Chaos Seminar Wetter und Klima. Dominik Fröschl

Größe: px
Ab Seite anzeigen:

Download "Chaos Seminar Wetter und Klima. Dominik Fröschl"

Transkript

1 Chaos Seminar Wetter und Klima Dominik Fröschl

2 Inhaltsverzeichnis 1 Einleitung Vorbemerkungen Begriffsklärung Entstehung der modernen Disziplin Ziel der Chaosforschung Deterministisches Chaos Beispiele Die Logistische Funktion Das nichtlineare Drehpendel Attraktoren Das Lorentz-Modell Fraktale Mandelbrot-Menge Julia-Menge Fraktale Dimension Boxcounting-Methode Yardstick-Methode Motivation Fazit 13 2

3 1 Einleitung 1.1 Vorbemerkungen In den letzten Jahrzehnten hat der Begriff der Chaostheorie, sowohl im allgemeinen Sprachgebrauch, als auch in der Physik immer mehr an Bedeutung gewonnen. Welche Unterschiede hierbei jedoch bestehen ist Gegenstand dieses Vortrages, genauso wie die Untersuchung chaotischer Phänomene und deren Auswirkungen auf unsere Umwelt und die Vorhersage natürlicher Phänomene. 1.2 Begriffsklärung Das Wort Chaos, oder auch sein hebräisches Gegenstück Tohuwabohu, stehen im heutigen Sprachgebrauch gemeinhin für Unordnung. Diese Definition liegt aufgrund der etymologischen Herkunft des Wortes nahe. So verwendeten die alten Griechen ihr Wort χαoσ für den Urstoff. Also alles was sich im Universum befand, bevor die Ordnung, der Kosmos (κoσµoσ ), einkehrte. In der Physik hingegen ist Chaos heute ein terminus technicus. Hier bezeichnet er, ganz im Gegenteil zur landläufigen Meinung, nicht die Abwesenheit von Ordnung, sondern lediglich, dass ein System nicht erkennbar ist. Fasst man diese Folgerung also zusammen: Unter Chaos versteht man nicht die Abwesenheit von Ordnung, aber die Unvorhersehbarkeit eines Systems, aufgrund unzureichender Kenntnis über dessen Ausgangszustand! 1.3 Entstehung der modernen Disziplin Die Grundidee der Chaostheorie beruht bereits auf einer Aussage von Laplace, nach der das Universum in alle Ewigkeit voraussagbar wäre, würde man den gasamten Zusatnd aller Teilchen zu einem gegebenen Zeitpunkt kennen. Basierend darauf, sowie der Forschung der Mathematiker und Physiker des 19. Jahrhunderts, stellte König Oskar II von Schweden 1885 eine Preisfrage nach der Stabilität unseres Sonnensystems. Vergeben wurde dieser Preis allerdings erst 15 Jahre später an Henri Poincaré für seine Entwicklung, des nach ihm benannten, Poincaréschnittes. Weiterhin zeigte er bereits das schon in einfachen Systemen mit drei Körpern, bei minimalen Veränderungen der Anfangsbedingungen, völlig unterschiedliche Ergebnisse auftreten. Hierbei kann bemerkt werden dass der Physiker Ströntgen von 1900 bis Mitarbeiter beschäftigte, allein zum Zweck eine Vielzahl von Ergebnissen des Dreikörperproblems zu berechnen. Ein weiteres Teilgebiet der Chaostheorie stellt die Betrachtung von Fraktalen 3

4 dar. Diese folgte der Enwicklung der Iterationsmathematik zu Beginn des 20. Jahrhunderts und inspirirte zum Beispiel Gaston Julia und Mitchell Feigenbaum zu ihren Entdeckungen. Nach den 20er Jahren wurde es jedoch ruhig um die Chaosforschung und es sollte bis 1961 dauern, da Edward Lorentz seine Forschungen der Turbulenzen und einfacher Wettermodelle aufnahm. Lorentz war es auch der erstmals den, so häufig ziterten, Butterfly-Effect publizierte. Also die Tatsache, dass schon der Flügelschlag eines Schmetterlings andernorts Stürme auslösen könne. Dies begründet den Anfang der modernen Chaosforschung. 1.4 Ziel der Chaosforschung Die Chaostheorie studiert das Verhalten von dynamischen Systemen, welche extrem sensitiv auf eine Veränderung ihrer Anfangswerte reagieren. Es geht hierbei also um Systeme, welche eigentlich durch ihre Anfangsbedingungen definiert wären, in denen allerdings kleinste Störungen exponentiell anwachsen, was sie langfristig nicht vorhersehbar macht (Deterministisches Chaos). Chaos tritt also nur in nichtlinearen Systemen auf. Wichtig ist wiederum die Tatsache, dass dies mitnichten vom Zufall abhängig ist. 4

5 2 Deterministisches Chaos Betrachten wir nun einige Beispiele für chaotisches Verhalten 2.1 Beispiele Die Logistische Funktion Diese wurde 1838 vom belgischen Mathematiker Pierre-François Verhulst veröffentlicht. Dieser beschäftigte sich im Rahmen seiner Betrachtung von Glückspiel mit der Auswertung von Statistiken und deren mathematischer Beschreibung. Die Logistische Gleichung N(t + 1) = c N(t) (1 N(t) K ) stellt somit eine generelle Beschreibung einer exponentiell wachsenden Population dar. Hierbei ist es unerheblich ob von Einzellern, Pflanzen, Tieren oder Menschen ausgegangen wird. K stellt in jedem Fall den begrenzenden Faktor dar, also beispielweise Nahrungsknappheit oder Platzmangel. Möchte man diese Formel nun rein mathematisch betrachten eignet sich eine simple Umformung um die Gleichung wie folgt darzustellen: f(x) = x c x c x 2 Man lässt diese Funktion nun für verschiedene c vom Computer iterieren und stellt hierbei Erstaunliches fest. In Bereichen von beispielsweise c = 2 pendelt sich die Funktion stets auf einen Fixpunkt ein. Überschreitet man allerdings die Grenze von c = 3.17, lässt sich kein stabiler Fixpunkt mehr ausmachen, die Funktion springt zwischen 2 Werten. Weitere Bifurkationen, oder Verzweigungen lassen sich bei c = 4 oder c = 8 finden. Es tritt also eindeutig chaotisches Verhalten auf. Zur besseren Veranschaulichung wertet man die erhaltenen Ergebnisse nun 5

6 graphisch aus. Man erhöht c schrittweise und trägt nach ablaufen der Einschwingvorgänge die erhaltenen Werte auf. Dies resultiert in einem Feigenbaum- Diagramm, benannt nach Mitchell Feigenbaum Das nichtlineare Drehpendel Betrachten wir nun ein bekanntes physikalische Beispiel - das nichtlineare Drehpendel. Dies wird bekannterweise durch folgende Differentialgleichung beschrieben: α = kα γ α + mgr sin α + A sin ωt Hierzu gehört ein Doppelmuldenpotential. Die einzelnen Summanden der Gleichung beschreiben der Reihenfolge nach die Rückstellkraft der Feder, den linearen Dämpfungsterm, den nichtlinearen Term der Gravitationskraft, sowie den Antrieb durch einen Frequenzgenerator. Startet man mit einer hohen Anregung schwingt das Pendel in einer der Potentialmulden annähernd harmonisch. Verringert man allerdings die Frequenz entsteht wiederum chaotisches Verhalten. Betrachtet man eine Auftragung der Umkehrpunkte gegen die Anregungungsfrequenz entsteht wiederum ein Feigenbaumdiagramm. 6

7 Die Ähnlichkeit zum bereits gesehenen Diagramm im Bezug auf die Logistische Funktion ist kein Zufall konnte von Feigenbaum selbst gezeigt werden, dass ein solches Diagramm für eine große Klasse von Systemen erstellt werden kann. Ferner entdeckte er in diesem Zusammenhang die, ebenfalls nach ihm benannte, Feigenbaum-Konstante (k = ), welche ein Verhältnis der Werte zwischen zwei Phasenverdopplungen beschreibt. Dies stellt bis heute ein wichtiges Kriterium zur Erkennung chaotischen Verhaltens in physikalischen Systemen dar. Betrachtet man an dieser Stelle noch kurz den Phasenraum des Drehpendels und schneidet diesen mit einer Ebene entlang der α und α Achsen, betrachtet also diese zu einer jeweiligen festen Anregungsphase, würde man eigentlich ein chaotisches Bild erwarten. Allerdings ergibt sich ein verblüffend regelmäßiges Muster. 2.2 Attraktoren Betrachtet man Attraktoren allgemein erschließen sich leicht einige Charakteristika. Zum Ersten stellt ein Attraktor eine Punktmenge dar, die stabil unter dem Fluß einer Differentialgleichung ist. Ausserdem wird jeder Attraktor bereits von einer einzelnen Lösungskurve erzeugt. Weiterhin gilt, dass sich Startpunkte eines definierten Gebietes beliebig weit annähern. Attraktoren wie sie hier betrachtet werden, treten nur in dissipativen Systemen auf. Der Physik ist natürlich auch der Begriff des hamiltonischen Chaos bekannt, da allerdings die Erde, deren Wetterbetrachtung ja das größere Ziel dieser Auftragsreihe ist, ein dissipatives System darstellt, lässt man dieses aussen vor. Möchte man nun Beispiele für Attraktoren sind diese nicht schwer zu finden. Einfachsterweise betrachte man einen Punktattraktor, weil er zum Beispiel von der Ruhelage eines ungetriebenen gedämpften Pendels erzeugt wird. Dieser ist 0-dimensional. Ein weiteres Beispiel ist die 2-dimensionale Oberfläche 7

8 eines Torus. Hier ist der Poincaré-Schnitt ein Kreis. Wichtig Für die Beschreibung des folgenden Lorentz-Modelles werden die sogenannten Strange Attractors sein. Diese unterscheiden sich von anderen Attraktoren, durch den, bereits im Zusammenhang mit den Zielen der Chaostheorie beschriebenen, Umstand dass Abstände benachbarter Punkte exponentiell auseinander wachsen. Dies führt uns zu einem kurzen Exkurs in die Mathematik. Exkurs: Theorem von Poincaré-Bendixson Nach diesem Theorem ist die Entstehung eines Strange Attractors nur möglich falls der Phasenraum eine Dimension größer als zwei bestitzt. Genauer besagt das Theorem: Sei F ein zwei-dimensionales dynamisches System, das durch (ẋ, ẏ) = (f(x, y), g(x, y)) gegeben ist. f und g stetig diff bar anch x und y. Sei S eine geschlossene beschränkte Untermenge des zweidimensionalen Phasenraums von F, die keinen stationären Punkt von F enthält, und sei C eine Bahnkurve von F, die S nie verlässt. Dann ist C entweder ein Zykel oder C konvergiert gegen einen Zykel. Wichtig ist nun für unsere Aussage, dass dies für Dimensionen größer als zwei versagt, (siehe auch Beweis für jordan schen Kurvensatz), weshalb der Fall eintritt welcher in unserem Kontext zu einer chaotischen Bewegung führt. 2.3 Das Lorentz-Modell Edward Lorentz entwickelte dieses Modell Er studierte, um die auf der Erde herrschenden Konvektionen besser zu verstehen, die Rayleigh-Bénard- Konvektion. Hierbei befindet sich eine Flüssigkeit zwischen zwei Platten unendlicher Ausdehnung, von denen Eine gekühlt, die Andere erhitzt wird. 8

9 Bis zu einer gewissen Temperatur findet die Übertragung von Wärme lediglich über Molekülstöße statt. Wird allerdings die kritische Temperatur überschritten, entstehen in der Flüssigkeit Konvektionsrollen. (Näheres hierzu siehe Vortrag Turbulenzen) Diese Konvektionen können durch komplexe Differentialgleichungen beschrieben werden. Durch Lösungsansätze lassen sich diese in Fourierreihen entwickeln. Lorentz betrachtete der Einfachheit halber nur einen sehr kleinen Frequenzbereich und errechnete hierbei folgendes Gleichungssytem. Ẋ = σx + σy Ẏ = XZ + τx Y Ż = XY βz Diese lies er nun iterieren und stellte hierbei fest dass sich völlig andere Ergebnisse ergaben, rundete man Zwischenergebnisse. Die Auftragung der Bahnen im Phasenraum ergeben das klassische Bild eines Lorentz-Attraktors. 9

10 3 Fraktale Fraktal vom lat. fractus: gebrochen, ist ein von Benoît Mandelbrot geprägter Begriff für selbstähnliche Strukturen. Bekannte Fraktale sind beispielsweise das Sierpinski-Dreieck, der Pythagorasbaum oder auch in der Natur vorkommend, Blumenkohl bzw. die damit verwandte Züchtung Romanesco. Ausserdem zählen die Mandelbrot- und Julia-Mengen zu den Fraktalen auf die im Folgenden noch näher eingegangen wird Mandelbrot-Menge Die Mandelbrot-Menge wird von einer Recht simpel anmutenden Funktion erzeugt. z z 2 + c Zur Beschreibung wendet man nun eine einfaches iteratives Verfahren an. Man beginnt hierzu bei z 0 = 0 und betrachtet alle Werte von c aus einem Kreis um (0/0) mit Radius 2. Konvergiert nun die Funktion zu einem c wird dieses c in der komplexen Zahlenebene mit einem schwarzen Punkt markiert. Dies kann prinzipiell unendlich vortgesetzt werden. Man erhält also ein Bild das wie folgt aussieht Julia-Menge Das Konstrukt der Julia-Menge ist dem der Mandelbrotmenge nicht unähnlich, liegt ihm doch die identische Funktion zugrunde. Allerdings betrachtet man in diesem Fall ein festes c und variiert die Anfangswerte z 0, weshalb man 10

11 für jede Konstante eine eigene Julia-Menge erhält. Für c = 0, , 312i: 3.1 Fraktale Dimension Wie wir bereits zu einem früheren Zeitpunkt festgestellt haben, trifft man bei der Betrachtung von Attraktoren und Fraktalen auf nicht ganzzahlige Dimensionen. Möchte man z.b. den Rand der Mandelbrotmenge abwickeln erhält man eine unendlich lange Strecke, welche also eine Dimension größer 1 hat. Allerdings ist die Fläche dieser Menge 0 was wiederum für eine Dimension kleiner zwei spricht. Aus diesem Grund greift man zur Klassifizierung auf den Begriff der Fraktalen Dimension zurück. Es gibt im Großen und Ganzen zwei Methoden zur Bestimmung der Fraktalen Dimension eines Objektes Boxcounting-Methode Man legt über das zu bestimmende Objekt bzw. die zu bestimmende Kurve ein quadratisches Gitter mit Zellenbreite ɛ. Daraufhin zählt man alle Quadrate, welche einen Teil der Kurve berühren und errechnet aus diesen beiden Parametern N (Anzahl der Quadrate) und ɛ (Breite der Quadrate) anhand folgender Formel die Dimension. D = lim ɛ 0 log N(ɛ) log 1 ɛ 11

12 3.1.2 Yardstick-Methode Hierbei wählt man sich wiederum ein ɛ welches als Kreisradius dient, mit dem daraufhin die Kurve abgezirkelt wird. Schnittpunkte von Kreisen werden hierbei wieder zu Mittelpunkten neuer Kreise, bis die Kurve vollständig überdeckt ist. Die Dimension errechnet sich nun wiederum nach obiger Formel, mit dem minimalen Unterschied, dass es sich nun bei N und ɛ um die Anzahl der Kreise und deren Radius handelt. 3.2 Motivation Warum ist nun die Betrachtung von Fraktalen für die Chaostheorie interessant? Seltsame Attraktoren haben fraktale Dimensionen. Untersucht man also eine Kurve im Phasenraum und entdeckt hierbei eine fraktale Dimension größer zwei, ist dies ein Anzeichen chaotischen Verhaltens. Beispielsweise kann die Zeitreihe einer einzelnen Variablen in einen n-dimensionalen Phasenraum eingebettet werden, um so die fraktale Dimension der Kurve zu messen. Ist diese unabhängig von der gewählten Einbettung, kann auf diese Weise die Dimension des zugehörigen Attraktors bestimmt, und Chaos nachgewiesen werden. 12

13 4 Fazit Es wurden nun einfache Systeme mit wenigen Freiheitsgraden untersucht. Wettervorhersagen gestaltet sich natürlich ungleich komplexer, da es sich um ein System mit unendlich vielen Freiheitsgraden handelt. Weiterhin werden die ablaufenden Prozesse durch nichtlineare Dirrerentialgleichungen beschrieben, zeigen also chaotisches Verhalten, was also Chaostheorie für die Wetterbetrachtung interessant macht. Und schließlich treten auch in der Natur in vielfältigerweise Fraktale auf, wie beispielsweise der bereits angsprochene Blumenkohl, aber auch Ränder von Wolkenfeldern oder die Küste Norwegens. 13

14 Literatur 1. Schuster, Heinz-Georg: Deterministic Chaos 2. McGoodwin, Michael: Julia Jewels 3. Mandelbrot, Benoît: Persönliche Homepage (Yale) 4. Bergman, Jonas: Knots in the Lorentz Equation 5. Wikimedia: Bildquelle 6. Hans, Erich: Das Pohlsche Rad

Deterministisches Chaos

Deterministisches Chaos Deterministisches Chaos Um 1900 Henri Poincaré: Bewegung von zwei Planeten um die Sonne kann zu sehr komplizierten Bahnen führen. (chaotische Bahnen) Seit ca. 1970 Entwicklung der Chaostheorie basierend

Mehr

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis Die Chaostheorie a) Geschichtliche Betrachtung i. Das mechanistische Naturbild ii. Zweikörperproblem iii. Dreikörperproblem iv. Lagrange-Punkte v. Entdeckung des Chaos b) Die Chaostheorie i. Eigenschaften

Mehr

Chaotische Systeme. ViLab. Marian Panten

Chaotische Systeme. ViLab. Marian Panten Chaotische Systeme ViLab Marian Panten Einleitung Geschichte Übersicht Merkmale und Eigenschaften Beispiele und Anwendungen Schluss 26. November 2003 - = Marian Panten - Chaotische Systeme = - 2 Einleitung

Mehr

HARMONIK ZWISCHEN ORDNUNG UND CHAOS

HARMONIK ZWISCHEN ORDNUNG UND CHAOS HARMONIK ZWISCHEN ORDNUNG UND CHAOS Grundstrukturen der Natur und ihre Wahrnehmung durch den Hörenden Menschen Vortrag auf dem Harmonik-Symposion 2010 am 2. Mai 2010 Hans G. Weidinger 1. Was ist Harmonik?

Mehr

FC3 - Duffing Oszillator

FC3 - Duffing Oszillator FC3 - Duffing Oszillator 4. Oktober 2007 Universität Paderborn - Theoretische Physik leer Autor: Stephan Blankenburg, Björn Lange Datum: 4. Oktober 2007 FC3 - Duffing Oszillator 3 1 Theorie komplexer Systeme

Mehr

8. Deterministisches Chaos

8. Deterministisches Chaos 8. Deterministisches Chaos Widerspruch: deterministisch chaotisch Schmetterlingseffekt: Der Flügelschlag eines Schmetterlings entscheidet über die Entwicklung eines Sturms. Allgemein: kleinste Änderungen

Mehr

Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos. Wintersemester 2018/ M. Zaks

Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos. Wintersemester 2018/ M. Zaks Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos Wintersemester 2018/19 22.01.2019 M. Zaks hintergrund Kontext: Wettervorhersage. Entstehung von Luftbewegungen infolge der thermischen

Mehr

Nichtlineare Dynamik Einführung

Nichtlineare Dynamik Einführung Nichtlineare Dynamik Einführung Tobias Kerscher gekürzte Internetversion (ohne fremde Bilder) Sommerakademie Ftan 2004, 13. August Gliederung 1. Def: Nichtlineare Physik 2. Typische Beispiele 3. Dynamische

Mehr

Fraktale und Beispiele aus der Physik

Fraktale und Beispiele aus der Physik Fraktale und Beispiele aus der Physik Anschauung Warum beschäftigen Fraktale (auch) Naturwissenschaftler? kurze Wiederholung Konkretes Beispiel: Magnetpendel Das Experiment Mathematische Beschreibung Trajektorien

Mehr

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt.

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. 11. Nichtlineare Dynamik und Chaos Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. der Auslenkung Fadenlänge L, Masse m, Auslenkwinkel φ Rücktreibende Kraft: Beschleunigung:

Mehr

Chaos - Nichtlineare Dynamik

Chaos - Nichtlineare Dynamik Äg Chaos - Nichtlineare Dynamik Renate Thies Universität Dortmund - Fachbereich Informatik Lehrstuhl für Systemanalyse (LS11) Sommersemester 2004 Chaos - Nichtlineare Dynamik 1/102 Inhaltsverzeichnis Äg

Mehr

Ökologische Gleichungen für zwei Spezies

Ökologische Gleichungen für zwei Spezies Ökologische Gleichungen für zwei Spezies Florian Kern 06.Dezember 2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kapitel 4 Inhaltsverzeichnis 1 Satz von der

Mehr

Seltsame Attraktoren

Seltsame Attraktoren 1 Seltsame Attraktoren Proseminar: Theoretische Physik Jonas Haferkamp 9. Juli 2014 Abbildung: Poincaré-Schnitt der Duffing-Gleichungen 2 3 Gliederung 1 Motivation 2 Was ist ein (seltsamer) Attraktor?

Mehr

6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität

6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität 6.1 Beispiele dissipativer Systeme Der Duffing Ozillator z.b. für (Ueda Oszillator) Potential Bewegungsgleichung: Nichtlinearität nur zwei Parameter Kartierung des Verhaltens in der (f,r)- Ebene äußerst

Mehr

Wie lang ist die Küste Großbritanniens?

Wie lang ist die Küste Großbritanniens? Wie lang ist die Küste Großbritanniens? Vortrag am 16.01.2009 Fach: Physik Deterministisches Chaos Ein Vortrag von Tina Rosner und Florian Sachs Werner-von-Siemens-Gymnasium Magdeburg Gliederung 1 Das

Mehr

Nichtlinearität in der klassischen Physik

Nichtlinearität in der klassischen Physik Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................

Mehr

( ) Diskretes dynamisches Chaos. 1. Einleitung: Diskrete dynamische Systeme

( ) Diskretes dynamisches Chaos. 1. Einleitung: Diskrete dynamische Systeme Diskretes dynamisches Chaos. Einleitung: Diskrete dynamische Systeme Verschiedene Problemstellungen können zu zeitlich diskreten Systemen (Differenzengleichungen) führen: Zinseszinsrechnung: x(n+) = x(n)

Mehr

Dynamisches Chaos. 1. Einleitung: Determinismus und Chaos

Dynamisches Chaos. 1. Einleitung: Determinismus und Chaos Dynamisches Chaos 1. Einleitung: Determinismus und Chaos In der üblichen Betrachtungsweise ist der Zufall nur auf dem Mikroniveau erlaubt: - das Boltzmannsche molekulare Chaos; - die quantenmechanischen

Mehr

1 Nicht-lineare dynamische Systeme

1 Nicht-lineare dynamische Systeme 1 Nicht-lineare dynamische Systeme 1.1 Charakteristika linerarer Systeme Superpositionsprinzip: Sind x 1 und x Lösungen eines linearen Systems, dann ist auch α 1 x 1 + α x eine Lösung. Berühmte Beispiele:

Mehr

Chaos im getriebenen nicht-linearen Pendel

Chaos im getriebenen nicht-linearen Pendel Chaos im getriebenen nicht-linearen Pendel Alle drei Ingredienzen: Nichtlinearität, Reibung, treibende Kraft 2 d θ g dθ = sinθ q + F sin 2 dt L dt ( t) D Ω D Das ist ein so genanntes physikalisches Pendel

Mehr

Die Chaostheorie und Fraktale in der Natur

Die Chaostheorie und Fraktale in der Natur Hallertau-Gymnasium Wolnzach Abiturjahrgang 2009/2011 Facharbeit aus dem Leistungskurs Physik Die Chaostheorie und Fraktale in der Natur Eine physikalisch-philosophische Abhandlung über das Wesen der Natur

Mehr

Jan Henrik Sylvester. 10. Februar 2003

Jan Henrik Sylvester. 10. Februar 2003 Seminar über gewöhnliche Differentialgleichungen Chaos in eindimensionalen diskreten dynamischen Systemen: Das Feigenbaum-Szenario Die logistische Abbildung Jan Henrik Sylvester 10. Februar 2003 1 Die

Mehr

SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle

SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle Universität Koblenz-Landau Fachbereich 7: Natur-und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle 1. Zeitdiskrete

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Juliamengen und Mandelbrotmenge

Juliamengen und Mandelbrotmenge Xin Xu Florian Pausinger 18. Januar 2008 Inhaltsverzeichnis 1 Mathematische Grundlagen Komplexe Zahlen Über Iterationen und beschränkte Folgen 2 Quadratische Familie Bildbeispiele 3 Charakterisierung Über

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 7. Zeitdiskrete Modelle 7.1

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

GRUNDLEGENDE MODELLE. Caroline Herbek

GRUNDLEGENDE MODELLE. Caroline Herbek GRUNDLEGENDE MODELLE Caroline Herbek Lineares Wachstum Charakteristikum: konstante absolute Zunahme d einer Größe N t in einem Zeitschritt Differenzengleichung: N t -N t-1 =d => N t = N t-1 +d (Rekursion)

Mehr

System von Differentialgleichungen erster Ordnung

System von Differentialgleichungen erster Ordnung System von Differentialgleichungen erster Ordnung Die Standardform eines Systems von Differentialgleichungen ist u (t) = f (t, u(t)) mit der Anfangsbedingung u(t 0 ) = a. Dabei ist u = (u 1,..., u n )

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Wir betrachten die zeitliche Entwicklung einer Population N (z.b. die Zahl der Fische in einem Teich). Es gilt dn dt wobei die Symbole bedeuten:

Wir betrachten die zeitliche Entwicklung einer Population N (z.b. die Zahl der Fische in einem Teich). Es gilt dn dt wobei die Symbole bedeuten: Kapitel 3 Nichtlineare Systeme 3. Logistische Gleichung Wir betrachten die zeitliche Entwicklung einer Population N (z.b. die Zahl der Fische in einem Teich). Es gilt dn dt wobei die Symbole bedeuten:

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

BERÜHMTE KURVEN Logarithmische Spirale. Die Logarithmische Spirale wird durch eine Gleichung in Polarkoordinaten angegeben: r(φ)=a*e k φ

BERÜHMTE KURVEN Logarithmische Spirale. Die Logarithmische Spirale wird durch eine Gleichung in Polarkoordinaten angegeben: r(φ)=a*e k φ BERÜHMTE KURVEN Gruppenleiter: Jürgen Appell, Kristina Appell, Anna Martellotti Hilfskräfte: Alison Cross, Ruth Smith Teilnehmer(innen): Ann-Christin Gerstner, Matthias Geuder, Michael Kierstein, Lukas

Mehr

Herbert Zeitler Wolfgang Neidhardt. Fraktale und Chaos. Eine Einführung. Wissenschaftliche Buchgesellschaft Darmstadt

Herbert Zeitler Wolfgang Neidhardt. Fraktale und Chaos. Eine Einführung. Wissenschaftliche Buchgesellschaft Darmstadt Herbert Zeitler Wolfgang Neidhardt Fraktale und Chaos Eine Einführung Wissenschaftliche Buchgesellschaft Darmstadt f INHALT Einleitung 1 I. Iteration reeller Funktionen und Chaos in dynamischen Systemen.

Mehr

Diskrete Populationsmodelle für Einzelspezies

Diskrete Populationsmodelle für Einzelspezies Diskrete Populationsmodelle für Einzelspezies Lisa Zang 30.10.2012 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Inhaltsverzeichnis 1. Einführung Einfache Modelle

Mehr

Bedeutende Theorien des 20. Jahrhunderts

Bedeutende Theorien des 20. Jahrhunderts Bedeutende Theorien des 20. Jahrhunderts Ein Vorstoß zu den Grenzen von Berechenbarkeit und Erkenntnis Quantenmechanik - Relativitätstheorie - Gravitation - Kosmologie - Chaostheorie - Prädikatenlogik

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

Die Euler-Mascheroni-Konstante

Die Euler-Mascheroni-Konstante Die Euler-Mascheroni-Konstante Niloufar Rahi Ausarbeitung zum Vortrag in Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Wenn von der

Mehr

Experimente, Ideen und Entwicklung der Chaostheorie

Experimente, Ideen und Entwicklung der Chaostheorie Experimente, Ideen und Entwicklung der Chaostheorie Stephan Lück Ursprünge der Chaostheorie Edward Lorenz (1917-2008) Meteorologe einfaches Atmosphärenmodell (ca. 1960) basierend auf Konvektion Modellexperiment

Mehr

Chaos Oder Mandelbrot und Peitsche

Chaos Oder Mandelbrot und Peitsche Chaos Oder Mandelbrot und Peitsche Warum kann man das Wetter nicht genau vorhersagen? Du kennst sicher das Problem: du planst mit deiner Familie ein Picknick, dass in letzter Minute abgesagt werden muss,

Mehr

Beispiele. Strecke A R 1 (genauso für R d ):

Beispiele. Strecke A R 1 (genauso für R d ): Definition 6.1.1 (fraktale Dimension). Sei A R d beschränkt und für ε > 0 sei N A (ε) die minimale Anzahl der d-dimensionalen Kugeln vom Radius ε, mit denen A überdeckt werden kann. Die fraktale Dimension

Mehr

Newton-Verfahren und Komplexe Dynamik I

Newton-Verfahren und Komplexe Dynamik I Johannes Gutenberg-Universität Mainz Institut für Mathematik, FB08 Hauptseminar: Eine Einladung in die Mathematik Newton-Verfahren und Komplexe Dynamik I Paul Klimek betreut von Prof. Dr. Mária Lukácová-Medvidová

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Dynamik hüpfender Bälle

Dynamik hüpfender Bälle 1 Dynamik hüpfender Bälle Proseminar: Theoretische Physik Florian Döhle 2. Juli 2014 2 Video Chaotische Bewegung Video Periodische Bewegung 3 Gliederung 1 Motivation 2 Aufstellen und Fixpunktanalyse der

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Gewöhnliche Differentialgleichungen: Einleitung

Gewöhnliche Differentialgleichungen: Einleitung Gewöhnliche Differentialgleichungen: Einleitung Die Sprache des Universums ist die Sprache der Differentialgleichungen. 1-E1 Faszinierender Anwendungsreichtum cc 1-E2 Wie verstanden die Alten das Naturgesetz?

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

REFERAT FÜR INNOVATIVE ARCHIKETUREN

REFERAT FÜR INNOVATIVE ARCHIKETUREN REFERAT FÜR INNOVATIVE ARCHIKETUREN THEMA CHAOSTHEORIE REFERENTEN TIMO BÖLLINGER & DOMINIC ECKART DATUM 9. NOVEMBER 2004 FACHRICHTUNG INFORMATIONSTECHNIK NETZWERK UND SOFTWARETECHNIK AN DER BERUFSAKADEMIE

Mehr

Nichtlineare Prozesse in der Elektrochemie II

Nichtlineare Prozesse in der Elektrochemie II Nichtlineare Prozesse in der Elektrochemie II 5. Stabilität und Instabilität Neue (dissipative) Strukturen entstehen, wenn der bisherige stationäre Zustand, der den thermodynamischen Zweig repräsentiert,

Mehr

Differenzialgleichungen

Differenzialgleichungen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 30. Januar 2008 (System von) Differenzialgleichung(en) Schwingungsgleichung Newtonsche Mechanik Populationsdynamik...DGLn höherer Ordnung auf

Mehr

Zugänge zur nichtlinearen Dynamik. W. Oehme, Universität Leipzig

Zugänge zur nichtlinearen Dynamik. W. Oehme, Universität Leipzig Zugänge zur nichtlinearen Dynamik W. Oehme, Universität Leipzig einfache physikalische Experimente Wirtschaft Wetter historische Bezüge Nichtlineare Dynamik Chaos und Ordnung Verkehrsstau Populationsdynamik

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

zum Thema Lissajous-Figuren

zum Thema Lissajous-Figuren Ratsgymnasium Rotenburg Gerberstraße 14 27356 Rotenburg Wümme Facharbeit im Leistungskurs Physik zum Thema Lissajous-Figuren Verfasser: Christoph Siemsen Fachlehrer: Herr Konrad Abgabetermin: 24.05.04

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Nichtlineare Phänomene und Selbstorganisation

Nichtlineare Phänomene und Selbstorganisation Nichtlineare Phänomene und Selbstorganisation Von Dr. rer i.. ibü: Rein*»i M ce Doz. Dr. rer. nat. nabii. Jürn Schmelzer Prof. Dr. rer. nat. habil. Gerd Röpke Universität Rostock Mit zahlreichen Figuren

Mehr

Martin-Anderson-Nexö-Gymnasium, Dresden

Martin-Anderson-Nexö-Gymnasium, Dresden Fraktale Wechselspiel zwischen Chaos und Ordnung Teilnehmer: David Burgschweiger Tim Gabriel Welf Garkisch Anne Kell Leonard König Erik Lorenz Sofie Martins Niklas Schelten Heinrich-Hertz-Oberschule, Berlin

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Abbildung 1: Feigenbaum-Diagramm

Abbildung 1: Feigenbaum-Diagramm Kursübersicht Im folgenden findet Ihr Zusammenfassungen zu jedem der drei Teilgebiete, die wir im Kurs behandeln möchten. Die genaue Gewichtung der drei Gebiete ist noch nicht festgelegt und hängt von

Mehr

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005 Praktikumssemesterarbeit für Numerik Aufgabe HU-Berlin, Sommersemester 2005 Mario Krell Volker Grabsch 24. Juli 2005 Inhaltsverzeichnis Herleitung aus der Physik. Voraussetzungen und Annahmen Allgemein

Mehr

Physik für Erdwissenschaften

Physik für Erdwissenschaften Physik für Erdwissenschaften 9. 12. 2004 (VO 16) Emmerich Kneringer Schwingungen und Wellen Erdbeben Was versteht man unter Physik Naturvorgänge erklären? Die Naturvorgänge mit Formeln beschreiben? Gleichungen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7

Mehr

Markov-Paritionen und geometrische Modelle von Attraktoren

Markov-Paritionen und geometrische Modelle von Attraktoren Markov-Paritionen und geometrische Modelle von Attraktoren Jan Christoph Kinne 15. Februar 2003 1 Was sind Markov-Partitionen? Hat man ein diskretes dynamisches System f : M M gegeben, so will man M in

Mehr

1 Die logistische Gleichung X t+1 = λx t (1 X t )

1 Die logistische Gleichung X t+1 = λx t (1 X t ) 1 Die logistische Gleichung X t+1 = X t (1 X t ) Bisher haben wir Rekursionen mit mehr oder weniger einfachem Verhalten betrachtet; wir konnten entweder eine explizite Lösungsformel aufstellen oder ohne

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

Fraktale und Chaos. Wir beschftigten uns mit Fraktalen, die aus dem Studium komplexer dynamischer

Fraktale und Chaos. Wir beschftigten uns mit Fraktalen, die aus dem Studium komplexer dynamischer Fraktale und Chaos Teilnehmer: Markus Auricht (Heinrich-Hertz-Oberschule) Martin Czudra (Andreas-Oberschule) Robert Foellmer (Heinrich-Hertz-Oberschule) Aser Hage-Ali (Heinrich-Hertz-Oberschule) Alexej

Mehr

3.7 Chaos. Ist N 3, können chaotische Trajektorien auftreten (Zwei-Planeten- Problem, Doppel-Pendel).

3.7 Chaos. Ist N 3, können chaotische Trajektorien auftreten (Zwei-Planeten- Problem, Doppel-Pendel). 3.7 Chaos Wir untersuchen weiter autonome Systeme der Form dy i dt = f i(y,y 2,..y N ), y i (0) = a i, i =...N () (f i hängt nicht explizit von der Zeit ab). Eindeutigkeit der Lösung: aus y(t) folgt genau

Mehr

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier FRAKTALE Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier I. Fraktale allgemein a. Mathematischer Algorithmus i. Komplexe Zahlen b. Konvergieren und Divergieren i. Bei Mandelbrotmengen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen.

Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. 10.1. Ebene Kurven Mathematische Kurven sind uns aus den verschiedensten Zusammenhängen vertraut. Wir stellen hier kurz die wichtigsten Begriffe zusammen. Parameterdarstellungen einer Kurve sind stetige

Mehr

Die Darstellung nichtlinearer Bewegungsabläufe

Die Darstellung nichtlinearer Bewegungsabläufe Die Darstellung nichtlinearer Bewegungsabläufe Die Darstellung linearer Bewegungsabläufe Manchmal sind die Dinge mehr, als sie auf den ersten Blick zu sein scheinen. Auch chaotische Systeme offenbaren

Mehr

Lernbereich 8: Deterministisches Chaos Experimente, Simulationen und Begriffsbildungen

Lernbereich 8: Deterministisches Chaos Experimente, Simulationen und Begriffsbildungen Lernbereich 8: Deterministisches Chaos Experimente, Simulationen und Begriffsbildungen Inhaltsangebote Lernbereich Deterministisches Chaos Einführender Überblicksvortag Wir bauen EXPERIMENTIERPHASE 1 Modellierung

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Bifurkationstheorie. 1. Verzweigungen stationärer Zustände

Bifurkationstheorie. 1. Verzweigungen stationärer Zustände Bifurkationstheorie 1. Verzweigungen stationärer Zustände Die Lage, Anzahl und Stabilität der stationären Zustände von nichtlinearen Systemen hängt in der Regel noch von bestimmten Systemparametern ab.

Mehr

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 6: Lösung linearer Differentialgleichungen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Viele technischen Anwendungen lassen sich zumindest näherungsweise

Mehr

Vortragsthemen. Reelle Dynamik

Vortragsthemen. Reelle Dynamik Vortragsthemen Jede Teilnehmende ist für ein Thema verantwortlich, das sie im Kurs vorstellen wird. Es gibt also insgesamt 15 Vorträge, 4 aus den Gebieten Reelle bzw. Komplexe Dynamik und 7 aus dem Gebiet

Mehr

Newton-Verfahren und komplexe Dynamik. Jonathan Clausing

Newton-Verfahren und komplexe Dynamik. Jonathan Clausing Newton-Verfahren und komplexe Dynamik Jonathan Clausing Newton-Verfahren und komplexe Dynamik Von nutzloser und nützlicher Mathematik Iteration komplexer Polynome Die gefüllte Julia-Menge Die Mandelbrotmenge

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

x=r cos y=r sin } r2 =x 2 y 2

x=r cos y=r sin } r2 =x 2 y 2 6. Grenzzyklen Grenzzyklen eistieren in Systemen, die nach einer äußeren Störung wieder ein stabiles periodisches Verhalten annehmen. Sie sind eine weitere Ursache für periodisches Verhalten. 6.1. Modell

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

BASISPRÜFUNG MATHEMATIK I UND II

BASISPRÜFUNG MATHEMATIK I UND II ETH Zürich Sommer 015 Dr. Ana Cannas BASISPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften 1. Sei a) Ist das System lösbar? b) Lösen Sie das System

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Wachstum mit oberer Schranke

Wachstum mit oberer Schranke 1 1.1 exponentielles Wir haben das eines Kontos mit festem Zinssatz untersucht. Der jährliche Zuwachs (hier die Zinsen) sind proportional zum Bestand (hier dem jeweiligen Kontostand). Die Annahme, daß

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Vorwissen Lineare Modelle zweier Bevölkerungen

Vorwissen Lineare Modelle zweier Bevölkerungen Reiser Stephan 1 Ablauf Vorwissen Lineare Modelle zweier Bevölkerungen Das Konkurrenzmodell von Volterra Ein allgemeineres Konkurrenzmodell Periodische Bahnen für die allgemeine Volterra-Lotka- Gleichung

Mehr

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 28/29 Dr. Hanna Peywand Kiani Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Autonome Systeme, Stabilität Die ins

Mehr

Beispiel: Evolution infizierter Individuen

Beispiel: Evolution infizierter Individuen Differentialgleichungen sind sehr nützlich in der Modellierung biologischer Prozesse, denn: damit kann man auch sehr komplizierte Systeme beschreiben die Mathematik liefert mit der gut entwickelten Theorie

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Mathematisches Argumentieren und Beweisen Beweisarten Besipiele. Hagen Knaf, WS 2014/15

Mathematisches Argumentieren und Beweisen Beweisarten Besipiele. Hagen Knaf, WS 2014/15 Mathematisches Argumentieren und Beweisen Beweisarten Besipiele Hagen Knaf, WS 2014/15 Im Folgenden sind einige der in der Vorlesung besprochenen Beispielbeweise für die verschiedenen Beweisarten aufgeführt

Mehr

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1 Blatt 1 03042006 H-Ch Grunau Aufgabe 1 Betrachten Sie die Differentialgleichung x= f(x) mit f = U und U C 2 ((α, β), R) und schreiben Sie diese in der Form x= p, p= U (x) (a) Skizzieren Sie die Phasenportraits

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Stabile periodische Bewegungen (Grenzzyklen)

Stabile periodische Bewegungen (Grenzzyklen) Stabile periodische Bewegungen (Grenzzyklen) 1. Nichtlineare Systeme mit zwei Gleichungen Prinzipiell neu: Alle Systeme mit mindestens 2 unabhängigen DGL können als Lösungen geschlossene Kurven im Phasenraum

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Vorkurs Mathematik. Übungen Teil IV

Vorkurs Mathematik. Übungen Teil IV Vorkurs Mathematik Herbst 009 M. Carl E. Bönecke Skript und Übungen Teil IV. Folgen und die Konstruktion von R Im vorherigen Kapitel haben wir Z und Q über (formale) Lösungsmengen von Gleichungen der Form

Mehr

Lyapunov-Exponenten. Analyse des Langzeitverhaltens ( t ) eines physikalischen Systems:

Lyapunov-Exponenten. Analyse des Langzeitverhaltens ( t ) eines physikalischen Systems: Analyse des Langzeitverhaltens ( t ) eines physikalischen Systems: - t tritt bei konkreten beobachteten Systemen nicht auf t >> τ (τ: charakteristische Systemzeit) - t: Dauer der Beobachtung, Prognosezeitraum,...

Mehr