Zugänge zur nichtlinearen Dynamik. W. Oehme, Universität Leipzig

Größe: px
Ab Seite anzeigen:

Download "Zugänge zur nichtlinearen Dynamik. W. Oehme, Universität Leipzig"

Transkript

1 Zugänge zur nichtlinearen Dynamik W. Oehme, Universität Leipzig

2 einfache physikalische Experimente Wirtschaft Wetter historische Bezüge Nichtlineare Dynamik Chaos und Ordnung Verkehrsstau Populationsdynamik Fraktale Soziophysik oszillierende chemische Reaktionen Medizin Astronomie

3 Siebenschläfer Das Wetter zum Siebenschläfer-Tag sieben Wochen bleiben mag. 27. Juni 2005: ein sonniger Tag Er ist nicht schuld! aber: verregneter Sommer 2005 Bei großzügiger Interpretation: Trefferquote 70%

4 Chaos und Kosmos Hesiod aber sagt: Chaos entstand vor allem zuerst; es wurde dann Gaea mit weitem Gefild, Eros zugleich, der weit vor allen Unsterblichen vorglänzt. Quelle: Aristoteles Metaphysik Hesiodes ca. 700 v. Chr. Gaia ( Erde ) Zeichnung am Pergamon Zeus Altar Chaos (griech.): ungeordneter und ungeformter Zustand der Dinge; mystischer Urzustand; leerer Raum Kosmos (griech.): Welt als geordnete Einheit

5 Die Welt als Uhrwerk (klassischer Determinismus) Pierre Simon Laplace ( ) Pierre Laplace (1812): Eine Intelligenz, welche für einen gegebenen Augenblick alle in der Natur wirkenden Kräfte sowie die gegenseitige Lage der sie zusammensetzenden Elemente kennt...; nichts würde ihr ungewiss sein und Zukunft und Vergangenheit würden ihr offen vor Augen liegen.

6 Kausalität Henry Poincaré ( ) schwache Kausalität: Gleiche Ursachen haben gleiche Wirkungen. starke Kausalität: Ähnliche Ursachen haben ähnliche Wirkungen. Henry Poincaré, 1903, nach theoretischen Untersuchungen zur Stabilität des Planetensystems: Eine sehr kleine Ursache, die wir nicht bemerken, bewirkt einen beachtlichen Effekt, den wir nicht übersehen können, und dann sagen wir, der Effekt sei zufällig. Vorhersagen werden damit unmöglich. Verletzung der starken Kausalität deterministisches Chaos

7 Buckelpiste und Magnetpendel Potentialmulden Einzugsgebiete Wohin rollt die Kugel? Wohin geht das Magnetpendel?

8 Berechnungen zum Magnetpendel Potentialmulden Pendelbewegung Sensitivität Einzugsgebiete

9 Verhulst-Dynamik und logistische Gleichung X n = A X a ( 1 X ) a Pierre Francois Verhulst ( ) Populationsmodell N a N n = c*n a aktuelle Tierzahl nächste Generation c Reproduktionsfaktor c>1 => Überbevölkerung c<1 => Aussterben Dämpfungsfaktor (N max N a )/N max N max maximal ernährbare Tierzahl

10 Berechnungen mit der logistischen Gleichung Einschwingverhalten Selbstähnlichkeit 1. und 2. Bifurkation Feigenbaumdiagramm

11 Räuber-Beute-Systeme Quelle: Universität Bonn Hudson Bay Company: Buchführung über die aufgekauften Felle von Luchsen und Schneeschuhhasen zwischen 1845 und 1935

12 Räuber-Beute-Systeme x y = ax (1 cx = by (1 dy + ey) fx) Beute x Räuber y Beute

13 Pohlsches Drehpendel mit Unwucht Drehmomente Potentiale Feder Zusatzmasse Summe Feder Zusatzmasse Summe 0 2 cos 2 1 sin U r g m D U r g m D M + + = + = α α α α Feder Zusatzmasse Drehschwinger mit Zusatzmasse Feder Antrieb Wirbelstromdämpfung

14 Experimente ohne Unwucht Variation der Anregung ohne Antrieb mit Antrieb

15 Experimente mit Unwucht Variation der Dämpfung starke Dämpfung Chaos 1. 2 Bifurkation schwache Dämpfung

16 Feder Reibung Antrieb Zusatzmasse

17 Berechnungen zum Drehpendel

18 Linearer elektrischer Schwingkreis u(t) Experiment u L u R u C L Q+ ul + ur + uc = u(t) R Q+ 1 Q C = Usin( ω t) Simulation UC Zeitverhalten Phasendiagramm Resonanzkurve

19 Nichtlinearer elektrischer Schwingkreis u(t) u L u R Experiment ul + ur + ud = u(t) u D Simulation LQ+ Q RQ+ U0 (exp( ) 1) = Usin( ω t) C U o o

20 Diode als Plattenkondensator A C= ε 0 εr d =d(u ) d CU ( ) = α U+ U C0 U CU ( ) = U+ U U D Q = U0 (exp( ) 1) C U 0 0 d ( U+ U ) ~ 0 C=C(U) U 0 = α 0 α=c0 U0 U0 C ( 0) = C dq C= du Durchbruchsspannung

21 Berechnungen zum nichtlinearen elektrischen Schwingkreis Zeitdiagramm Phasendiagramm

22 Wettervorhersage Lorenz-Modell = α ( Y X ) X = β X Y Z = γ Z + X Z Y X Y Benard-Zellen Quelle: Uni Fankfurt ebene Konvektion Lorenz-Attraktor

23 Sierpinski-Dreieck P3 S1 S4 S3 S2 Startpunkt P1 P2 Spielregeln: zufällige Ziele P1, P2 und P3; halber Weg zum Zielpunkt

24 Fraktale Lorenz-Attraktor Farn Mandelbrots Apfelmännchen Attraktor des Drehpendels Sierpinski-Dreieck

25 Oszillierende chemische Reaktionen Belousov-Zhabotinsky-Reaktion Bromierung der Malonsäure Br Prozess A + BrO3 + 2 Br + 3CH 2( COOH ) 2 + 3H 3O 3BrCH ( COOH ) 2 + 6H 2O Prozess B BrO3 + Ce + CH2( COOH) 2 + 5H3O Ce + BrCH( COOH) 2 + 8H 2O Ce + BrCH ( COOH ) 2 + 7H 2O 4Ce + HCOOH + 2CO2 + 5H 3O + Br

26 Belousov-Zhabotinsky-Reaktion Z B k X A k Z Z k B f Y X k Y A k Y X k X A k Y X k Y A k X c c = + = + = Z=[Ce 4+ ] Oregonator-Modell

27 einfache physikalische Experimente Wirtschaft Wetter historische Bezüge Nichtlineare Dynamik Chaos und Ordnung Verkehrsstau Populationsdynamik Fraktale Soziophysik oszillierende chemische Reaktionen Medizin Astronomie

28 Quellenangabe: Titelseite, Satellitenbild, Deutscher Wetterdienst, Offenbach (DWD) Folie 5, Prager Uhr, Wikipedia.org User Maros Folie 7, Buckelpiste, Wikipedia.org User Art-top Folie 12, Frosch, Wikipedia.org User Fabelfroh; Storch Wikipedia.org User SirEx Folie 22, Altocummulus, Wikipedia.org User Fir0002

Lernbereich 8: Deterministisches Chaos Experimente, Simulationen und Begriffsbildungen

Lernbereich 8: Deterministisches Chaos Experimente, Simulationen und Begriffsbildungen Lernbereich 8: Deterministisches Chaos Experimente, Simulationen und Begriffsbildungen Inhaltsangebote Lernbereich Deterministisches Chaos Einführender Überblicksvortag Wir bauen EXPERIMENTIERPHASE 1 Modellierung

Mehr

Wie lang ist die Küste Großbritanniens?

Wie lang ist die Küste Großbritanniens? Wie lang ist die Küste Großbritanniens? Vortrag am 16.01.2009 Fach: Physik Deterministisches Chaos Ein Vortrag von Tina Rosner und Florian Sachs Werner-von-Siemens-Gymnasium Magdeburg Gliederung 1 Das

Mehr

Deterministisches Chaos

Deterministisches Chaos Deterministisches Chaos Um 1900 Henri Poincaré: Bewegung von zwei Planeten um die Sonne kann zu sehr komplizierten Bahnen führen. (chaotische Bahnen) Seit ca. 1970 Entwicklung der Chaostheorie basierend

Mehr

6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität

6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität 6.1 Beispiele dissipativer Systeme Der Duffing Ozillator z.b. für (Ueda Oszillator) Potential Bewegungsgleichung: Nichtlinearität nur zwei Parameter Kartierung des Verhaltens in der (f,r)- Ebene äußerst

Mehr

SINIS Simulation nichtlinearer Systeme

SINIS Simulation nichtlinearer Systeme In: Deutsche Physikalische Gesellschaft (Hrsg.): Didaktik der Physik. Bremen 21. Berlin: Lehmanns ISBN 3-931253-87-2 SINIS Simulation nichtlinearer Systeme O.Busse, V. Nordmeier, H.J. Schlichting Universität

Mehr

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt.

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. 11. Nichtlineare Dynamik und Chaos Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. der Auslenkung Fadenlänge L, Masse m, Auslenkwinkel φ Rücktreibende Kraft: Beschleunigung:

Mehr

Experimente, Ideen und Entwicklung der Chaostheorie

Experimente, Ideen und Entwicklung der Chaostheorie Experimente, Ideen und Entwicklung der Chaostheorie Stephan Lück Ursprünge der Chaostheorie Edward Lorenz (1917-2008) Meteorologe einfaches Atmosphärenmodell (ca. 1960) basierend auf Konvektion Modellexperiment

Mehr

Die Chaostheorie und Fraktale in der Natur

Die Chaostheorie und Fraktale in der Natur Hallertau-Gymnasium Wolnzach Abiturjahrgang 2009/2011 Facharbeit aus dem Leistungskurs Physik Die Chaostheorie und Fraktale in der Natur Eine physikalisch-philosophische Abhandlung über das Wesen der Natur

Mehr

Algorithmen für Chaos und Fraktale

Algorithmen für Chaos und Fraktale Dietmar Herrmann Algorithmen für Chaos und Fraktale A... :.., ADDISON-WESLEY PUBLISHING COMPANY Bonn Paris Reading, Massachusetts Menlo Park, California New York. Don Mills, Ontario Wokingham, ; England

Mehr

FC3 - Duffing Oszillator

FC3 - Duffing Oszillator FC3 - Duffing Oszillator 4. Oktober 2007 Universität Paderborn - Theoretische Physik leer Autor: Stephan Blankenburg, Björn Lange Datum: 4. Oktober 2007 FC3 - Duffing Oszillator 3 1 Theorie komplexer Systeme

Mehr

Kapitel 5.5: Nichtlineare Rekursionen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te

Kapitel 5.5: Nichtlineare Rekursionen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te Kapitel 5.5: Nichtlineare Rekursionen Algorithmen und Datenstrukturen WS 2017/18 Pro f. Dr. Sán do r Fe k e te 1 e H! e t u 2 Ankreuzliste für Übungsgruppen 1 4 3 7 5 5 6 6 9 10 8 2 2 10 3 5.3.3 Master-Theorem:

Mehr

Achtung Nebel! Ein Komplexitäts-Crashkurs für Projektmanager*innen

Achtung Nebel! Ein Komplexitäts-Crashkurs für Projektmanager*innen complexity-research.com Achtung Nebel! Ein Komplexitäts-Crashkurs für Projektmanager*innen Priv.-Doz. Dr. Dr. Dipl.-Psych. Guido Strunk guido.strunk@complexity-research.com www.complexity-research.com

Mehr

Kapitel 5.6: Nichtlineare Rekursionen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 5.6: Nichtlineare Rekursionen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 5.6: Nichtlineare Rekursionen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 5.4.3 Master-Theorem: Lineare Rekursionen 5.6 Nichtlineare Rekursionen 5.6.1 Logistische Rekursion

Mehr

Versuch 6 - Nichtlineares Pendel

Versuch 6 - Nichtlineares Pendel UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 6 - Nichtlineares Pendel 23. überarbeitete Auflage 2009 Dr. Stephan Giglberger Prof. Dr. Christian

Mehr

Nichtlineare Dynamik Einführung

Nichtlineare Dynamik Einführung Nichtlineare Dynamik Einführung Tobias Kerscher gekürzte Internetversion (ohne fremde Bilder) Sommerakademie Ftan 2004, 13. August Gliederung 1. Def: Nichtlineare Physik 2. Typische Beispiele 3. Dynamische

Mehr

Chaos Oder Mandelbrot und Peitsche

Chaos Oder Mandelbrot und Peitsche Chaos Oder Mandelbrot und Peitsche Warum kann man das Wetter nicht genau vorhersagen? Du kennst sicher das Problem: du planst mit deiner Familie ein Picknick, dass in letzter Minute abgesagt werden muss,

Mehr

Nichtlineare Phänomene und Selbstorganisation

Nichtlineare Phänomene und Selbstorganisation Nichtlineare Phänomene und Selbstorganisation Von Dr. rer i.. ibü: Rein*»i M ce Doz. Dr. rer. nat. nabii. Jürn Schmelzer Prof. Dr. rer. nat. habil. Gerd Röpke Universität Rostock Mit zahlreichen Figuren

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

x=r cos y=r sin } r2 =x 2 y 2

x=r cos y=r sin } r2 =x 2 y 2 6. Grenzzyklen Grenzzyklen eistieren in Systemen, die nach einer äußeren Störung wieder ein stabiles periodisches Verhalten annehmen. Sie sind eine weitere Ursache für periodisches Verhalten. 6.1. Modell

Mehr

Dynamisches Chaos. 1. Einleitung: Determinismus und Chaos

Dynamisches Chaos. 1. Einleitung: Determinismus und Chaos Dynamisches Chaos 1. Einleitung: Determinismus und Chaos In der üblichen Betrachtungsweise ist der Zufall nur auf dem Mikroniveau erlaubt: - das Boltzmannsche molekulare Chaos; - die quantenmechanischen

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

6 chaotische Vorgänge

6 chaotische Vorgänge 6 chaotische Vorgänge Kausalität und Determinismus ( S. 125) sind wesentliche Grundlagen der klassischen Physik: Keine Wirkung tritt ohne Ursache auf, und jede Ursache hat eine Wirkung. Ist der Zustand

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Modellbildung, Simulation und Populationsdynamik

Modellbildung, Simulation und Populationsdynamik ΔN Bild: Reg Mckenna, UK ΔN Bild: Wikipedia.org User StefanGe Modellbildung, Simulation und Populationsdynamik W. Oehme, Uniersität Leipzig Bild: Wikipedia.org User Barbarossa Bild: Wikipedia.org User

Mehr

Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob

Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob 1. Vorarbeiten zu Hause 1.1 Erzwungene Schwingung einer Feder mit Dämpfung Bewegungsgleichung: m & x + b x& + k x m g = F cos(

Mehr

8. Deterministisches Chaos

8. Deterministisches Chaos 8. Deterministisches Chaos Widerspruch: deterministisch chaotisch Schmetterlingseffekt: Der Flügelschlag eines Schmetterlings entscheidet über die Entwicklung eines Sturms. Allgemein: kleinste Änderungen

Mehr

Chaos im getriebenen nicht-linearen Pendel

Chaos im getriebenen nicht-linearen Pendel Chaos im getriebenen nicht-linearen Pendel Alle drei Ingredienzen: Nichtlinearität, Reibung, treibende Kraft 2 d θ g dθ = sinθ q + F sin 2 dt L dt ( t) D Ω D Das ist ein so genanntes physikalisches Pendel

Mehr

+ + Personalmanagement Stuff-Turnover. Simulation im Excel. Organizational Headcount. Turnover. Recruitment

+ + Personalmanagement Stuff-Turnover. Simulation im Excel. Organizational Headcount. Turnover. Recruitment Personalmanagement Stuff-Turnover + Organizational Headcount Recruitment + + Turnover Simulation im Excel Schmetterlingseffekt 1 0,8 x 0,6 0,4 0,2 0 0 5 10 15 2 0 2 5 3 0 n Feigenbaum-Szenario Bifurkationspunkt:

Mehr

Belousov-Zhabotinskii Oszillierende Reaktionen

Belousov-Zhabotinskii Oszillierende Reaktionen Belousov-Zhabotinskii Oszillierende Reaktionen Aline Brost 08. Januar 2013 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Gliederung 1 Die Belousov-Reaktion und

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis Die Chaostheorie a) Geschichtliche Betrachtung i. Das mechanistische Naturbild ii. Zweikörperproblem iii. Dreikörperproblem iv. Lagrange-Punkte v. Entdeckung des Chaos b) Die Chaostheorie i. Eigenschaften

Mehr

Chaos - Nichtlineare Dynamik

Chaos - Nichtlineare Dynamik Äg Chaos - Nichtlineare Dynamik Renate Thies Universität Dortmund - Fachbereich Informatik Lehrstuhl für Systemanalyse (LS11) Sommersemester 2004 Chaos - Nichtlineare Dynamik 1/102 Inhaltsverzeichnis Äg

Mehr

Einfache Modelle der Neurodynamik.

Einfache Modelle der Neurodynamik. Vorlesung Einfache Modelle der Neurodynamik. Anregbarkeit und canards. Wintersemester 2015/16 12.01.2016 M. Zaks Aufbau eines Neurons: Gesamtbild 2 / 16 neuron Aufbau eines Neurons: Axon und Dendriten

Mehr

Einfache Modelle der Populationsdynamik

Einfache Modelle der Populationsdynamik Vorlesung 4. Einfache Modelle der Populationsdynamik Wintersemester 215/16 1.11.215 M. Zaks allgemeine vorbemerkungen In kleinen Populationen schwanken die Bevolkerungszahlen stochastisch: Geburt/Tod von

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Klausur zur Vorlesung Physikalische Chemie V Elektrochemie 6. bzw. 8. Fachsemester am , 10:00 bis 12:00 Uhr

Klausur zur Vorlesung Physikalische Chemie V Elektrochemie 6. bzw. 8. Fachsemester am , 10:00 bis 12:00 Uhr Universität Regensburg Institut für Physikalische und Theoretische Chemie Prof. Dr. G. Schmeer 18. Juli 27 Bitte füllen Sie zuerst dieses Deckblatt aus, das mit Ihren Lösungen abgegeben werden muss....

Mehr

Die Wettervorhersage und ihre Tücken

Die Wettervorhersage und ihre Tücken Lehrerfortbildung 11. Juni 2008 Die Wettervorhersage und ihre Tücken M. Kunz Institut für Meteorologie und Klimaforschung Universität / Forschungszentrum Karlsruhe die Realität Orkantief Lothar am 26.12.1999

Mehr

Chaos Seminar Wetter und Klima. Dominik Fröschl

Chaos Seminar Wetter und Klima. Dominik Fröschl Chaos Seminar Wetter und Klima Dominik Fröschl 05.02.2010 1 Inhaltsverzeichnis 1 Einleitung 3 1.1 Vorbemerkungen......................... 3 1.2 Begriffsklärung.......................... 3 1.3 Entstehung

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale

Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale c Priv.-Doz. Dr. Adelhard Köhler May 19, 2005 1 Gebrochene (fraktale) Dimension Fraktale haben eine gebrochene Dimension. Unterschiedliche Dimensionsbegriffe

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Wir betrachten hier den Polarisationszustand einer Normalmode

Wir betrachten hier den Polarisationszustand einer Normalmode Kapitel 5 Die Polarisation elektromagnetischer Wellen 5.1 Einführung Der zeitliche Verlauf des reellen elektrischen Feldvektors E r r,t) bestimmt den Polarisationszustand des Feldes. Wir betrachten hier

Mehr

Die Darstellung nichtlinearer Bewegungsabläufe

Die Darstellung nichtlinearer Bewegungsabläufe Die Darstellung nichtlinearer Bewegungsabläufe Die Darstellung linearer Bewegungsabläufe Manchmal sind die Dinge mehr, als sie auf den ersten Blick zu sein scheinen. Auch chaotische Systeme offenbaren

Mehr

1 Aufwärmen nach den Ferien

1 Aufwärmen nach den Ferien Physikalische Chemie II Lösung 23. September 206 Aufwärmen nach den Ferien. Ermitteln Sie die folgenden Integrale. Partielle Integration mit der Anwendung der generellen Regel f g = fg fg (in diesem Fall

Mehr

Eine kleine Reise durch die Welt der zellulären Automaten

Eine kleine Reise durch die Welt der zellulären Automaten Eine kleine Reise durch die Welt der zellulären Automaten Wolfgang Oehme, Universität Leipzig 1. Einleitung 2. Zelluläre Automaten 2.1. Game of Life als klassischer zellulärer Automat 2.2. Populationsdynamik

Mehr

Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen

Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen Auf dem Weg zu einem neuen Verständnis der Naturwissenschaften Deutsche Ausgabe bearbeitet von Eckhard Rebhan Mit 110 Abbildungen T) Piper

Mehr

Nichtlineare Dynamik in biologischen Systemen

Nichtlineare Dynamik in biologischen Systemen Universität Leipzig Fakultät für Physik und Geowissenschaften Bereich Didaktik der Physik 29. August 2006 11 Nichtlineare Dynamik in biologischen Systemen Erster Gutachter: Prof. Dr. Wolfgang Oehme, Universität

Mehr

Biologische Oszillatoren und Schalter - Teil 1

Biologische Oszillatoren und Schalter - Teil 1 Biologische Oszillatoren und Schalter - Teil 1 Elena Süs 11.12.2012 Literatur: J.D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Gliederung 1 Motivation 2 Historische Entwicklung

Mehr

Fakultät Grundlagen. Februar 2016

Fakultät Grundlagen. Februar 2016 Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen

Mehr

Strömungssimulation in Li-Dualinsertationszellen

Strömungssimulation in Li-Dualinsertationszellen Strömungssimulation in Li-Dualinsertationszellen Julius Sewing, Nikolaus Krause, Dennis Dieterle j.sewing@gmx.net nikokrause@gmx.de dennis.dieterle@uni-muenster.de 22. Juni 2010 Sewing, Krause, Dieterle

Mehr

Übungen zu Oberflächenintegralen Lösungen zu Übung 17

Übungen zu Oberflächenintegralen Lösungen zu Übung 17 Übungen zu Oberflächenintegralen Lösungen zu Übung 17 17.1 Sei die Oberfläche der Einheitskugel : {(x, y, z) IR 3 : x + y + z 1.} Berechnen Sie für f(x, y, z) : a, a IR, a const. das Oberflächenintegral

Mehr

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1 AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN TOBIAS FREY & FREYA GNAM, GRUPPE 6, DONNERSTAG 1. AUFGABE 1 An das Winkel-Zeit-Diagramm (Abb. 1) haben wir eine einhüllende e-funktion der Form e = Ae βt angelegt.

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik:

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Chaos Fraktale Strukturen oder Von den Schwierigkeiten die nichtlineare Dynamik zu den Schülern zu bringen

Chaos Fraktale Strukturen oder Von den Schwierigkeiten die nichtlineare Dynamik zu den Schülern zu bringen 1 Chaos Fraktale Strukturen oder Von den Schwierigkeiten die nichtlineare Dynamik zu den Schülern zu bringen Friederike Korneck, Institut für Didaktik der Physik, J.W.-Goethe-Universität Frankfurt Seit

Mehr

Schwingungen. Kurt Magnus Karl Popp Walter Sextro

Schwingungen. Kurt Magnus Karl Popp Walter Sextro Kurt Magnus Karl Popp Walter Sextro Schwingungen Eine Einfuhrung in die physikalischen Grundlagen und die theoretische Behandlung von Schwingungsproblemen 8., uberarbeitete Auflage Mit 211 Abbildungen

Mehr

Fragen zum Versuch12 Oszillierende Reaktionen:

Fragen zum Versuch12 Oszillierende Reaktionen: Fragen zum Versuch12 Oszillierende Reaktionen: 1. Oszillierende Reaktionen sind Reaktionen: a. Bei denen nach gewisser Zeit einen Gleichgewichtszustand erreicht wird b. Die nur in einer Richtung ablaufen

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften

Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften MÜNSTER Die Modellierung einer Lithium-Batterie Zwischenpräsentation zum Praktikum Nichtlineare Modellierung in den Naturwissenschaften Christoph Fricke, Natascha von Aspern, Carla Tameling 12.06.2012

Mehr

Was hat Schönheit mit Chaos zu tun?

Was hat Schönheit mit Chaos zu tun? Physik in der Schule 31/2, 71 (1993) Was hat Schönheit mit Chaos zu tun? Vergleich der Mandelbrot-Iteration mit einem chaotischen Drehpendel Udo Backhaus (Universität Osnabrück), H.- Joachim Schlichting,

Mehr

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Universität Bielefeld Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Matthieu Felsinger Universität Bielefeld Mathematisches Kolloquium, TU Clausthal 05. Februar 2014 1 Einleitung

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Gewöhnliche Differentialgleichungen: Einleitung

Gewöhnliche Differentialgleichungen: Einleitung Gewöhnliche Differentialgleichungen: Einleitung Die Sprache des Universums ist die Sprache der Differentialgleichungen. 1-E1 Faszinierender Anwendungsreichtum cc 1-E2 Wie verstanden die Alten das Naturgesetz?

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2

Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Thermochemie Energie ist die Fähigkeit, Arbeit zu leisten. E pot = m g h E kin = ½ m v 2 Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Eine wirkende Kraft

Mehr

Auswertung des Versuches Resonanzverhalten nichtlinearer Oszillatoren

Auswertung des Versuches Resonanzverhalten nichtlinearer Oszillatoren Auswertung des Versuches Resonanzverhalten nichtlinearer Oszillatoren Andreas Buhr, Matrikelnummer 1229903 23. Juni 2006 Inhaltsverzeichnis 1 Formales 3 2 Überblick über den Versuch 4 3 Grundlagen 4 3.1

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen http://www.free background wallpaper.com/background wallpaper water.php Partielle Differentialgleichungen 1 E Partielle Differentialgleichungen Eine partielle Differentialgleichung (Abkürzung PDGL) ist

Mehr

in natürlichen und technischen Systemen Dr. rer. nat. Michael Schanz Universität Stuttgart 8. November 2004

in natürlichen und technischen Systemen Dr. rer. nat. Michael Schanz Universität Stuttgart 8. November 2004 Universität Stuttgart 8. November 2004 in natürlichen und technischen Systemen Page 1 Dr. rer. nat. Michael Schanz Was ist Selbstorganisation 1. Selbstorganisation ist Page 2 Was ist Selbstorganisation

Mehr

1. Schularbeit - Gruppe A M 0 1(1) 6C A

1. Schularbeit - Gruppe A M 0 1(1) 6C A . Schularbeit - Gruppe A M 0 () 6C 3 0 97 A. Ergänze folgende Tabelle: Potenz Bruch / Wurzel numerischer Wert 3-5 n -5 8 0,00 3 5 4 x 3 8 7. Berechne: a) ( x y) ( x + y) 0 = b) 9x 6ax : = 5 4a 3 3. Rechne

Mehr

Differenzengleichungen

Differenzengleichungen Universität Basel Wirtschaftswissenschaftliches Zentrum Differenzengleichungen Dr. Thomas Zehrt Inhalt: 1. Einführungsbeispiele 2. Definition 3. Lineare Differenzengleichungen 1. Ordnung (Wiederholung)

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

7. Systeme mit drei (und mehr) Spezies: chaotische Systeme

7. Systeme mit drei (und mehr) Spezies: chaotische Systeme 7. Systeme mit drei (und mehr) Spezies: chaotische Systeme Dies kann z.b. Ein System mit mehreren verschiedenen Räubern sein, die die selben Beutetiere jagen. Auch ein nicht autonomes System mit zwei Spezies

Mehr

Medizinische Physik: Physikalische Grundlagen der Analyse biomedizinischer Signale

Medizinische Physik: Physikalische Grundlagen der Analyse biomedizinischer Signale Medizinische Physik: Physikalische Grundlagen der Analyse biomedizinischer Signale Physics in Medicine: Physical Fundamentals of Analyzing Biomedical Signals (D/E) Klaus Lehnertz Winter Term 2003 / 2004

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

Synergetik. Hermann Haken. Eine Einführung. Nichtgleichgewichts-Phasenübergänge und Selbstorganisation in Physik, Chemie und Biologie

Synergetik. Hermann Haken. Eine Einführung. Nichtgleichgewichts-Phasenübergänge und Selbstorganisation in Physik, Chemie und Biologie Hermann Haken Synergetik Eine Einführung Nichtgleichgewichts-Phasenübergänge und Selbstorganisation in Physik, Chemie und Biologie Übersetzt von A. Wunderlin Dritte, erweiterte Auflage Mit 168 Abbildungen

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Experimentelle Physik I

Experimentelle Physik I Veranstaltung 4010011 https://campus.studium.kit.edu/event/h7ke2nevdu6ociwvcuiqyw 29. Vorlesung: 6.3 Schwingungen und Wellen (6): Licht und Materie, Nicht-lineare Systeme 9. Februar 2017 Experimentelle

Mehr

Seminar Fraktale. Kapitel 13 Dynamical Systems. Von Dirk Simon

Seminar Fraktale. Kapitel 13 Dynamical Systems. Von Dirk Simon Seminar Fraktale Kapitel 13 Dynamical Systems Von Dirk Simon Übersicht Einführung und Definitionen Dynamische Systeme Attraktoren Chaos Ein paar Beispiele Anwendungen Einführung Anwendung für f r Dynamische

Mehr

Praktikum. Versuch SIM-1 Numerische Integrationsverfahren zur Lösung von Simulationsaufgaben

Praktikum. Versuch SIM-1 Numerische Integrationsverfahren zur Lösung von Simulationsaufgaben Praktikum Versuch SIM-1 Numerische Integrationsverfahren zur Lösung von Simulationsaufgaben Verantwortlicher Hochschullehrer: Prof. Dr. Ing. habil. P. Li Versuchsverantwortlicher: Dr. Ing. S. Hopfgarten

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

b) Fertige eine Skizze an und kontrolliere deine Skizze mit jener auf dem ersten Lösungsblatt.

b) Fertige eine Skizze an und kontrolliere deine Skizze mit jener auf dem ersten Lösungsblatt. Ein Flugzeug startet von einem Punkt A der Startbahn aus, fährt am Kontrollpunkt des Flugplatzes vorbei und beginnt von einem Punkt B aus ohne Richtungsänderung zu steigen. Von dem h = 20m hohen Kontrollturm

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

Formelsammlung Elektrotechnik von Sascha Spors V1.3 /

Formelsammlung Elektrotechnik von Sascha Spors V1.3 / Formelsammlung Elektrotechnik von Sascha Spors V.3 /..96 Mathematische Formeln : arctan( b a Z a + jb Y arg(z ; arctan( b a arctan( b < a für a >, b +π für a π für a

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Physikalisches Anfaengerpraktikum. Pohlsches Rad

Physikalisches Anfaengerpraktikum. Pohlsches Rad Physikalisches Anfaengerpraktikum Pohlsches Rad Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Mittwoch, 6. März 25 email: Marcel.Engelhardt@mytum.de Weisgerber@mytum.de ()Einführung

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

CHAOS. 1.2 Was ist deterministisches Chaos? 1.1 Einführung. 1. Deterministisches Chaos - allgemeine Vorbemerkungen. 1.1 Einführung

CHAOS. 1.2 Was ist deterministisches Chaos? 1.1 Einführung. 1. Deterministisches Chaos - allgemeine Vorbemerkungen. 1.1 Einführung CHAOS 1. Deterministisches Chaos - allgemeine Vorbemerkungen 1.1 Einführung 1.2 Was ist deterministisches Chaos? 1.3 Prinzipielle "Unschärfen" 1.4 Chaotische Experimente 2. Das Magnetpendel 2.1 Versuchsaufbau

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Nichtlinearität in der klassischen Physik

Nichtlinearität in der klassischen Physik Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................

Mehr

Rudolf Jürgler. Maschinendynamik. Dritte, neu bearbeitete Auflage. Mit 550 Abbildungen. Springer

Rudolf Jürgler. Maschinendynamik. Dritte, neu bearbeitete Auflage. Mit 550 Abbildungen. Springer Rudolf Jürgler Maschinendynamik Dritte, neu bearbeitete Auflage Mit 550 Abbildungen Springer VII Inhaltsverzeichnis 1 Einleitung 1 2 Schwingungstechnische Grundbegriffe 3 2.1 Definition der Schwingung

Mehr

Deterministisches Chaos

Deterministisches Chaos Platen-Gymnasium Ansbach Kollegstufe 001/003 FACHARBEIT aus dem Fach Physik Thema: Deterministisches Chaos Verfasser: Jörg Stadlinger Leistungskurs: Physik Inhaltsverzeichnis 1. Einführung in die Chaostheorie

Mehr

Prüfung. Prüfung: mündl min, Termin nach Absprache ( )

Prüfung. Prüfung: mündl min, Termin nach Absprache ( ) Prüfung Prüfung: mündl. 20-30 min, Termin nach Absprache (Email) (Ergänzte/Geordnete) Unterlagen zur Vorlesung werden ab dem 22.7. am LTI verkauft (3 ) XIV: Nichtlineare Optik - Maxwell-Gleichungen und

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

Gedämpfte harmonische Schwingung

Gedämpfte harmonische Schwingung Gedämpfte harmonische Schwingung Die Differentialgleichung u + 2ru + ω 2 0u = c cos(ωt) mit r > 0 modelliert sowohl eine elastische Feder als auch einen elektrischen Schwingkreis. Gedämpfte harmonische

Mehr

Vorwissen Lineare Modelle zweier Bevölkerungen

Vorwissen Lineare Modelle zweier Bevölkerungen Reiser Stephan 1 Ablauf Vorwissen Lineare Modelle zweier Bevölkerungen Das Konkurrenzmodell von Volterra Ein allgemeineres Konkurrenzmodell Periodische Bahnen für die allgemeine Volterra-Lotka- Gleichung

Mehr

π und die Quadratur des Kreises

π und die Quadratur des Kreises π und die Quadratur des Kreises Schnupper-Uni für SchülerInnen 8. Februar 2006 Dr. Michael Welter http://www.math.uni-bonn.de/people/welter 1 Konstruktionen mit Zirkel und Lineal Gegeben sei eine Menge

Mehr