4 ZU V5"4. Er wart ungsnut zenhyp ot hese. Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen

Größe: px
Ab Seite anzeigen:

Download "4 ZU V5"4. Er wart ungsnut zenhyp ot hese. Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen"

Transkript

1 4 ZU V5"4 Er wart ungsnut zenhyp ot hese Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen

2 Vorwort Zufall und die Erwartungsnutzentheorie Inhalt und Fortgang der Arbeit 19 Formale und inhaltliche Grundlagen: Präferenzen, Ordnungen, Repräsentation Einleitung Die inhaltlichen und formalen Grundüberlegungen Präferenzen: Messen, Abbilden und numerische Repräsentation Präferenzen im Kontext von Relationen und Ordnungen Mengen, Relationen und Ordnungen als allgemeine Grundlage einer axiomatischen Darstellung Mengen, geordnete Paare und Identität Eigenschaften von Relationen und Ordnungen Präferenzen als Grundlage der relationalen Struktur Indifferenz und Identität Die mindestens-so-gut-wie"-relation und die positive versus implizite Definition Schwache versus strikte Ordnung bei von Neumann und Morgenstern Die schwache Ordnung als zentrale Ordnungsannahme der Erwartungsnutzentheorie Wichtige Eigenschaften einer schwachen Präferenzordnung Äquivalente Ordnungsannahmen und relationale Beziehungen Die Annahme der Refiexivität 52

3 2.3.5 Die schwache Ordnung und die Zusammenfassung von indifferenten Elementen zu Äquivalenzklassen Die Überführung präferenzbasierter Ordnungen in Zahlen - numerische Repräsentation 58 ', Messen und Skalen Abbildungen Homomorphismen und Isomorphismen Numerische Repräsentation Die axiomatische Fundierung der numerischen Repräsentation von Präferenzrelationen - Cantor und Debreu Numerische Repräsentation einer endlichen Menge Numerische Repräsentation einer abzählbaren Menge Numerische Repräsentation einer überabzählbaren Menge - die Problematik Die lexikographische Ordnung Die lexikographische Ordnung als schwache Ordnung Die lexikographische Ordnung und das Abbildbarkeitsproblem Dichte und Ordnungsdichte von Mengen Numerische Repräsentation einer überabzählbaren Menge - das Theorem Vorbemerkungen Die Notwendigkeit der Annahme Die Annahme als hinreichende Bedingung Die Dimensionalität der numerisch repräsentierenden Zielstruktur K Archimedisches Axiom, reelle Zahlen und Non-Standard Analysis Archimedisches Axiom als notwendige Bedingung für die numerische Repräsentation Archimedisches Axiom, lexikographische Ordnung und numerische Repräsentation Dimensionalität der numerischen Repräsentation und Archimedisches Axiom Archimedisches Axiom und Ordnungsdichte Abschließende Bemerkungen Existenz einer stetigen, numerisch repräsentierenden Funktion.. 108

4 2.7.2 Existenz einer difffirenziorbaren, numerisch repräsentierenden Funktion 111 Die Erwartungsnutzentheorie nach von Neumann und Morgenstern: Historie, Abgrenzung, Inhalt und Erweiterungen Einleitung Die Abwesenheit von Sicherheit Fortgang des Kapitels Historischer Überblick Zufall, Bernoulli, Cramer und das St. Petersburg-Spiel St. Petersburg-Spiel, Grenzwertbetrachtung und Weber/Fechner St. Petersburg-Spiel und Erwartungswert St. Petersburg-Spiel und Konvergenz Vom St. Petersburg-Spiel zur axiomatischen Fundierung der Erwartungsnutzentheorie Entscheidungen unter Unsicherheit oder unter Risiko und objektive oder subjektive Wahrscheinlichkeiten Die Erwartungsnutzentheorie nach Bernoulli/Cramer versus von Neumann und Morgenstern Von Neumann und Morgenstern Erwartungsnutzentheorie - Grundlagen, Axiomatik und Abgrenzung Die Grundlagen der von Neumann- und Morgensternschen Ergebnisse Von Neumann und Morgensterns zentrale Überlegung Präferenzen und Nutzen Präferenzdifferenzen und Nutzendifferenzen Annahmen zum Entscheidungsverhalten, formale Anforderungen und die Notation von Neumann und Morgensterns Die Axiomatik nach von Neumann und Morgenstern Die implizite Unabhängigkeitsannahme in der Axiomatik nach von Neumann und Morgenstern Die Forderung der numerischen Repräsentation der Präferenzen Die Forderung der Linearität in a Die Eigenschaften und Bedeutung der zugrundeliegenden Menge. 186

5 Analyse und Abgrenzung der formalen Konzepte: Mixture Set, Wahrscheinlichkeitsmaß, konvexe Menge - das nullte Axiom Das formale Entscheidungskonzept als Wahl aus einer Menge von Lotterien, Wahrscheinlichkeitsmaßen und Mixture Sets Konvexe Mengen Mixture Sets Mixture Set-Identität Mixture Set-Indifferenz Mixture Set-Identität versus Mixture Set-Indifferenz Wahrscheinlichkeitsmaße Eine vergleichende Abgrenzung der verschiedenen Konzepte zur Modellierung einer Alternativenmenge Mixture Set und konvexe Menge Compound Lotteries Wahrscheinlichkeitsmaße und konvexe Menge Ein anschauliches Beispiel konvexer Kombinationen von Wahrscheinlichkeitsmaßen Einfache konvexe Kombinationen von Wahrscheinlichkeitsmaßen Abzählbare konvexe Kombinationen von Wahrscheinlichkeitsmaßen Die zugrundeliegende Ergebnismenge Abschließende Bemerkung Von Neumann und Morgenstern Erwartungsnutzentheorie - Analyse der Axiome und Beweise Das zentrale Theorem der Erwartungsnutzentheorie und die einzelnen Axiome Eine erste Betrachtung des zentralen Theorems der Erwartungsnutzentheorie Alternative Axiomatiken der numerischen Repräsentation Die Ordnungsannahmen Konnexität von Präferenzen Transitivität von Präferenzen Die Archimedische Annahme 227

6 3.4.4 Die Unabhängigkeitsannahme Historie und Fehlinterpretation Ellsbergs und Allais Kritik Die zugrundeliegenden Mengen und eine alternative Formulierung Die Herleitung der Erwartungsnutzenfunktion Einige zentrale Zwischenergebnisse Die Nutzenfunktion unter Unsicherheit Existenz einer eindeutigen reellen Zahl u(p) Numerische Repräsentation Die Erwartungsnutzeneigenschaft - Linearität Linearität über eine abgeschlossene Menge Linearität bei Erweiterung einer abgeschlossenen Menge Positive affine Transformation und Kardinalität Linearität bei positiver affiner Transformation Numerische Repräsentation der Trägermenge und Erwartungsnutzeneigenschaft Numerische Repräsentation durch beste und schlechteste Lotterien bei endlicher Menge Abschließende Bemerkungen zu diesem Kapitel Beschränktheit und Erwartungsnutzenform über die Ergebnismenge Schlusswort 275 A Anhang 277 A.l St. Petersburg-Spiel : Nullfolge und Konvergenzkriterien 277 A.2 Beschränktheit, notwendige und hinreichende Bedingung 280 B Literaturverzeichnis 283

Übung zur Vorlesung Multiagentensysteme

Übung zur Vorlesung Multiagentensysteme Ludwig-Maximilians-Universität München SS 2007 Institut für Informatik Aufgabenblatt 1 Dr. Brandt / Fischer & Harrenstein 23. April 2007 Übung zur Vorlesung Multiagentensysteme Tutorübung: 25. April 2007

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie Vorlesung: Nicht-kooperative Spieltheorie Teil 1: Organisatorisches, Inhalte der Vorlesung Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 / 15 Organisatorisches

Mehr

Risikomessung mit dem Conditional Value-at-Risk

Risikomessung mit dem Conditional Value-at-Risk Jendrik Hanisch Risikomessung mit dem Conditional Value-at-Risk Implikationen für das Entscheidungsverhalten. Bibliothek j k Mit einem Geleitwort von \* \, -^ Prof. Dr. Wolfgang Kürsten A; Verlag Dr. Kovac

Mehr

Vorlesung 3: Risikoaversion

Vorlesung 3: Risikoaversion Vorlesung 3: Risikoaversion Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 3 (FS 11) Risikoaversion 1 / 21 1. Modellrahmen In diesem Kapitel betrachten wir nur monetäre

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus

Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus Sofie Waltl I. Homo oeconomicus In der neoklassischen Sichtweise der Volkswirtschaft basieren viele Modelle auf der Annahme, dass Menschen

Mehr

Präferenzen und Nutzenfunktionen. 10.März 2017

Präferenzen und Nutzenfunktionen. 10.März 2017 Präferenzen und Nutzenfunktionen 10.März 2017 Präferenzen und Nutzenfunktionen Darstellung der Präferenzen mittels Nutzenfunktion (utility function) Eine Nutzenfunktion u(x) ordnet jedem Element x aus

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich

Mehr

5.2DasKriteriumdeserwartetenNutzens

5.2DasKriteriumdeserwartetenNutzens 5.2DasKriteriumdeserwartetenNutzens BisherhabenwirunsichereSituationen beschrieben, jedoch noch nicht gesagt, wie die HaltunggegenüberRisikodasVerhaltenbeeinflußt.DieswerdenwirindiesemAbschnitt untersuchen.

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

ML a t he m at ik. Präferenzen. Klaus Schindler. e h r st a b 0 Universität des Saarlandes Fakultät 1

ML a t he m at ik. Präferenzen. Klaus Schindler. e h r st a b 0 Universität des Saarlandes Fakultät 1 Präferenzen Klaus Schindler ML a t he m at ik e h r st a b 0 Universität des Saarlandes Fakultät 1 http://www.mathe.wiwi.uni-sb.de Advanced Quantitative Methods for Economists WS 2014/2015 Ordnung Lexikographische

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Vorlesung 2: Erwartungsnutzen

Vorlesung 2: Erwartungsnutzen Vorlesung 2: Erwartungsnutzen Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2 (FS 11) Erwartungsnutzen 1 / 28 1. Modellrahmen 1.1 Die Alternativen Wir betrachten

Mehr

Von Präferenz zur Nutzenfunktion Optimierungsprobleme mit Nutzenfunktionen. Nutzenfunktionen. Sebastian Chanaa. 8. Januar 2018

Von Präferenz zur Nutzenfunktion Optimierungsprobleme mit Nutzenfunktionen. Nutzenfunktionen. Sebastian Chanaa. 8. Januar 2018 Optimierungsprobleme mit 8. Januar 2018 Optimierungsprobleme mit Inhaltsverzeichnis 1 Von Präferenz zur Nutzenfunktion 2 Optimierungsprobleme mit Präferenz Von Präferenz zur Nutzenfunktion Optimierungsprobleme

Mehr

Vollständigkeit der reellen Zahlen

Vollständigkeit der reellen Zahlen Vollständigkeit der reellen Zahlen Vorlesung zur Didaktik der Analysis Oliver Passon Vollständigkeit von R 1 take home message I Wollte man mit Zahlen nur rechnen, könnte man mit den rationalen Zahlen

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen.

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Betrachtungen zu Sprache, Logik und Beweisen Sprache Wir gehen von unserem Alphabet einigen Zusatzsymbolen aus.

Mehr

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11.1 g-adische Entwicklung von Zahlen aus [0, 1[ 11.2 g-adische Entwicklung reeller Zahlen 11.3 g-adische Entwicklung nicht-negativer

Mehr

Risiko und Stochastische Dominanz

Risiko und Stochastische Dominanz Risiko und Stochastische Dominanz DISSERTATION der Universität St. Gallen, Hochschule für Wirtschafts-, Rechts- und Sozialwissenschaften (HSG) zur Erlangung der Würde eines Doktors der Wirtschaftswissenschaften

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Kapitel 5: Entscheidung unter Unsicherheit

Kapitel 5: Entscheidung unter Unsicherheit Kapitel 5: Entscheidung unter Unsicherheit Hauptidee: Die Konsequenzen einer Entscheidung sind oft unsicher. Wenn jeder möglichen Konsequenz eine Wahrscheinlichkeit zugeordnet wird, dann kann eine rationale

Mehr

Vorlesung 6: Alternativen zur Erwartungsnutzentheorie

Vorlesung 6: Alternativen zur Erwartungsnutzentheorie Vorlesung 6: Alternativen zur Erwartungsnutzentheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 1 / 21 1.

Mehr

Axiomatik der reellen Zahlen

Axiomatik der reellen Zahlen Kapitel 13 Axiomatik der reellen Zahlen 13.1 Motivation Analysis beschäftigt sich mit Grenzwerten, Differentiation und Integration. Viele Phänomene in den Natur- und Ingenieurswissenschaften lassen sich

Mehr

Teil I: Konsumententheorie

Teil I: Konsumententheorie Teil I: Konsumententheorie 1 Kapitel 1: Präferenzen Hauptidee: Eine Konsumentscheidung kann als Wahl zwischen Güterbündeln modelliert werden, gemäß der Präferenzen des Konsumenten. Die Konzepte Indifferenzkurve,

Mehr

Vorlesung 2: Präferenzen über Lotterien

Vorlesung 2: Präferenzen über Lotterien Vorlesung 2: Präferenzen über Lotterien Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2, FS 12 Präferenzen über Lotterien 1/24 2.1 Modellrahmen Wir betrachten im

Mehr

Vorwort zur deutschen Ausgabe

Vorwort zur deutschen Ausgabe Vorwort zur deutschen Ausgabe x 0 Mathematisches Prolegomenon 1 0.1 Mengentheoretische Notation 1 0.2 Beweis durch Induktion 3 0.3 Äquivalenzrelationen und Äquivalenzklassen 5 1 Die klassische Logik und

Mehr

Partielle Informationen in Währungskrisenmodellen

Partielle Informationen in Währungskrisenmodellen Christian Bauer Partielle Informationen in Währungskrisenmodellen Verlag Dr. Kovac Inhaltsverzeichnis Einleitung 1 I Entscheidungen und die Qualität von Informationen 7 1 Entscheidungstheoretische Einordnung

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung Eigenschaften von stochastischen Ordnungen Kleine Generatoren

Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung Eigenschaften von stochastischen Ordnungen Kleine Generatoren Universität Hamburg Fachbereich Mathematik Schwerpunkt Mathematische Statistik und Stochastische Prozesse Bundesstr. 55 D-20146 Hamburg Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung

Mehr

Oliver Deiser. Reelle Zahlen. Das klassische Kontinuum und die natürlichen Folgen. YJ Springer

Oliver Deiser. Reelle Zahlen. Das klassische Kontinuum und die natürlichen Folgen. YJ Springer Oliver Deiser Reelle Zahlen Das klassische Kontinuum und die natürlichen Folgen YJ Springer Vorwort 7 Einführung 11 : Die Themen des Buches 14 " Vokabular 17 ' Mengen und Elemente 17 i Logische Konventionen

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

Vorlesung 2: Präferenzen über Lotterien

Vorlesung 2: Präferenzen über Lotterien Vorlesung 2: Präferenzen über Lotterien Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2, FS 13 Präferenzen über Lotterien 1/26 2.1 Modellrahmen Wir betrachten im

Mehr

2.3 Kriterien der Entscheidungsfindung: Präferenzen

2.3 Kriterien der Entscheidungsfindung: Präferenzen .3 Kriterien der Entscheidungsfindung: Präferenzen Der Einfachheit halber beschränken wir uns auf n = ( zwei Güter). Annahme: Konsumenten können für sich herausfinden, ob sie x = ( x, ) dem Güterbündel

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität).

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). Analysis 1, Woche 2 Reelle Zahlen 2.1 Anordnung Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). 2. Für jeden a, b K mit a b und b a gilt a = b (Antisymmetrie).

Mehr

Vorlesung 1: Einleitung

Vorlesung 1: Einleitung Vorlesung 1: Einleitung Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 1, FS 12 Einleitung 1/17 1.1 Motivation In der Vorlesung Intermediate Microecoomics haben

Mehr

Kapitel 5: Entscheidung unter Unsicherheit

Kapitel 5: Entscheidung unter Unsicherheit Kapitel 5: Entscheidung unter Unsicherheit Hauptidee: Die Konsequenzen einer Entscheidung sind oft unsicher. Wenn jeder möglichen Konsequenz eine Wahrscheinlichkeit zugeordnet wird, dann kann eine rationale

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

Wann ist diese Vorgehensweise berechtigt? Hierzu:

Wann ist diese Vorgehensweise berechtigt? Hierzu: IV. Risiko und Unsicherheit Risiko: Eine Entscheidung treffen, ohne den wahren Zustand der Welt zu kennen. Aber man kennt die Wahrscheinlichkeitsverteilung für die relevanten Zustände der Welt. z. B. {

Mehr

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009 4. Vortrag - Garben Datum: 26. April 2009 1 Graduierte Ringe Definition 4.1.1. Eine k-algebra R heißt graduiert, wenn sie dargestellt werden kann als eine direkte Summe R = R n, wobei die R n als k-unterräume

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

Einführung in die symbolische Logik

Einführung in die symbolische Logik Einführung in die symbolische Logik mit besonderer Berücksichtigung ihrer Anwendungen Von Rudolf Carnap Professor der Philosophie University of California, Los Angeles Zweite neubearbeitete und erweiterte

Mehr

Vorlesung 2: Risikopräferenzen im Zustandsraum

Vorlesung 2: Risikopräferenzen im Zustandsraum Vorlesung 2: Risikopräferenzen im Zustandsraum Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie VL 2, FS 12 Risikopräferenzen im Zustandsraum 1/29 2.1 Motivation

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Einführung in die Systemtheorie

Einführung in die Systemtheorie Bernd Girod, Rudolf Rabenstein, Alexander Stenger Einführung in die Systemtheorie Signale und Systeme in der Elektrotechnik und Informationstechnik 4., durchgesehene und aktualisierte Auflage Mit 388 Abbildungen

Mehr

Kapitel 2 Reelle Zahlen

Kapitel 2 Reelle Zahlen Wolter/Dahn: Analysis Individuell 5 Kapitel Reelle Zahlen Es gibt verschiedene Möglichkeiten, die reellen Zahlen einzuführen, wenn man die ratio- /0/0 nalen Zahlen bereits definiert hat. Die geläufigsten

Mehr

Präferenzen und Nutzen. Kapitel 3. Präferenzrelationen. Präferenzrelationen. Präferenzen und Nutzen. Darstellung individueller Präferenzen

Präferenzen und Nutzen. Kapitel 3. Präferenzrelationen. Präferenzrelationen. Präferenzen und Nutzen. Darstellung individueller Präferenzen Präferenzen und Nutzen Kapitel 3 Präferenzen und Nutzen Darstellung individueller Präferenzen Ordinale Ordnung vom Besten zum Schlechtesten Charakterisierung von Nutzenfunktionen Kardinale Ordnung, Alternativen

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Stefan Neuß Sebastian Soika http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_203/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

0 Was will und was soll die Analysis...

0 Was will und was soll die Analysis... 1 1 Inhaltsverzeichnis Kapitel 0: Einleitung 0 Was will und was soll die Analysis... 0.1 Mathematik zu Studienbeginn... 0.2 Analysis - Eine erste Inhaltsbestimmung... 0.3 Beispiel: Fahrradfahren... 0.4

Mehr

8 KAPITEL 1. GRUNDLAGEN

8 KAPITEL 1. GRUNDLAGEN 8 KAPITEL 1. GRUNDLAGEN Beweis. 1. Sei A X abgeschlossen, dann ist X \ A offen und jede offene Überdeckung von A lässt sich durch Hinzunahme von X \ A auf ganz X fortsetzen. Die Kompaktheit von X erlaubt

Mehr

Vorkurs Mikroökonomik

Vorkurs Mikroökonomik Vorkurs Mikroökonomik Präferenzen Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Präferenzen 1 / 29 Gliederung Einführung Haushaltstheorie Das Budget Präferenzen, Indi erenzkurven

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Christoph Lex Dominik Lohmaier http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_04/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

Kapitel 3. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b

Kapitel 3. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b Kapitel 3. Folgen 3.1. Körper der reellen Zahlen Wir kennen schon den Körper Q der rationalen Zahlen: Q = { a b : a, b Z, b 0}. Die natürliche Ordnung auf Q ist eine totale Ordnung. Überdies gilt folgendes

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

2.4 Entscheidung bei Risiko

2.4 Entscheidung bei Risiko 2.4 Entscheidung bei Risiko Entscheidung bei Risiko nimmt an, dass für jeden Zustand S j seine Eintrittswahrscheinlichkeit P(S j ) bekannt ist Eintrittswahrscheinlichkeiten bestimmbar als statistische

Mehr

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren Zusammenfassung Grundlagen Logik, Mengen, Relationen, Folgen & Mengenfamilien, Kardinalitäten Techniken Mathematisches Beweisen, Induktion, Kombinatorische Beweise Strukturen Graphen 1 Grundlagen: 1. Logik

Mehr

Kardinalzahlen. Bemerkung. Eine unendliche Kardinalzahl α muss eine Limesordinalzahl sein. (Beweis zur Übung)

Kardinalzahlen. Bemerkung. Eine unendliche Kardinalzahl α muss eine Limesordinalzahl sein. (Beweis zur Übung) Kardinalzahlen Kardinalzahlen sollen die Größe von Mengen messen, daher suchen wir eine Aussage der Form, dass jede Menge bijektiv auf eine Kardinalzahl abgebildet werden kann. Um eine brauchbare Theorie

Mehr

Axiome der Mengenlehre nach von Neumann, Bernays, Gödel (NBG)

Axiome der Mengenlehre nach von Neumann, Bernays, Gödel (NBG) Axiome der Mengenlehre nach von Neumann, Bernays, Gödel (NBG) B. Ammann 1 1 Universität Regensburg Vorlesung Analysis am 6.11.13 Ziel: Axiomatischer Aufbau der Mathematik Es gibt verschiedene Axiomensysteme

Mehr

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit Grundzüge der Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit 1 BESCHREIBUNG VON RISIKO 2 Entscheidung unter Risiko Annahme: Wir kennen alle möglichen (sich gegenseitig ausschliessenden)

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b

Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b Kapitel 4. Folgen 4.1. Körper der reellen Zahlen Wir kennen schon den Körper Q der rationalen Zahlen: Q = { a b : a, b Z, b 0}. Die natürliche Ordnung auf Q ist eine totale Ordnung. Überdies gilt folgendes

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 17 Isomorphie und elementare Äquivalenz im endlichen Fall Beispiel 17.1. Das Symbolalphabet S bestehe (neben Variablen)

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Nutzwertanalyse, Bewertungstheorie und Planung

Nutzwertanalyse, Bewertungstheorie und Planung Arnim Bechmann W. A. R. Inv.-Nr. Nutzwertanalyse, Bewertungstheorie und Planung 05-.S!.. : / i&;:?58 Verlag Paul Haupt Bern und Stuttgart Inhaltsverzeichnis Vorwort 1 Einleitung 15 11 Problemstellung 15

Mehr

Mikroökonomik 2. Vorlesungswoche

Mikroökonomik 2. Vorlesungswoche Mikroökonomik 2. Vorlesungswoche Tone Arnold Universität des Saarlandes 30. Oktober 2007 Tone Arnold (Universität des Saarlandes) 2. Vorlesungswoche 30. Oktober 2007 1 / 108 Präferenzen Wie treffen Konsumenten/Individuen

Mehr

Zusammenfassung zur Konvergenz von Folgen

Zusammenfassung zur Konvergenz von Folgen Zusammenfassung zur Konvergenz von Folgen. Definition des Konvergenzbegriffs Eine Folge reeller Zahlen a n n heißt konvergent gegen a in Zeichen a n = a, falls gilt > 0 n 0 n n 0 : an a < Hinweise: Bei

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Mengen und Relationen

Mengen und Relationen KAPITEL 1 Mengen und Relationen 1.1. Mengenlehre Georg Cantor (3.3.1845 6.1.1918: Cantor ist der Vater der modernen Mengenlehre, er definierte 1895: DEFINITION 1.1.1. Unter einer Menge verstehen wir jede

Mehr

Godehard Link COLLEGIUM LOGICUM. Logische Grundlagen der Philosophie und der Wissenschaften. Band 1. mentis PADERBORN

Godehard Link COLLEGIUM LOGICUM. Logische Grundlagen der Philosophie und der Wissenschaften. Band 1. mentis PADERBORN Godehard Link COLLEGIUM LOGICUM Logische Grundlagen der Philosophie und der Wissenschaften Band 1 mentis PADERBORN Inhaltsverzeichnis Vorwort xiii Einleitung 1 0.1 Historisches zum Verhältnis von Logik

Mehr

Teil 4. Mengen und Relationen

Teil 4. Mengen und Relationen Teil 4 Mengen und Relationen KAPITEL 10 Äquivalenzrelationen und Faktormengen 1. Äquivalenzrelationen Wir nennen eine Relation von A nach A auch eine Relation auf A. DEFINITION 10.1. SeiΡeine Relation

Mehr

Grundlagen. Kapitel Mengen

Grundlagen. Kapitel Mengen Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

2 - Konvergenz und Limes

2 - Konvergenz und Limes Kapitel 2 - Folgen Reihen Seite 1 2 - Konvergenz Limes Definition 2.1 (Folgenkonvergenz) Eine Folge komplexer Zahlen heißt konvergent gegen, wenn es zu jeder positiven Zahl ein gibt, so dass gilt: Die

Mehr

Vorkurs Mathematik. Übungen Teil IV

Vorkurs Mathematik. Übungen Teil IV Vorkurs Mathematik Herbst 009 M. Carl E. Bönecke Skript und Übungen Teil IV. Folgen und die Konstruktion von R Im vorherigen Kapitel haben wir Z und Q über (formale) Lösungsmengen von Gleichungen der Form

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige

Mehr

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014 Mathematik für Kapitel 4-6 Universität Trier Wintersemester 2013 / 2014 Kapitel 4 1. Extremwerte 2. Lokale Optimalpunkte 3. Wendepunkte 2 Kapitel 4.1 EXTREMWERTE 3 Extrempunkte und Extremwerte 4 Strikte

Mehr

Mikroökonomik. Unsicherheit. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46

Mikroökonomik. Unsicherheit. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46 Mikroökonomik Unsicherheit Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46 Gliederung Einführung Haushaltstheorie Das Budget Präferenzen, Indi erenzkurven und Nutzenfunktionen

Mehr

Angewandte Mathematik am Rechner 1

Angewandte Mathematik am Rechner 1 Angewandte Mathematik am Rechner 1 SOMMERSEMESTER 2017 Kapitel 3 [Bildquellen: Wikipedia User David Madore, Inductiveload ] Grundlagen 2: Funktionen, Berechenbarkeit und emergente Komplexität Michael Wand

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Warum Transitivität? A B, B C, aber C A verunmöglicht Entscheidung Geldpumpen -Paradox Condorcet - Paradox. GMF WS08/09 Grundzüge: Mikro

Warum Transitivität? A B, B C, aber C A verunmöglicht Entscheidung Geldpumpen -Paradox Condorcet - Paradox. GMF WS08/09 Grundzüge: Mikro Warum Transitivität? A B, B C, aber C A verunmöglicht Entscheidung Geldpumpen -Paradox Condorcet - Paradox 4. Theorie des privaten Haushalts Private Haushalte entscheiden über die Verwendung ihres (verfügbaren)

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Proseminar Analysis Vollständigkeit der reellen Zahlen

Proseminar Analysis Vollständigkeit der reellen Zahlen Proseminar Analysis Vollständigkeit der reellen Zahlen Axel Wagner 18. Juli 2009 1 Voraussetzungen Zunächst wollen wir festhalten, was wir als bekannt voraussetzen: Es sei (Q, +, ) der Körper der rationalen

Mehr

Beispiel 27 (Beweis durch Widerspruch) Satz 28 3 ist irrational, d. h. Beweis: Widerspruchsannahme: 3 Q.

Beispiel 27 (Beweis durch Widerspruch) Satz 28 3 ist irrational, d. h. Beweis: Widerspruchsannahme: 3 Q. Beispiel 27 (Beweis durch Widerspruch) Wir nehmen an, dass die zu zeigende Aussage falsch ist und führen diese Annahme zu einem Widerspruch. Satz 28 3 ist irrational, d. h. 3 / Q. Beweis: Widerspruchsannahme:

Mehr

Kapitel II - Wahrscheinlichkeitsraum

Kapitel II - Wahrscheinlichkeitsraum Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel II - Wahrscheinlichkeitsraum Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Meyers Handbuch über die Mathematik

Meyers Handbuch über die Mathematik Meyers Handbuch über die Mathematik Herausgegeben von Herbert Meschkowski in Zusammenarbeit mit Detlef Laugwitz 2. erweiterte Auflage BIBLIOGRAPHISCHES INSTITUT MANNHEIM/WIEN/ZÜRICH LEXIKONVEK.1AG INHALT

Mehr

und Investition Finanzierung R. Verlag München Wien an der Freien Universität Von Dr. Lutz Kruschwitz Professor für Betriebswirtschaftslehre

und Investition Finanzierung R. Verlag München Wien an der Freien Universität Von Dr. Lutz Kruschwitz Professor für Betriebswirtschaftslehre Finanzierung und Investition Von Dr. Lutz Kruschwitz Professor für Betriebswirtschaftslehre an der Freien Universität 4., überarbeitete und erweiterte Auflage R. Verlag München Wien 1 Einmalige sichere

Mehr

Collegium Logicum - Logische Grundlagen der Philosophie und der Wissenschaften Link

Collegium Logicum - Logische Grundlagen der Philosophie und der Wissenschaften Link Collegium Logicum - Logische Grundlagen der Philosophie und der Wissenschaften Band 1 von Godehard Link 1. Auflage Collegium Logicum - Logische Grundlagen der Philosophie und der Wissenschaften Link schnell

Mehr

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch!

aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch! Bemerkungen: 1 Die Bedeutung von (und damit ) ist klar. wird oft, vor allem in Beweisen, auch als geschrieben (im Englischen: iff, if and only if). 2 Für zwei boolesche Aussagen A und B ist A B falsch

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 16.11.2016 Kapital 3. Mächtigkeit der Mengen und komplexe Zahlen Jetzt wollen wir uns einer neuen Frage zuwenden: Wie kann man die unendlichen Mengen N Z Q R der Größe nach vergleichen?

Mehr

Elemente der mengentheoretischen Topologie

Elemente der mengentheoretischen Topologie Elemente der mengentheoretischen Topologie Es hat sich herausgestellt, dass das Konzept des topologischen Raumes die geeignete Struktur darstellt für die in der Analysis fundamentalen Begriffe wie konvergente

Mehr

Einführung in die Wahrscheinlichkeitstheorie

Einführung in die Wahrscheinlichkeitstheorie Einführung in die Wahrscheinlichkeitstheorie von Boris Wladimirowitsch Gnedenko In deutscher Sprache herausgegeben von Hans-Joachim Roßberg Mit einem Anhang des Herausgebers über positiv definite Verteilungsdichten

Mehr