Handout zum Workshop. Schwerewellen. M. Fruman & F. Rieper Ein Kurs für die Teilnehmer der StuMeTa

Größe: px
Ab Seite anzeigen:

Download "Handout zum Workshop. Schwerewellen. M. Fruman & F. Rieper Ein Kurs für die Teilnehmer der StuMeTa"

Transkript

1 Handout zum Workshop Schwerewellen M. Fruman & F. Rieper Ein Kurs für die Teilnehmer der StuMeTa 2010 Institut für Atmosphäre und Umwelt Theorie der atmosphärischen Dynamik und des Klimas Inhaltsverzeichnis 1 Leicht zu verstehen: Schwingungen durch Schwere 3 2 Was ist Phase: Wie schnell sich Wellenberge ausbreiten 4 3 Wenn Gruppen auseinander laufen Über die Ausbreitung von Wellenpaketen 4 4 Linear Boussinesq: die einfachste aller Atmosphären 5 5 Was ist Phase bei den Schwerewellen? 7 6 Vom Wachsen der Wellen in grosser Höhe 8 7 Jetzt geht s rund: Einfluss der Erdrotation auf Schwerwellen 9 1

2 Inhaltsverzeichnis 2 Vorwort Das vorliegende Skript dient den Teilnehmern des Workshops Schwerewellen, schnell in das Thema einzusteigen. Sie werden sich mit folgenden Fragen auseinander setzen: Wie können Teile der Atmosphäre schwingen? Wie kann man Phasen- und Gruppenschgeschwindigkeit verstehen und voneinander unterscheiden? Welche Faktoren beeinflussen diese Geschwindigkeiten bei den Schwerewellen in der Atmosphäre? Wieso wachsen die Amplituden dieser Wellen immer stärker an?...bis sie schließlich brechen Wir wünschen allen Teilnehmern der StuMeTa 2010 gutes Gelingen. Frankfurt, Sommersemester 2010 Mark Fruman & Felix Rieper.

3 1. Leicht zu verstehen: Schwingungen durch Schwere 3 1 Leicht zu verstehen: Schwingungen durch Schwere In einer stabil geschichteten Atmosphäre liegen die leichteren Luftschichten über den schwereren. Gelangt ein Luftpaket in eine höhere Schicht, ist es umgeben von leichterer bzw. dünnerer Luft. Es ist also schwerer als seine Umgebung und erfärt daher eine Rückstellkraft, die es wieder nach unten treibt. Schießt es über seine ursprüngliche Position nach unten hinaus, befindet es sich umgeben von dichterer Luft. Es ist leichter und wird daher wieder nach oben beschleunigt. Ist diese Auslenkung z klein, ist die rückstellende Kraft proportional zu dieser Auslenkung z: F z. Andererseits wissen wir seit Newton: Kraft gleich Masse mal Beschleunigung, oder, für unseren Kontext der massebezogenen Größen, Kraft/Masse gleich Beschleunigung: F = D2 z Dt 2. Daraus erbibt sich dann eine Schwingungsgleichung wobei der Proportionalitätsfaktor D 2 z Dt 2 = N 2 z, N 2 = ḡ ρ ein Maß für die Stärke der Schichtung ist und Brunt-Vaisala Frequenz genannt wird. Lösungen dieser Gleichung sind harmonischen Schwingungen mit der Frequenz N: z(t) = z 0 cos(nt). Je stärker die Schichtung N ausgeprägt ist, desto schneller schwingt das Luftpaket um seine Gleichgewichtslage. Beachte: Eine Schwingung ist nur möglich, wenn die Luft stabil geschichtet ist, also wenn ist. N 2 > 0 d ρ dz

4 2. Was ist Phase: Wie schnell sich Wellenberge ausbreiten 4 2 Was ist Phase: Wie schnell sich Wellenberge ausbreiten Eine harmonische Welle in 1D wird durch folgende Gleichung beschrieben, wobei wir hier die Dichtefluktuationen ρ schwingen lassen ρ (x, t) = ρ 0 cos(kx ωt + φ 0). Die Bewegung eines Wellenberges wird durch die Phase φ(x, t) = kx ωt + φ 0 beschrieben. Dabei gibt die Wellenzahl k an, wie viele Wellen der Länge λ ins Intervall [0, 2π] passen: k = 2π λ. Die Kreisfrequenz ω gibt entsprechend an, wie viele zeitliche Perioden der Dauer T ins Intervall [0, 2π] passen: ω = 2π T. Ein Beobachter sieht einen Wellenberg mit der Phasengeschwindigkeit c P = ω/k sich ausbreiten. Dies erhalten wir, wenn wir die zeitliche Änderung der Phase auf Null setzen: Dφ Dt = D Dt (kx ωt + φ 0) = k Dx Dt ω = 0, also Dx/Dt = c P = ω/k für konstante Phase. 3 Wenn Gruppen auseinander laufen Über die Ausbreitung von Wellenpaketen Beim Schall ist alles ganz einfach: egal wie kurz oder lang die Wellen sind, alle breiten sich gleich schnell aus: c P = ω k = const, ω k. Anders bei Wasserwellen und Schwerewellen der Atmosphähre: Diese breiten sich je nach Wellenlänge unterschiedlich schnell aus: c P = ω k = const, ω = ω(k). Ein Gruppe von Wellen unterschiedlicher Wellenlängen läuft auseinander (engl.: gets dispersed) und wird daher dispersiv genannt. Die nicht-lineare Abhängigkeit ω = ω(k) heißt Dispersionsrelation.

5 4. Linear Boussinesq: die einfachste aller Atmosphären 5 Gruppengeschwindkeit Wellen in der Natur treten fast immer als Wellenpakete auf: es werden nicht nur einzelne Frequenzen angeregt (mono-chromatische Wellen) sondern ein ganzes Spektrum. Jede einzelne Mode läuft mit ihrer eigenen Phasengeschwindigkeit mit welcher Geschwindigkeit aber breitet sich das gesamt Signal, das Wellenpaket aus? Dazu überlagern wir zwei Wellen, die sich um 2δk und 2δω in Wellenzahl und Frequenz unterscheiden: cos[(k + δk)x (ω + δω)t] + cos[(k δk)x (ω δω)t] und mit etwas Algebra... = 2 cos(δkx δωt) cos(kx ωt). Der rechte Kosinus beschreibt eine Welle mit der mittleren Wellenzahl k und Frequenz ω. Der linke Kosinus beschreibt die Amplitude des Signals. Sie breitet sich mit der Geschwindigkeit δω/δk aus - der sogenannten Gruppengeschwindigkeit c G. Für den Grenzübergang δk 0 zu einem kontinuierlichen Spektrum gilt: c G = dω dk. Matlab-Experiment zur Gruppengeschwindigkeit [groupvelocity.m] Stellen Sie die Gruppengeschwindigkeit so ein, dass diese halb so groß ist wie die Phasengeschwindigkeit (Wasserwellen). Stellen Sie die Gruppengeschwindigkeit nun größer als die Phasengeschwindigkeit ein (atmos. Schwerewellen). 4 Linear Boussinesq: die einfachste aller Atmosphären Wir möchten Schwerewellen sehen und verstehen, und das in möglichst einfachen Gleichungen. Wir machen daher folgende Vereinfachungen: ρ = ρ 0 + ρ(z) + ρ u = u p = p(z) + p w = w

6 4. Linear Boussinesq: die einfachste aller Atmosphären 6 Abbildung 1: Überlagerung zweier Kosinus-Wellen. Amplitude der einzelne Wellen (oben); Amplitude der Summe der Wellen sowie deren Einhüllende (unten).

7 5. Was ist Phase bei den Schwerewellen? 7 und erhalten aus den linearisierten Boussinesq-Gleichungen eine Gleichung für die vertikale Geschwindigkeit w : mit der Lösung 2 ( 2 w t 2 x w ) z 2 + N 2 2 w x 2 = 0 w (x, t) = w 0 cos(kx + mz ωt + φ 0). Im Gegensatz zur einfachen Wellengleichung handelt es sich hier um eine Gleichung für dispersive Wellen. Die Dispersionsrelation ist ω 2 = N2 k 2 k 2 + m 2, mit der horizontalen Wellenzahl k, der vertikalen Wellenzahl m und der Schichtung N. 5 Was ist Phase bei den Schwerewellen? Die Gruppengeschwindigkeit in 2D ist ein Vektor mit den Komponenten c G = ( cgx c Gz ) = ( ω k ω m ) c Gx = N2 m 2 ω/k k 4, c Gz = N2 k 2 ω/m k 4, wobei k 2 = k 2 + m 2. Gibt s doch gar nicht Zeige, dass Wellenzahl k und Gruppengeschwindigkeit c G aufeinander senkrecht stehen - Energie also parallel zu den Phaselinien transportiert wird. Matlab-Experiment mit Schwerewellen-Paket (wavepacket.m, anim wave.m) Starten Sie zuerst wavepacket.m, um die Schwerewelle zu berechnen und die Daten im workspace zu speichern. Für die graphische Darstellung starten Sie anschließend anim wave.m.

8 6. Vom Wachsen der Wellen in grosser Höhe 8 1. Ein sogenanntes Hovmöller-Diagramm (rechts) zeigt die Dichte-Kontur- Linien für ein festgehaltenes x. Es veranschaulicht, wie ein Wellenberg mit der Zeit an Höhe verliert oder gewinnt. Bestimmen Sie grob die Periode, sowie vertikale Wellenlänge und Phasengeschwindigkeit. 2. Variieren Sie vorsichtig die Ausbreitungsrichtung der Schwerewelle und beobachten Sie Phasen- und Gruppengeschwindigkeit. Hinweis: Der Parameter α gibt den Winkel zwischen Horizontale und Wellenzahlvektor k an. 6 Vom Wachsen der Wellen in grosser Höhe Im Boussinesq-Modell wird die Abnahme der Dichte mit der Höhe nur im Auftriebsterm berücksichtigt - nicht aber in der Energie-Erhaltung. Für große Höhenunterschiede sind die anelastischen Modelle besser geeignet: Statt ρ = const = ρ 0 erlauben wir ρ = ρ(z). Die Dichteänderung wird bei Erhaltung der kinetischen Energie der Welle berücksichtigt: 1 2 ρ(z)ŵ(z)2 = const = 1 2 ρ 0ŵ 2 z=0. Die Amplitude der Welle wächst mit zunehmender Höhe wie ρ0 ŵ(z) ρ(z). Matlab-Experiment zum Wachstum der Amplituden (wavepacket 1d.m, anim wave.m) Für diese Studie benutzen wir das pseudo-inkompressible Modell. Öffnen Sie die Datei wavepacket 1d.m, kommentieren Sie model = boussi und aktivieren Sie model = pseudo. 1. Das Diagramm rechts zeigt die Dichte ρ im Zentrum des Wellenpakets während dieses nach oben aufsteigt. Verändern Sie die pressure scale height H in Zeile 20 und beobachten Sie die Wachstumsrate der Amplitude. 2. Überlegen Sie, warum mit dem Anwachsen der Amplitude die Stabilität der Atmosphäre im Bereich der Schwerewelle gestört wird. Hinweis: Argumentieren Sie mit der Definition von N 2.

9 7. Jetzt geht s rund: Einfluss der Erdrotation auf Schwerwellen 9 7 Jetzt geht s rund: Einfluss der Erdrotation auf Schwerwellen Schwerewellen deren Wellenvektor fast senkrecht nach oben zeigt, haben sehr große Ausdehung in der Horizontalen. In diesem Fall kann der Einfluss der Erdrotation auf die Schwerewelle nicht mehr vernachlässigt werden. Die Corioliskraft ist dann eine weitere rückstellende Kraft, die sich in der Dispersionsrelation niederschlägt: ω 2 = N2 k 2 + f 2 m 2 k 2 + m 2, wobei typische Werte für die Schichtung und den Coriolisparameter sind: Matlab-Experiment zur Erdrotation (wavepacket.m, anim wave.m) N 10 2 s 1, f 10 4 s 1. Für diese Studie setzen Sie den Parameter wavetype = igw in Zeile 8 des Programms wavepacket.m. 1. Nutzen Sie das Hovmöller-Diagramm, um die Periode der Schwerewellen abzuschätzen. Warum ist die Periode so lang? 2. Das Diagramm (oben rechts) zeigt die Horizontalkomponente u = (u, v ) im Zentrum des Wellenpakets. Überlegen Sie, warum hier die v - Komponente ins Spiel kommt. Variieren Sie die Ausbreitungsrichtung mit Hilfe des Winkels α. Ändern Sie den Winkel in ±0, 5 Schritte. Welche Veränderungen können Sie feststellen?

10 Literatur 10 Literatur [1] J. R. Holton, An Introduction to Dynamic Meteorology, 3rd ed., Academic Press, San Diego, [2] A. Gill, Atmosphere-Ocean Dynamics, Academic Press, San Diego, [3] D. R. Durran, Improving the anelastic approximation, J. Atmos. Sci. 46 (1989)

Physik B2.

Physik B2. Physik B2 https://e3.physik.tudortmund.de/~suter/vorlesung/physik_a2_ws17/physik_a2_ws17.html 1 Wellen Welle = Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus

Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus 7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

12. Vorlesung. I Mechanik

12. Vorlesung. I Mechanik 12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Inhaltsverzeichnis Wellen. Wellen im Vakuum............................. Lösung der Wellengleichung................... Energietransport / Impuls - der

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Dispersion, nicht-lineare Effekte, Solitonen

Dispersion, nicht-lineare Effekte, Solitonen Dispersion, nicht-lineare Effekte, Solitonen Als Beispiel für Dispersion und Effekte aufgrund von Nichtlinearität verwenden wir Oberflächenwellen auf Wasser. An der Wasseroberfläche wirken Kräfte aufgrund

Mehr

11.1 Wellenausbreitung 11.2 Wellengleichung 11.3 Interferenzen und Gruppengeschwindigkeit

11.1 Wellenausbreitung 11.2 Wellengleichung 11.3 Interferenzen und Gruppengeschwindigkeit Inhalt Wellenphänomene. Wellenausbreitung. Wellengleichung.3 Interferenzen und Gruppengeschwindigkeit Wellenphänomene Wellen sind ein weiteres wichtiges physikalisches Phänomen Anwendungen: Radiowellen

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

5.8.1 Interferenz von Wasserwellen ******

5.8.1 Interferenz von Wasserwellen ****** Interferen von Wasserwellen 5.8.1 Interferen von Wasserwellen ****** 1 Motivation Zwei synchron periodisch in Wasser eintauchende punktförmige Stifte ereugen kreisförmige Wellenüge. Die Kreiswellen interferieren,

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Teil IV Diernstag, Wellen. Transversale und longitudinale Wellen Transversal nur im Festkörper möglich!

Teil IV Diernstag, Wellen. Transversale und longitudinale Wellen Transversal nur im Festkörper möglich! Teil IV Diernstag, 1.3.005 Wellen Was sind Wellen? Hier werden nur eindimensionale Wellen betrachtet. - Eine Bewegungsrichtung Wichtige Klassifikation der Wellen : Transversale und longitudinale Wellen

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

7. Periodische Bewegungen Physik für E-Techniker. 7.2 Wellen Harmonische Welle Wellenpakete. Doris Samm FH Aachen

7. Periodische Bewegungen Physik für E-Techniker. 7.2 Wellen Harmonische Welle Wellenpakete. Doris Samm FH Aachen 7. Periodische Bewegungen 7.2 Wellen 7.2.1 Harmonische Welle 7.2.2 Interferenz von Wellen 7.2.3 Wellenpakete 723 7.2.3 Stehende Wellen 7.2 Wellen Störung y breitet sich in Raum x und Zeit t aus. y = f(t)

Mehr

3. Kinematik und Schwingungen

3. Kinematik und Schwingungen 3. Kinematik und Schwingungen 1 3.1. Kinematik Als Nächstes wollen wir Bewegungen beschreiben z.b. die einer Cataglyphis 2 Zuallererst brauchen wir ein Koordinatensystem um die Positionen überhaupt zu

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur.

5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur. Dieter Suter - 90 - Physik B 5.1. Allgemeines 5. Wellen 5.1.1. Beispiele und Definition Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Akustik. t 1 > t 0. x = c t

Akustik. t 1 > t 0. x = c t Akustik Wir kehren jetzt von der Wärmestrahlung (im Sinne der Thermodynamik eines Photonengases) zurück zu einem normalen Gas (oder gar einem Festkörper) und betrachten, wie sich eine Störung im Medium

Mehr

EPI WS 2007/08 Dünnweber/Faessler

EPI WS 2007/08 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen Wiederholung: Resonanz 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Glas zersingen

Mehr

EPI WS 2008/09 Dünnweber/Faessler

EPI WS 2008/09 Dünnweber/Faessler 11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Maxwellgleichungen a) Leiten Sie aus den Maxwellgleichungen im Vakuum die Wellengleichung im Vakuum her. Zeigen Sie, dass E, B und k senkrecht aufeinander

Mehr

4. Wellenausbreitung

4. Wellenausbreitung Motivation: Beim Stab konnten Lösungen der Form gefunden werden. u x,t = f 1 x ct f 2 x ct Diese Lösungen beschreiben die Ausbreitung von Wellen im Stab. Die Funktionen f 1 x und f 2 x werden durch die

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Inhaltsverzeichnis. 1 Reexions- und Brechungsgesetz. 1.1 Einführung

Inhaltsverzeichnis. 1 Reexions- und Brechungsgesetz. 1.1 Einführung Inhaltsverzeichnis 1 Reexions- und Brechungsgesetz 1 1.1 Einführung...................................................... 1 1.2 Snelliussches Brechungsgesetz............................................

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Ferienkurs Experimentalphysik III - Optik

Ferienkurs Experimentalphysik III - Optik Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 23.02.09 Inhaltsverzeichnis 1 Wellen 1 1.1 Allgemeines zu Wellen.................................... 1 1.1.1 Wellengleichung für

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen 9.2 Wellen Inhalt 9.2 Wellen 9.2.1 Harmonische Welle 9.2.2 Interferenz von Wellen 9.2.3 Wellenpakete 9.2.3 Stehende Wellen 9.2 Wellen 9.2 Wellen 9.2 Wellen Störung y breitet sich in Raum x und Zeit t aus.

Mehr

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011

Physik Profilkurs ÜA 07 mechanische Wellen Ks. 2011 Aufgabe 1) Ein Wellenträger wird mit f = 2,0 Hz harmonisch angeregt, wobei sich Wellen der Länge 30 cm und der Amplitude 3,0 cm bilden. Zur Zeit t o = 0,0 s durchläuft der Anfang des Wellenträgers gerade

Mehr

HARMONISCHE SCHWINGUNGEN

HARMONISCHE SCHWINGUNGEN HARMONISCHE SCHWINGUNGEN Begriffe für Schwingungen: Die Elongation γ ist die momentane Auslenkung. Die Amplitude r ist die maximale Auslenkung aus der Gleichgewichtslage (r >0). Die Schwingungsdauer T

Mehr

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)

gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt

Mehr

SA Saitenschwingungen

SA Saitenschwingungen SA Saitenschwingungen Blockpraktikum Frühjahr 2007 (Gruppe 2) Freitag, 13. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Allgemeine Wellengleichung............... 2 2.2 Transversalwelle

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Kapitel 9. Wellen in Fluids. 9.1 Einführung

Kapitel 9. Wellen in Fluids. 9.1 Einführung Kapitel 9 Wellen in Fluids 9.1 Einführung Wellen in Fluids führen zu einer großen Zahl interessanter Phänomene, von denen wir einige wenige im Rahmen dieses Abschnittes ansprechen wollen. Betrachtet man

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen.1.006 Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 22.12.2006 Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 15. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Wellen Tsunami Tsunamiwelle Ausbreitungsgeschwindigkeit: v g h g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Berechnungsbeispiel: h=4000 m v 9,81 4000 198 km v 713 h m s Räumliche

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Dynamik der Atmosphäre. Einige Phänomene

Dynamik der Atmosphäre. Einige Phänomene Dynamik der Atmosphäre Einige Phänomene Extratropische Zyklone L L L = 1000 km U = 10 m/sec Tropische Zyklon, Hurrikan, Taifun L L = 500 km U = 50 m/sec Cumulonimbuswolke L L = 10-50 km U = 10-20 m/sec

Mehr

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze Seite 1 von 6 Astronomische Weltbilder und Keplersche Gesetze Heliozentrisches Weltbild Die Sonne steht im Mittelpunkt unseres Sonnensystems, die Planeten umkreisen sie. Viele Planeten werden von Monden

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch

Mehr

Einführung in die Physik I. Schwingungen und Wellen 3

Einführung in die Physik I. Schwingungen und Wellen 3 Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

6.4 Wellen in einem leitenden Medium

6.4 Wellen in einem leitenden Medium 6.4. WELLEN IN EINEM LEITENDEN MEDIUM 227 6.4 Wellen in einem leitenden Medium Unter einem leitenden Medium verstehen wir ein System, in dem wir keine ruhenden Ladungen berücksichtigen, aber Ströme, die

Mehr

Projektarbeit Simulation eines Mathematischen Pendel

Projektarbeit Simulation eines Mathematischen Pendel Vorlesung: Numerische Mathematik SS04 Projektarbeit Simulation eines Mathematischen Pendel Heinrich Mellmann Matey Mateev Leiter: Dr. René Lamour 15. Oktober 2004 2 Inhaltsverzeichnis 1 Aufgabenstellung

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Anhang C: Wellen. vorhergesagt 1916 (Albert Einstein) Entdeckung 2016 (LIGO-Kollaboration) Albert Einstein Christian Schwanenberger -

Anhang C: Wellen. vorhergesagt 1916 (Albert Einstein) Entdeckung 2016 (LIGO-Kollaboration) Albert Einstein Christian Schwanenberger - Anhang C: Wellen Computersimulation der von zwei sich umkreisenden Schwarzen Löchern ausgelösten Gravitationswellen in der Raum-Zeit (Illu.) Albert Einstein 1879-19 Physik-II vorhergesagt 1916 (Albert

Mehr

1 3.Übungsblatt-Phononen

1 3.Übungsblatt-Phononen 1 3.Übungsblatt-Phononen 1.1 Phonon dispersion relation for atoms on a 2-d square lattice Das Gesetz von Newton beschreibt die Kraft zwischen Atomen auf einem Gitter, wobei nur die Wechselwirkung zwischen

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

7. Elektromagnetische Wellen (im Vakuum)

7. Elektromagnetische Wellen (im Vakuum) 7. Elektromagnetische Wellen (im Vakuum) Wir betrachten das elektromagnetische Feld bei Abwesenheit von Ladungen und Strömen und untersuchen die Lösungen der Maxwellschen Gleichungen. 7.1 Wellengleichungen

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

7.1 Überlagerung von Schwingungen, Fourier Zerlegung

7.1 Überlagerung von Schwingungen, Fourier Zerlegung Kapitel 7 Schwingungen und Wellen 7. Überlagerung von Schwingungen, Fourier Zerlegung Im Abschnitt über die Bewegungen einzelner Teilchen haben wir uns sehr intensiv mit den Harmonischen Schwingungen beschäftigt,

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Felder und Wellen Übung 11 WS 2018/2019

Felder und Wellen Übung 11 WS 2018/2019 Christoph Füllner Felder und Wellen Übung 11 WS 2018/2019 Institute of Photonics and Quantum Electronics (IPQ), Department of Electrical Engineering and Information Technology (ETIT) KIT The Research University

Mehr

Aufgaben zu Teil F, Kapitel 2

Aufgaben zu Teil F, Kapitel 2 Aufgaben zu Teil F, Kapitel 2 1. Fragen und Verständnisaufgaben a) Was verstehen Sie unter einem harmonischen Oszillator? b) Was ist Resonanz? Was ist ein Resonator (Gummiseil, Schall, Licht)? c) Studieren

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

Tutorium Physik 2. Schwingungen

Tutorium Physik 2. Schwingungen 1 Tutorium Physik 2. Schwingungen SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 9. SCHWINGUNGEN 9.1 Bestimmen der

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Kapitel 5: Mechanische Wellen

Kapitel 5: Mechanische Wellen Kapitel 5: Mechanische Wellen 5.1 Was sind Wellen? 5.2 Beschreibung der eindimensionalen Wellenausbreitung 5.3 Harmonische Wellen 5.4 Berechnung der Ausbreitungsgeschwindigkeit 5.5 Wellen im Festkörper

Mehr

Klausur TET A. 1. August Name: Vorname: Matrikel-Nr.: Prüfungsnr.: Aufgabe HÜ Summe. Punkte

Klausur TET A. 1. August Name: Vorname: Matrikel-Nr.: Prüfungsnr.: Aufgabe HÜ Summe. Punkte UNIVERSITÄT PADERBORN Fakultät EIM Institut für Elektrotechnik und Informationstechnik Fachgebiet Prof. Dr.-Ing. R. Schuhmann Klausur TET A 1. August 2007 Name: Vorname: Matrikel-: Prüfungsnr.: Aufgabe

Mehr

Schallgeschwindigkeit in Gasen ******

Schallgeschwindigkeit in Gasen ****** V050510 5.5.10 ****** 1 Motivation Mittels Oszilloskop wird die Zeit gemessen, die ein Schallwellenimpuls nach seiner Erzeugung m Lautsprecher bis zum Empfänger (Mikrofon) braucht. 2 Experiment Abbildung

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

Elektromagnetische Feldtheorie 2

Elektromagnetische Feldtheorie 2 Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 08 Elektromagnetische Feldtheorie 2 Montag, 28. 07. 2008, 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript

Mehr

VORSCHAU. 4. Es werden mechanische und elektromagnetische Wellen unterschieden. Ordne folgende Beispiele.

VORSCHAU. 4. Es werden mechanische und elektromagnetische Wellen unterschieden. Ordne folgende Beispiele. Die mechanischen 1. Entscheide, ob die Aussagen richtig oder falsch sind. Wenn du denkst, es handelt sich um eine falsche Aussage, dann berichtige diese. Aussage richtig falsch Die Aussage müsste richtig

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

Ballaufgabe. David Reichenbacher. 8. November 2015

Ballaufgabe. David Reichenbacher. 8. November 2015 Ballaufgabe David Reichenbacher 8. November 2015 Hausaufgabe aus der Vorlesung Höhere Mathematik für die Fachrichtung Physik Dozent: Dr. Ioannis Anapolitanos Dieses Dokument beinhaltet einen Lösungsvorschlag

Mehr

Klausur Theoretische Elektrotechnik A Aufgabe 1 (25 Punkte)

Klausur Theoretische Elektrotechnik A Aufgabe 1 (25 Punkte) Klausur A Aufgabe 1 25 Punkte) 1. Leiten Sie die Wellengleichung für eine eindimensionale ebene Welle mit x = y = ) aus den Maxwellschen Gleichungen für den zeitharmonischen Fall her. Betrachtet wird zunächst

Mehr

Intensitätsverteilung der Beugung am Spalt ******

Intensitätsverteilung der Beugung am Spalt ****** 5.10.801 ****** 1 Motivation Beugung am Spalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). 2 Experiment Abbildung 1: Experimenteller Aufbau

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 14. 07. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 14. 07.

Mehr

5.5.2 Seilwelle ******

5.5.2 Seilwelle ****** 5.5.2 ****** Motivation Die Fortpflanzungsgeschwindigkeit einer solitären wird als Funktion der Seilzugspannung gemessen. 2 Eperiment A Abbildung : Linkes Bild: Versuchsaufbau. Rechtes Bild: Lichtschranke

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Wellen, Dispersion, Brechnung, stehende Wellen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 7. Feb. 016 Bernoulli-Gleichung Die Reynoldszahl

Mehr

Beugung am Gitter mit Laser ******

Beugung am Gitter mit Laser ****** 5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

DER SCHALL ALS MECHANISCHE WELLE

DER SCHALL ALS MECHANISCHE WELLE DER SCHALL ALS MECHANISCHE WELLE I. Experimentelle Ziele Das Ziel der Experimente ist es, die Untersuchung der wesentlichen Eigenschaften von mechanischen Wellen am Beispiel der Schallwellen zu demonstrieren.

Mehr

Lehrstuhl für Technische Elektrophysik Technische Universität München

Lehrstuhl für Technische Elektrophysik Technische Universität München Lehrstuhl für Technische Elektrophysik Technische Universität München Tutorübungen zu "Elektromagnetische Feldtheorie II" (Prof. Wachutka) SS9 Blatt 1 Aufgabe: Ebene Wellen Im Vakuum, daß heißt die Leitfähigkeit

Mehr

Messung der Phasen- und Gruppengeschwindigkeit mit Ultraschall

Messung der Phasen- und Gruppengeschwindigkeit mit Ultraschall Physikalisches Praktikum für Fortgeschrittene Versuch 213 Messung der Phasen- und Gruppengeschwindigkeit mit Ultraschall Wintersemester 2006 / 2007 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail:

Mehr

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen Vorbereitung zur Klausur Elektromagnetische Felder und Wellen 1/50 J. Mähnß Stand: 9. August 2016 c J. Mähnß 2/50 Maxwellgleichungen Maxwellgleichungen allgemein 3/50 ( B = µ 0 j V + ε ) E 0 t E = B t

Mehr

Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz

Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz Roter Faden: Vorlesung 12+13+14: Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz Versuche: Huygens sche Prinzip, Schwebungen zweier Schwinggabel,

Mehr

Wellenoptik. Licht als Welle. Experimente (z. B. Brechung) Licht verhält sich wie eine Welle

Wellenoptik. Licht als Welle. Experimente (z. B. Brechung) Licht verhält sich wie eine Welle Experimente (z. B. Brechung) Licht verhält sich wie eine Welle Experimente (z. B. Photoeffekt) Licht besteht aus Teilchen (Quanten) Exakt: Quantenfeldtheorie Wellenoptik Annäherungsmöglichkeiten (Modelle):

Mehr