Hilfsgrößen ] x B r cos(α+θ) r (cosα cosθ sinα sinθ) x B cosθ y

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Dynamische Erkundungen zu. Affinen Abbildungen. mit dem Programm Geogebra

Dynamische Erkundungen zu. Affinen Abbildungen. mit dem Programm Geogebra Dynamische Erkundungen zu Affinen Abbildungen mit dem Programm Geogebra Günter Seebach, Hennef Günter Seebach: Dynamische Erkundungen zu Affinen-Abbildungen 24.10.2010 2 Inhaltsverzeichnis: 1. Vorbemerkung:...

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

a b b 1 b 2 bzgl. einer ONB (Orthonormalbasis) heißt der a 2 b 3 a 3 b 2 a 3 b 1 a 1 b b 3 a 1 b 2 a 2 b 1

a b b 1 b 2 bzgl. einer ONB (Orthonormalbasis) heißt der a 2 b 3 a 3 b 2 a 3 b 1 a 1 b b 3 a 1 b 2 a 2 b 1 VIII. Vektor- und Spatprodukt ================================================================== 8.1 Das Vektorprodukt -----------------------------------------------------------------------------------------------------------------

Mehr

Kapitel 19. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 19. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 9 Aufgaben Verständnisfragen Aufgabe 9. Man beweise: Zwei Vektoren u, v R \{} sind dann und nur dann zueinander orthogonal, wenn u + v = u + v ist. Aufgabe 9. Man beweise: Für zwei linear unabhängige

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME In diesem Abschnitt wiederholen wir zunächst grundlegende Definitionen und Eigenschaften im Bereich der Matrizenrechnung, die wahrscheinlich bereits in Ansätzen

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Affine Koordinatentransformationen

Affine Koordinatentransformationen Affine Koordinatentransformationen Medieninformatik IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Wintersemester 017/18 Andreas Unterweger (FH Salzburg) Affine Koordinatentransformationen

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner SS 0 Blatt 9 9060 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach Lösungsvorschlag a Die gegebene Matrix

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

Aufgaben zu Kapitel 19

Aufgaben zu Kapitel 19 Aufgaben zu Kapitel 9 Aufgaben zu Kapitel 9 Verständnisfragen Aufgabe 9. Man beweise: Zwei Vektoren u, v R \{} sind dann und nur dann zueinander orthogonal, wenn u + v = u + v ist. Aufgabe 9. Man beweise:

Mehr

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y 4 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 4 Projektionen 4. Parallelprojektion (a) Senkrechte Projektion auf eine Koordinatenebene Wir wählen als Projektionsebene die Ebene, d. h. in den Beeichnungen

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 2012-05-30 Korrektur: Kugelkoordinaten II r und θ konstant: Rand einer Kreisscheibe parallel zur xy Ebene z θ fest y θ konstant, r R : Kegel, ausgehend

Mehr

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014

Prüfungsteil B, Aufgabengruppe 1, Geometrie. Bayern Aufgabe 1. a b. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014 Abitur Mathematik Bayern Prüfungsteil B; Aufgabengruppe : Bundesabitur Mathematik: Prüfungsteil B, Aufgabengruppe, Bayern Aufgabe a) SCHRITT: BERECHNUNG DER VEKTOREN AB UND AC Den Flächeninhalt eines Dreiecks

Mehr

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2.

Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält. Re (z) = Im (z) = ,5 3 M 1. = y z x 2 + y 2. Aufgabe (8 Punkte (a der Realteil von z +i 4 i zu bestimmen. z + i ( + i(4 + i + i 4 i + i.,5 Aus dieser Darstellung lassen sich der Real- und Imaginärteil von z ablesen, man erhält Re (z Im (z.,5 (b (b

Mehr

Hans Delfs. Übungen zu Mathematik III für Medieninformatik

Hans Delfs. Übungen zu Mathematik III für Medieninformatik Hans Delfs Übungen zu Mathematik III für Medieninformatik 1 RÄUMLICHE DARSTELLUNGEN VON OBJEKTEN 1 1 Räumliche Darstellungen von Objekten Der Einheitswürfel ist der achsenparallele Würfel in A 3, der von

Mehr

A = Eine symmetrische Matrix ist gleich ihrer transponierten Matrix: A t = A

A = Eine symmetrische Matrix ist gleich ihrer transponierten Matrix: A t = A Hans Walser, [07] Smmetrische Matri Die Matri Wir arbeiten mit der smmetrischen Matri: A = 3 6 Eine smmetrische Matri ist gleich ihrer transponierten Matri: A t = A Die Abbildung. Verzerrungsellipse Wir

Mehr

5. Aufgabe Seien s, t beliebige Parameter. Unter welcher Bedingung sind die Vektoren s t

5. Aufgabe Seien s, t beliebige Parameter. Unter welcher Bedingung sind die Vektoren s t Studiengang: PT/LOT/PVHT Algebra Serie Semester: WS 0/ Thema: Vektoralgebra. Aufgabe Seien a, b und c Vektoren der Ebene. Veranschaulichen Sie durch eine Skizze das: ( Assoziativgesetz: a + ) ( ) b + c

Mehr

Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag

Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 08 Blatt 9.06.08 Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag 33. a Es ist cos ϕ sin ϕ cos

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik I+II Frühlingsemester 219 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 46 8. Lineare Algebra: 5. Eigenwerte und

Mehr

1 Vektoren Wiederholung 1. 2 Lineare Abbildungen 4. 3 Matrizen 6. 4 Das Matrixprodukt 9. 5 Die Umkehrabbildung Eigenwerte und Eigenvektoren 15

1 Vektoren Wiederholung 1. 2 Lineare Abbildungen 4. 3 Matrizen 6. 4 Das Matrixprodukt 9. 5 Die Umkehrabbildung Eigenwerte und Eigenvektoren 15 Lineare Algebra Bedanken möchte ich mich bei Bernhard Ruh und Christoph Drollinger, deren Skripte als Vorlagen für diese Ausarbeitung dienten Die Anteile von Christoph Drollinger wurden von Salvatore Bonaccorso

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 7 Vektoren Aufgabe 7 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Elliptische Integrale und das allgemeine geometrische Mittel (agm):

Elliptische Integrale und das allgemeine geometrische Mittel (agm): Elliptische Integrale und das allgemeine geometrische Mittel (agm): Typische Aufgaen der Analysis waren im 8. Jahrhundert nach der Erfindung der Differential- und Integralrechnung durch Leiniz und Newton,

Mehr

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 0 Tom Ilmanen Musterlösung 2. Falls b := (v,,v n ) eine Orthonormalbasis von V ist, dann lassen sich die Komponenten von einem Vektor v = n i= t i v i bezüglich

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS / Knipping R Naen R Patterson M Scheutzow 44 April Klausur ineare Algera für Ingenieure ösungsskizze Aufgae Punkte Gegeen seien die

Mehr

Elementare Geometrie Vorlesung 18

Elementare Geometrie Vorlesung 18 Elementare Geometrie Vorlesung 18 Thomas Zink 26.6.2017 1.Bild eines Vektors bei einer affinen Abbildung Es sei f : E E eine affine Abbildung von Ebenen. Es sei v ein Vektor der Ebene E, d.h. eine Translation.

Mehr

Übungsblatt 3 (Vektorgeometrie)

Übungsblatt 3 (Vektorgeometrie) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik- und Naturwissenschaft Übungsblatt (Vektorgeometrie Roger Burkhardt 08 Mathematik. Aufgabe Gegeben seien die Vektoren

Mehr

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y

Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. x y Aufgabe 1 Untersuchen Sie, ob die folgenden Abbildungen linear oder nicht linear sind. (( )) 3x x (a) Sei f : R 2 R 3 mit f = 2y + x y x y ( ) 4 (b) Sei f : R R 2 mit f(x) = x + 1 (( )) ( ) x x y (c) Sei

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Münchner Volkshochschule. Planung. Tag 07

Münchner Volkshochschule. Planung. Tag 07 Plnung Tg 07 Folie: 158 Themen Logik und Mengenlehre Zhlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Eene

Mehr

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - en Kommentare an HannesKlarner@FU-Berlinde FU Berlin SS 1 Dia- und Trigonalisierbarkeit Aufgabe (1) Gegeben seien A = i i C 3 3 und B = 1

Mehr

Übung (5) 4x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0

Übung (5) 4x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0 Übung (5). Lösen Sie folgendes lineare Gleichungssystem - sagen Sie zuvor, wie die Lösungsmenge aussehen sollte bzw. geometrisch zu interpretieren wäre: 4x y +u 3v = 3x u + v =0 x +3y u +v =0. Sagen Sie

Mehr

Übung (5) 2x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0

Übung (5) 2x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0 Übung (5) 1. Lösen Sie folgendes lineare Gleichungssystem - sagen Sie zuvor, wie die Lösungsmenge aussehen sollte bzw. geometrisch zu interpretieren wäre: x y +u v =1 x u + v =0 x +y u +v =0. Sagen Sie

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr