Divergenz und Rotation von Vektorfeldern

Größe: px
Ab Seite anzeigen:

Download "Divergenz und Rotation von Vektorfeldern"

Transkript

1 Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren Produktes von zwei Vektoren entsprechen. Sei F = F 2 F 3 ein Vektorfeld. Dann heißt F = div F die Divergenz von F F = rot F die Rotation von F. Dementsprechend ist F = div F = ein Skalarfeld. F = rotf = e 1 e 2 e 3 F 2 F 3 = F 3 F 2 F 3 F 2 = ( F 3 F 2 ) e 1 + ( F 3 ) e 2 + ( F 2 ) e 3 = ist ein Vektorfeld. Wir erwähnten vorher, dass F nda den Fluß von F durch das Flächenelement da bezeichnet. Damit wollen wir nun den Nettodurchfluß durch ein vorgegebenes Volumen bestimmen. Wir wählen um einen Punkt P (x 1, x 2, x 3 ) einen kleinen Quader mit den Seitenlängen dx 1, dx 2, dx 3 und berechnen den Durchfluß bezüglich aller drei Raumrichtungen. 1

2 In x 1 -Richtung liegt die Eintrittsfläche dx 2 dx 3 (mit Normalenvektor e 1 ) bei x 1 dx 1 2, die Austrittsfläche bei x 1 + dx 1 2. Als Nettoabfluß (Abfluß minus Zufluß) ergibt sich [ F (x1 + dx 1 2, x 2, x 3 ) e 1 F ] (x 1 dx 1 2, x 2, x 3 ) e 1 dx 2 dx 3 = [ F1 (x 1 + dx 1 2, x 2, x 3 ) (x 1 dx 1 2, x 2, x 3 ) ] dx 2 dx 3 = (x 1,x 2,x 3 ) dx 2 dx 3 dx 1 wobei (x 1 ± dx 1 2, x 2, x 3 ) durch seine Taylor-Entwicklung 1. Ordnung approximiert wurde. Die Betrachtung der anderen Flächen liefert schließlich Nettoabfluß von F (x 1, x 2, x 3 ) = div F dx 1 dx 2 dx 3 Der Nettoabfluß ist also Null, wenn innerhalb des Volumselementes dx 1 dx 2 dx 3 keine Quelle oder Senke liegt, - dann fließt ebenso viel ab wie zu. Bemerkung. Die Divergenz eines Vektorfeldes ist also ein Maß für die Existenz von Quellen oder Senken. Gilt divf = 0, dann heißt das Vektorfeld F quellenfrei. Beispiel. Betrachte ein Geschwindigkeitsfeld v = ω x, wobei ω ein konstanter Vektor ist. Dieses Vektorfeld beschreibt eine Drehung mit Drehachse ω und Winkelgeschwindigkeit ω. Dann ist ω x = (ω 2 x 3 ω 3 x 2, ω 3 x 1 ω 1 x 3, ω 1 x 2 ω 2 x 1 ) und folglich div v = 0. v ist also quellenfrei. 2

3 Eine besondere Anwendung des Differentialoperators ergibt sich durch Bildung der Divergenz des Gradienten eines Skalarfeldes Φ(x 1, x 2, x 3 ). div gradφ = Φ = Φ heißt Laplace-Operator und kommt in zahlreichen Gleichungen der Physik vor, etwa der Wellengleichung. Im R 3 mit kartesischen Koordinaten gilt Φ(x 1, x 2, x 3 ) = 2 Φ Φ Φ 3, also = Bemerkung. Der Nabla-Operator (wie auch der Laplace-Operator) ändern ihre Gestalt, wenn andere Koordinatensysteme betrachtet werden. Die Bedeutung der Rotation kann folgendermaßen veranschaulicht werden: ist v das Geschwindigkeitsfeld einer Strömung und rot v 0, dann treten Drehbewegungen auf, d.h. ein Korken im Strömungsfeld wird sich drehen. In anderen Zusammenhängen spricht man auch von einer Wirbelbildung. Deshalb werden Vektorfelder mit nichtverschwindender Rotation auch Wirbelfelder genannt. Beispiel 1. v(x 1, x 2, x 3 ) = (0, x 1, 0) Hier wächst der Impuls der strömenden Flüssigkeit mit wachsenden Werten von x 1. Die Rotation ist überall konstant und weist in x 3 -Richtung. rot v = (0, 0, 1) 3

4 Beispiel 2. v(x 1, x 2, x 3 ) = (0, sin x 2, 0) (bzw. v(x 1, x 2, x 3 ) = (0, f(x 2 ), 0)) Hier ändert sich die x 2 -Komponente mit dem Wert von x 2, und damit ändert sich auch der Betrag der Geschwindigkeit. Dennoch entsteht keine Drehbewegung, denn es gilt rot v = 0. Beispiel 3. v = ω x mit ω = ω 0 (0, 0, 1). Damit ist v = ω 0 ( x 2, x 1, 0). Dies beschreibt die Geschwindigkeit einer Rotationsbewegung mit konstanter Winkelgeschwindigkeit ω 0. Es gilt div v = 0 und rot v = (0, 0, 2ω 0 ) = 2 ω 0 Sei nun F ein Gradientenfeld, d.h. es existiert eine Skalarfunktion Φ mit F = gradφ = (,, ). Dann ist rot F = ( 2 Φ 2 Φ, 2 Φ 2 Φ, 2 Φ 2 Φ ). Ist Φ zweimal stetig differenzierbar, dann gilt offenbar rot gradφ = 0, bzw. ( Φ) = 0. Konservative Vektorfelder sind also wirbelfrei. 4

5 Auf eine ebenso einfache Weise kann eine weitere wichtige Eigenschaft gezeigt werden ( F zweimal stetig differenzierbar): div rot F = ( F ) = 0 Rechenregeln. Diese können durch Auswerten von linker und rechter Seite relativ leicht verifiziert werden. Erwähnt sei dabei ein weiterer Differentialoperator, der aus einem Vektorfeld F und dem Nabla-Operator gewonnen werden kann: ( F ) = Dieser Operator wirkt auf eine Skalarfunktion Φ mittels ( F )Φ = und auf eine Vektorfunktion G mittels ( ( F ) G F )G 1 = ( F )G 2 = ( F )G 3 G 1 G 1 G 1 G 2 G 2 G 2 G 3 G 3 G 3 Der Laplace-Operator ist ebenfalls für Vektorfunktionen F komponentenweise erklärt durch F = F 2 F 3 (ΦF ) = Φ F + Φ( F ) (ΦF ) = Φ F + Φ( F ) ( F G) == G ( F ) F ( G) ( F G) = ( G) F ( F ) G + ( G ) F ( F ) G ( G) = ( G) G 5

6 Wir betrachten nun ein konservatives Kraftfeld F mit Potenzial Φ, wobei wir annehmen, dass Φ(x 1, x 2, x 3 ) zweimal stetig differenzierbar ist. Dann gilt F i = x i i, j = 1, 2, 3. für i = 1, 2, 3, und weiters F i x j = 2 Φ x i x j = F j x i Diese Bedingungen heißen allgemein Integrabilitätsbedingungen und bedeuten im R 3 genau, dass rot F = 0. Unter gewissen Voraussetzungen (im Falle sogenannter einfach zusammenhängender Gebiete) gilt auch die Umkehrung: ist rot F = 0 dann ist F ein Gradientenfeld. für Beispiel. Sei F = (2x1, x 3, x 2 ). Wie man sich leicht überzeugt, ist rot v = 0, also liegt eine konservative Kraft vor. Für die gesuchte Skalarfunktion Φ(x 1, x 2, x 3 ) gilt Integration nach x 1 liefert: Φ = x φ(x 2, x 3 ). = = 2x 1. Wegen = F 2 = x 3 gilt dann φ = x 3, und damit φ(x 2, x 3 ) = x 2 x 3 + ψ(x 3 ) bzw. Φ = x x 2 x 3 + ψ(x 3 ) Aus = F 3 = x 2 folgt dann x 2 + ψ (x 3 ) = x 2, mithin ψ (x 3 ) = 0 und ψ(x 3 ) = c. Also ist Φ(x 1, x 2, x 3 ) = x x 2 x 3 + c. Bemerkung. Im Falle einer konservativen Kraft F kann die gesuchte Skalarfunktion Φ auch durch Auswertung eines Linienintegrals gewonnen werden. Es ist ja Φ(x 1, x 2, x 3 ) Φ(a, b, c) das Arbeitsintegral entlang eines Weges von (a, b, c) nach (x 1, x 2, x 3 ). Wählen wir im obigen Beispiel (a, b, c) = (0, 0, 0) und als Weg von (0, 0, 0) nach (x 1, x 2, x 3 ) die drei Geradenstücke C 1 : t (tx 1, 0, 0) 0 t 1 (von (0, 0, 0) nach (x 1, 0, 0)) 6

7 C 2 : t (x 1, tx 2, 0) 0 t 1 (von (x 1, 0, 0) nach (x 1, x 2, 0)) C 3 : t (x 1, x 2, tx 3 ) 0 t 1 (von (x 1, x 2, 0) nach (x 1, x 2, x 3 )) Dann ist Φ(x 1, x 2, x 3 ) Φ(0, 0, 0) = = 1 t=0 2tx 1 x 1 dt + 1 t=0 0 x 2 dt + 1 t=0 x 2 x 3 dt = x x 2 x 3. 7

Linien- und Oberflächenintegrale

Linien- und Oberflächenintegrale Linien- und berflächenintegrale Bei den früheren eindimensionalen Integralen wurde in der Regel entlang eines Intervalls einer Koordinatenachse integriert. Bei einem Linienintegral wird der Integrationsweg

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren?

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? V4 Vektorfelder Vektorfelder haben oft Struktur: quellfrei, wirbelfrei Quellfeld Wirbelfeld Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? Zunächst brauchen wir

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

5 Der Gaußsche und Stokes sche Integralsatz

5 Der Gaußsche und Stokes sche Integralsatz HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche

Mehr

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral

Serie 9. Analysis D-BAUG Dr. Cornelia Busch FS Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green) das Linienintegral Analysis D-BAUG Dr. ornelia Busch FS 6 Serie 9. Berechnen Sie auf zwei Arten (direkt und mit Hilfe des Satzes von Green das Linienintegral xy dx + x y 3 dy, D wobei D das Dreieck mit den Eckpunkten (,,

Mehr

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden.

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden. Vektoranalysis Begriffe Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte 2D) verwenden. Ein Skalarfeld f = fx, y, z) ist

Mehr

Serie 8. D-BAUG Analysis II FS 2015 Dr. Meike Akveld. 1. Berechnen Sie für das Vektorfeld (siehe Abbildung 1) Abbildung 1: Aufgabe 1

Serie 8. D-BAUG Analysis II FS 2015 Dr. Meike Akveld. 1. Berechnen Sie für das Vektorfeld (siehe Abbildung 1) Abbildung 1: Aufgabe 1 D-BAUG Analsis II FS 5 Dr. Meike Akveld Serie 8. Berechnen Sie für das Vektorfeld (siehe Abbildung ) 3 - -3 3 3 Abbildung : Aufgabe F : (, ) ( +, ) die Arbeit entlang der folgenden Wege C, wobei P = (,

Mehr

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Mathematische Grundlagen Mit den folgenden mathematischen Grundlagen sollten

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Krummlinige Koordinaten

Krummlinige Koordinaten Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere

Mehr

Mathematische Grundlagen

Mathematische Grundlagen G-CSC Goethe-Center for Scientific Computing der Universität Frankfurt 1. Übung zur Vorlesung Modellierung und Simulation 3 (WS 2012/13) Prof. Dr. G. Wittum Susanne Höllbacher, Martin Stepniewski, Christian

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3 . Juli 28 3 9 Vektoranalysis 9. Divergenz und otation Es sei D n offen und = [,..., n ] T sei stetig differenzierbares Vektorfeld. Unter der Divergenz des Vektorfeldes versteht man den Ausdruck div = n

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 11

Technische Universität München Zentrum Mathematik. Übungsblatt 11 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 11 Hausaufgaben Aufgabe 11.1 Berechnen Sie jeweils die Jacobi-Matrix folgender

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

Gradient eines Skalarfeldes

Gradient eines Skalarfeldes Gradient eines Skalarfeldes 1-E Gradient eines Skalarfeldes Definition 1: Unter dem Gradient eines differenzierbaren Skalarfeldes Φ (x, y) versteht man den aus den partiellen Ableitungen 1. Ordnung von

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHEMIE UND LEBENSMITTELCHEMIE Integralrechnung für Funktionen mehrerer Variablen

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

1 Kurven und Kurvenintegrale

1 Kurven und Kurvenintegrale Fabian Kohler Karolina Stoiber Ferienkurs Analysis für Physiker SS 14 A 1 Kurven und Kurvenintegrale 1.1 Einschub: Koordinatentransformation Gegeben sei eine Funktion f : R n R. Dann ist die totale Ableitung

Mehr

2.1 Ableitung eines Vektors nach einem Skalar

2.1 Ableitung eines Vektors nach einem Skalar Kapitel 2 Differentiation von Feldern 2.1 Ableitung eines Vektors nach einem Skalar Wir betrachten einen Vektor im Raum, der sich zeitlich verändert, d.h. a(t). Für einen Zeitpunkt t + t gilt dann a =

Mehr

12. Partielle Ableitungen

12. Partielle Ableitungen H.J. Oberle Analysis III WS 2012/13 12. Partielle Ableitungen 12.1 Partielle Ableitungen erster Ordnung Gegeben: f : R n D R, also eine skalare Funktion von n Variablen x = (x 1,..., x n ) T. Hält man

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Rotation 1 E1. Ma 2 Lubov Vassilevskaya

Rotation 1 E1. Ma 2 Lubov Vassilevskaya Rotation 1 E1 Abb. 1 1: Turbulenz Leonardo da Vinci 1 E2 Definition und Eigenschaften der Rotation Abb. 1 2: Fließendes Wasser in einem Kanal Es wird das Geschwindigkeitsfeld einer stationären Strömung

Mehr

V2 Felder (Funktionen mehrerer unabhängigen Variablen)

V2 Felder (Funktionen mehrerer unabhängigen Variablen) V2 Felder (Funktionen mehrerer unabhängigen Variablen) Orts- und zeitabhängige physikalische Größen werden durch "Felder" beschrieben. Beispiel: Maxwell-Gleichungen der Elektrodynamik: Vektor-Analysis:

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

- 1 - Zunächst das Integral über eine Bogenlänge. Ist in der x,y-ebene (oder im Raum) eine Kurve K vorgeben, so können wir das Integral

- 1 - Zunächst das Integral über eine Bogenlänge. Ist in der x,y-ebene (oder im Raum) eine Kurve K vorgeben, so können wir das Integral - 1 - Vektoranalysis In diesem Kapitel untersuchen wir vornehmlich Vektorfelder und charakterisieren sie durch ihre Wirbel- und Quellstärke. Verstärkt findet diese Vektor(feld)analysis Anwendung in der

Mehr

Übungsblatt Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze.

Übungsblatt Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze. Übungsblatt 01 http://www.fluid.tuwien.ac.at/302.043 Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze. Im Folgenden stehen normal gedruckte Buchstaben ρ (x) für skalare Funktion die den R 3 nach

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno Benno van den Berg WS 9/1 1.1.1 1. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Kreuzen Sie die richtigen Aussagen an. Sei V C 1 (R n,

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) 1 Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Kapitel 11: Vektoranalysis Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 10. Juni 2008) Felder Definition 11.1 Ein Skalarfeld

Mehr

Wiederholung: Integralsätze im Raum

Wiederholung: Integralsätze im Raum Wiederholung: Integralsätze im Raum Sei S R 2 ein glattes Flächenstück, d.h. man hat eine (reguläre) Parametrisierung Φ : D R 2 S R 3, (x, y) s = Φ(x, y). S Φ(x, y) T 1 dx T 2 dy Φ D (x, y) e 1 dx e 2

Mehr

Serie 7: Kurvenintegrale

Serie 7: Kurvenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 7: Kurvenintegrale Bemerkungen: Die Aufgaben der Serie 7 bilden den Fokus der Übungsgruppen vom 4./6. April.. Ordnen Sie den Kurven -8 die

Mehr

Abbildung 14: Ein Vektorfeld im R 2

Abbildung 14: Ein Vektorfeld im R 2 Vektoranalysis 54 Vektoranalysis Wir wollen nun Vektorfelder betrachten. Es sei U R n. Ein Vektorfeld im R n ist eine Abbildung v : U R n, die jedem Punkt x ihres sbereichs U einen Vektor v(x) zuordnet.

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

5.6 Potential eines Gradientenfelds.

5.6 Potential eines Gradientenfelds. die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen

Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. 1 Integration von Funktionen einer Veränderlichen Institut für Wissenschaftliches Rechnen Dr. Ute Feldmann, Maximilian Becker Selbsteinschätzung Mathe 2 Dieser Fragebogen wächst Woche für Woche mit. Die 3 Kreise mit Ampelfarben dienen der Selbsteinschätzung.

Mehr

Teil 8. Vektoranalysis

Teil 8. Vektoranalysis Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

. (1.1) also über eine Lorentzkurve. In Abb. 1.1 ist der Grenzwertprozess dargestellt. Die Eigenschaften

. (1.1) also über eine Lorentzkurve. In Abb. 1.1 ist der Grenzwertprozess dargestellt. Die Eigenschaften . Diracsche δ-funktion. Diracsche δ-funktion Die Diracsche δ-funktion δ(x) besitzt den Definitionsbereich x R und ist charakterisiert durch die folgende Eigenschaft: I dxδ(x x 0 ) = { für x 0 I R 0 für

Mehr

Divergenz, Rotation und Laplace-Operator

Divergenz, Rotation und Laplace-Operator 6 Divergenz, Rotation und Laplace-Operator... Stokes besaß einen sehr wichtigen prägenden Einfluss auf die folgenden Generationen von Cambridge-Studenten, unter ihnen auch Maxwell. Zusammen mit Green,

Mehr

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften Seminar 1 1 Vektoralgebra, -Operator, Epsilontik 1.1 Der ε-pseudotensor und einige seiner Eigenschaften In in allen Bereichen der theoretischen Physik sehr gebräuchliches Hilfsmittel ist der ε-pseudotensor.

Mehr

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

1. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS /3 Keine Abgabe. Aufgabe Es seien die folgenden Vektorfelder in R 3

Mehr

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können.

Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form. ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. 142 Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten x, y, z vertauscht sein können. efinition

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( )

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( ) Abb. 5.0: Funktion und Tangentialebene im Punkt Aus der totalen Differenzierbarkeit folgt sowohl die partielle Differenzierbarkeit als auch die Stetigkeit von : Satz 5.2: Folgerungen der totalen Differenzierbarkeit

Mehr

Ableitungen von skalaren Feldern Der Gradient

Ableitungen von skalaren Feldern Der Gradient Ableitungen von skalaren Feldern Der Gradient In der letzten Vorlesung haben wir das zu einem konservativen Kraftfeld zugehörige Potential V ( r) = F ( s) d s + V ( r0 ) kennengelernt und als potentielle

Mehr

24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes

24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes 24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes Zur Integration reeller Funktionen wurden folgende Regeln behandelt (f,g : [a,b] R seien stetig differenzierbar): Einsetzen der Intervall-Grenzen

Mehr

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form

Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich D in R 3 ein Normalbereich, wenn er von der Form 155 Normalbereiche in R 2 sehen wie folgt aus: Analog ist ein Bereich in R 3 ein Normalbereich, wenn er von der Form = { (x,y,z) a x b,u(x) y o(x),ũ(x,y) z õ(x,y) } ist, wobei die Rollen der Koordinaten

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Technische Universität München. Probeklausur Lösung SS 2012

Technische Universität München. Probeklausur Lösung SS 2012 Technische Universität München Andreas Wörfel & Carla Zensen Ferienkurs Analysis für Physiker Probeklausur Lösung SS Aufgabe Differenzierbarkeit / Punkte: [4,, 3, 4] Es sei f(x, y) = sin(x3 + y 3 ) x +

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Musterlösungen Aufgabenblatt 1

Musterlösungen Aufgabenblatt 1 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Phsiker Musterlösungen Aufgabenblatt Montag 6. Februar 9 Aufgabe (Vivianische Kurve) x = (sin t cos t, sin t, cos t), t π, ist wegen x + + z = eine

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis Studiengang: PT/LOT Analysis III Serie 3 Semester: WS 1/11 1. Aufgabe Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Mehr

Hochschule Düsseldorf University of Applied Sciences. 19. November 2015 HSD. Physik. Energie II

Hochschule Düsseldorf University of Applied Sciences. 19. November 2015 HSD. Physik. Energie II Physik Energie II Arbeit bei variabler Kraft Was passiert wenn sich F in W = Fx ständig ändert? F = k x Arbeit bei variabler Kraft W = F dx Arbeit bei variabler Kraft F = k x W = F dx = ( k x)dx W = F

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Vorlesung. Mathematik für Physiker III. Kapitel 3 Differentialformen. 10. Differentialformen 1. Ordnung

Vorlesung. Mathematik für Physiker III. Kapitel 3 Differentialformen. 10. Differentialformen 1. Ordnung Vorlesung Mathematik für Physiker III Kapitel 3 Differentialformen 10. Differentialformen 1. Ordnung Sei V ein Vektorraum über R, V sein Dualraum. Zu einer k-dimensionalen Untermannigfaltigkeit M des R

Mehr

4. Wirbelsätze. ω= v. Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung. ω=0

4. Wirbelsätze. ω= v. Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung. ω=0 Wirbelvektor: Der Wirbelvektor ist definiert durch ω= v Er beschreibt die Drehung einer Strömung. Aus der für jedes Vektorfeld w gültigen Beziehung ( w )=0 folgt: ω=0 Wirbellinien sind Kurven, deren Tangente

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Theoretische Elektrodynamik

Theoretische Elektrodynamik Theoretische Elektrodynamik Literatur: 1. Joos: Lehrbuch der Theoretische Physik 2. Jackson: Klassische Elektrodynamik 3. Nolting: Grundkurs Theoretische Physik zusätzlich: Sommerfeld: Landau/Lifschitz:

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 29/ Vorlesung 9, Freitag vormittag Linienintegrale und Potential Wir betrachten einen Massenpunkt, auf den die konstante

Mehr

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

Aufgabe 2 Auf dem Bildschirm eines Oszillographen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor Thema: Vektoranalysis PT/LOT WS 13/14 Analysis III Serie 3 www.fh-jena.de/~puhl Aufgabe 1 Ein Massepunkt bewegt sich mit der Winkelgeschwindigkeit ω 1 auf einer Kreisbahn mit dem Radius R 1 und dem Mittelpunkt

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Nabla, Grad, Div, Rot und das Drumherum

Nabla, Grad, Div, Rot und das Drumherum Nabla, Grad, Div, Rot und das Drumherum 1. Gradient und Nabla Gezeichnet ist ein usschnitt aus einer Landkarte mit zwei Gipfelanstiegen auf den Dôme du Goûter (4305 m). Der ergsteiger Otto Weichei plant

Mehr

Zur geometrischen Interpretation der Divergenz, Rotation und des Laplace-Operator im R 2

Zur geometrischen Interpretation der Divergenz, Rotation und des Laplace-Operator im R 2 Thomas Neukirchner 6. November 7 Zur geometrischen Interpretation der Divergenz, Rotation und des Laplace-Operator im R Vorbemerkung: Sein Nt cos t, sin t und JNt sin t, cos t. Dann gilt: A X R konstant

Mehr

Mathematischer Einführungskurs für die Physik

Mathematischer Einführungskurs für die Physik Siegfried Großmann Mathematischer Einführungskurs für die Physik 9., überarbeitete und erweiterte Auflage Mit 123 Figuren, über 110 Beispielen und 233 Selbsttests mit Lösungen STUDIUM VIEWEG+ TEUBNER Inhalt

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie 38 KAPITEL. DYNAMIK EINES MASSENPUNKTES.3 Arbeit und Energie Wenn sich ein Massenpunkt in einem Kraftfeld bewegt so wird er entweder beschleunigt oder abgebremst. Man sagt auch an ihm wird vom Kraftfeld

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 1 Bearbeitung: 28.10.2011

Mehr

3 Differenzierbarkeit und Ableitung (Differentialrechnung I)

3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 3 Differenzierbarkeit und Ableitung (Differentialrechnung I) 31 Differenzierbarkeit und Ableitung von Funktionen einer Variablen Definition 31 Es sei M R, f : M R und a M Wenn der Funktionsgrenzwert f(x)

Mehr

2.4 Eigenschaften des Gradienten

2.4 Eigenschaften des Gradienten 2.4 Eigenschaften des Gradienten Niveauflächen: Die Niveauflächen (D = 2 Höhenlinien) einer Funktion f sind die durch die Gleichung f(x, y, z) = c = const bestimmten Flächen(scharen); für jeden Wert von

Mehr

12 Der Gaußsche Integralsatz

12 Der Gaußsche Integralsatz 12. Der Gaußsche Integralsatz 1 12 Der Gaußsche Integralsatz Das Ziel dieses Abschnitts ist die folgende zentrale Aussage der mehrdimensionalen Analysis und der Theorie der partiellen Differentialgleichungen:

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

Dies ist nun eine Differentialgleichung zweiter Ordnung mit dem Randwertproblem x(t 0 ) = x 0 und x(t 1 ) = x 1.

Dies ist nun eine Differentialgleichung zweiter Ordnung mit dem Randwertproblem x(t 0 ) = x 0 und x(t 1 ) = x 1. Florian Niederreiter Karolina Stoiber Ferienkurs Analysis für Physiker SS 15 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 2 15. April 2010 Kapitel 6. Integralrechnung Einseitig unbeschränkter Definitionsberech Beidseitig unbeschränkter Definitionsberech Unbeschränkte

Mehr

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel

y (t) Wie berechnet sich die Ableitung von F aus den Ableitungen von x (t) und y (t)? Die Antwort gibt die erste Kettenregel 103 Differenzialrechnung 553 1035 Kettenregeln Die Kettenregel bei Funktionen einer Variablen erlaubt die Berechnung der Ableitung von verketteten Funktionen Je nach Verkettung gibt es bei Funktionen von

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren Vorlesung: Analsis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Koordinatenssteme, klassische Differentialoperatoren Polarkoordinaten = cos() = sin() = 2 + 2 =(,) tan() = für 0. Winkel

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G JoachimlRisius Vektorrechnung Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G Inhaltsverzeichnis 1. Darstellung von Punkten durch Koordinatensysteme 11 1.1. Die

Mehr

31. Kurven in Ebene und Raum

31. Kurven in Ebene und Raum 31. Kurven in Ebene und Raum Für ebene Kurven (also Kurven im R gibt es mehrere Darstellungsmöglichkeiten: implizite Darstellung : F (x, y = explizite Darstellung : y = f(x oder x = g(y Parameterdarstellung

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 35 Mathematik für Ingenieure A III Wintersemester 28 J. Michael Fried Lehrstuhl Angewandte Mathematik III 21.11.28 2 / 35 Wiederholung Divergenz und Rotation Gradient und Laplace-Operator Merkregeln

Mehr

Potentialfelder und ihre Bedeutung für Kurvenintegrale

Potentialfelder und ihre Bedeutung für Kurvenintegrale Potentialfelder und ihre Bedeutung für Kurvenintegrale Gegeben sei ein Vektorfeld v, entweder im Zweidimensionalen, also von der Gestalt ( ) v1 (x,y), v 2 (x,y) oder im Dreidimensionalen, also von der

Mehr