Kapitel 5: Entscheidung unter Unsicherheit

Größe: px
Ab Seite anzeigen:

Download "Kapitel 5: Entscheidung unter Unsicherheit"

Transkript

1 Kapitel 5: Entscheidung unter Unsicherheit Hauptidee: Die Konsequenzen einer Entscheidung sind oft unsicher. Wenn jeder möglichen Konsequenz eine Wahrscheinlichkeit zugeordnet wird, dann kann eine rationale Entscheidung getroffen werden.

2 5.1 Motivation Entscheidungen haben oft unsichere Konsequenzen: Gebrauchtwagenkauf: welche Reparaturen werden nötig? Geldanlage: welche Rendite wird erzielt? Wohnung wählen: wie sind die Nachbarn, Wohngegend, Vermieter? Studienplatz wählen: wie sind die Kommilitonen, die Stadt, mein Interesse fürs Studienfach? Verschiedenste Unternehmensentscheidungen 2

3 Wahrscheinlichkeitseinschätzungen Annahme 1: Der Entscheider ordnet jeder möglichen Konsequenz jeder Alternative eine Wahrscheinlichkeit zu Ohne diese Annahme wäre es schwierig für einen Entscheider, vollständige Präferenzen zu haben Reale Entscheider denken meist nicht bewusst in Wahrscheinlichkeiten, sondern in relativen Häufigkeiten, was aber auf das gleiche herauskommt 3

4 Konsequenzen Annahme 2: Der Entscheider ordnet jeder möglichen Konsequenz jeder Alternative eine Zahl zu Interpretation: Die Zahl ist eine 1 dimensionale Bewertung, die die Konsequenzen nach ihrer Wünschbarkeit sortiert Die Zahl kann (muss aber nicht) Geld sein 4

5 Zufallsvariable Eine Zufallsvariable ist eine Größe, deren Wert vom Zufall abhängig ist Beispiel: Zufallsvariable = Anzahl der Punkte bei dem Wurf eines Würfels Aus Annahme 1 und Annahme 2 folgt, dass jede Alternative als Zufallsvariable modelliert werden kann Die Entscheidung zwischen verschiedenen Alternativen ist also eine Wahl zwischen Zufallsvariablen 5

6 Erwartungswert Der Erwartungswert einer Zufallsvariablen beschreibt die Zahl, die die Zufallsvariable im Mittel annimmt Der Erwartungswert ist also der mit den Eintrittswahrscheinlichkeiten gewichtete Durchschnitt aller möglichen Ergebniswerte Bei einer diskreten Zufallsvariable ist der Erwartungswert Beispiel: Die erwartete Anzahl der Punkte bei dem Wurf eines Würfels ist + + 3,5 6

7 Beispiel: Wahl zwischen zwei Zufallsvariablen Wählen Sie zwischen folgenden Zufallsvariablen: Alternative/Zufallsvariable A: Sie bekommen sicher Alternative/Zufallsvariable B: Mit Wahrscheinlichkeit erhalten Sie, mit Wahrscheinlichkeit Beide Zufallsvariablen haben den gleichen Erwartungswert Viele Menschen bevorzugen aber die Alternative/Zufallsvariable A Anmerkung: Zufallsvariable A ist degeneriert ( nicht wirklich zufällig ), B ist hingegen nichtdegeneriert ( wirklich zufällig ) 7

8 Beispiel: St. Petersburg Paradox Eine faire Münze wird solange geworfen, bis zum ersten Mal Zahl erscheint Falls Zahl zum ersten Mal beim n ten Münzwurf auftritt, wird ein Betrag von ausgezahlt Beispiele: kommt es nur zu einem Wurf bekommen Sie 2, kommt es zu zwei Würfen 4, bei drei Würfen 8... Wie viel würden Sie bezahlen, um an diesem Spiel teilzunehmen? Genauso viel wie die erwartete Auszahlung? 8

9 Eher nicht! Denn diese ist 9

10 Implikation Die Ergebnisse der beiden Beispiele deuten darauf hin, dass man bei der Nutzenbewertung einer Alternative/ Zufallsvariablen nicht nur dessen Erwartungswert, sondern auch das damit verbundene Risiko berücksichtigen muss! 10

11 5.2 Erwartungsnutzentheorie Macht man einige zusätzliche Annahmen an die Präferenzen (diese werden wir nicht behandeln), dann lassen sich die Präferenzen durch eine Nutzenfunktion repräsentieren, welche die Erwartungsnutzenform hat Formal: Jeder möglichen Konsequenz wird ein Bernoulli Nutzen u zugeordnet, wobei strikt wachsend ist Der Nutzen einer beliebigen Alternative/ Zufallsvariablen ist dann D.h. der Nutzen einer Zufallsvariablen gleicht dem Erwartungswert der Nutzen der einzelnen Konsequenzen 11

12 Beispiel Wir betrachten wieder das St. Petersburg Spiel und nehmen an, dass u ) ist Dann ist Dies kann man umformen zu Da ist (siehe Formelsammlung) erhalten wir 12

13 Anmerkung Transformation Eine Transformation einer Bernoulli Nutzenfunktion,, verändert die Präferenzen über die Zufallsvariablen es sei denn, die Transformation ist positiv und affin:,mitzahlen und 13

14 5.3 Einstellung gegenüber Risiko Ein Entscheider wird risikoavers genannt, wenn für alle nichtdegenerierten Zufallsvariablen gilt D.h. der Entscheider findet jede Zufallsvariable selbst schlechter als den Erwartungswert der Zufallsvariablen Der Entscheider würde das Risiko also gerne ausschalten 14

15 Risikoaversion und Konkavität Wir zeigen nun, dass Risikoaversion genau dann erfüllt ist wenn strikt konkav ist Wir betrachten eine Zufallsvariable, die mit gleicher Wahrscheinlichkeit oder ist (Beispiel: wir werfen eine Münze, die Auszahlung bei Kopf ist, bei Zahl ) Da wir positiv affine Transformationen durchführen können, ist es ohne Einschränkung der Allgemeinheit, dass und ist 15

16 Der erwartete Nutzen ist Der Erwartungswert ist Im folgenden Diagramm sehen wir, dass bei einer strikt konkaven Nutzenfunktion der Nutzen des Erwartungswertes den Erwartungsnutzen übersteigt 16

17 ,

18 Allgemeiner Beweis Die Jensensche Ungleichung besagt, dass für jede schwach konkave Funktion in einer Variablen, und jede Zufallsvariable, gilt Betrachte eine Zufallsvariable, welche die Werte annehmen kann Für ist und damit ist erfüllt Fall erfolgt der Beweis durch Induktion: Wir wollen zeigen, dass für erfüllt ist wenn auch für erfüllt ist 18

19 Wir schreiben um und spalten auf: Wir multiplizieren den letzten Term mit : Da für erfüllt ist gilt: 19

20 Per Definition der schwachen Konkavität (Funktion heißt schwach konkav falls 1 1 für alle,, 0,1) gilt daher: Wir können umschreiben zu: 20

21 Anmerkung: falls strikt konkav ist (Funktion heißt strikt konkav falls 1 1 für alle,, 0,1) und die Zufallsvariable nicht degeneriert ist, dann gilt sogar Grund: Das letzte Zeichen kann dann durch ein Zeichen ersetzt werden 21

22 Risikoneutralität Ein Entscheider wird risikoneutral genannt, wenn für alle Zufallsvariablen gilt D.h. der Entscheider findet jede Zufallsvariable selbst exakt genauso gut wie den Erwartungswert der Zufallsvariablen 22

23 Risikoneutralität ist genau dann erfüllt, wenn eine lineare Funktion mit positiver Steigung ist ,

24 Risikofreude Ein Entscheider wird risikofreudig genannt, wenn für alle nichtdegenerierten Zufallsvariablen gilt D.h. der Entscheider findet jede Zufallsvariable selbst besser als den Erwartungswert der Zufallsvariablen 24

25 Risikofreude ist genau dann erfüllt, wenn strikt konvex ist ,

26 Grenznutzen Der Grenznutzen des Geldes ist der Nutzenzuwachs den der Besitz einer zusätzlichen Einheit Geld verursacht Formal: Grenznutzen des Geldes an der Stelle ist 26

27 Bei einer strikt konkaven Nutzenfunktion (Person risikoavers) ist d.h. der Grenznutzen ist fallend Dies ist häufig sehr plausibel Beispiel: Nutzenzuwachs durch die 1. Million vs. Nutzenzuwachs durch die Million Bei einer linearen Nutzenfunktion (Person risikoneutral) ist d.h. der Grenznutzen ist konstant Bei einer strikt konvexen Nutzenfunktion (Person risikofreudig) ist d.h. der Grenznutzen ist steigend 27

28 Risikoprämie Die Zahlungsbereitschaft eines Entscheiders für die Vermeidung von Unsicherheit heißt Risikoprämie Formal: Die Risikoprämie für die Zufallsvariable ist der Betrag, so dass 28

29 Risikoprämie und Risikoeinstellung Wir konzentrieren uns auf den relevanten Fall, bei welchem die Zufallsvariable nichtdegeneriert ist (bei einer degenerierten Zufallsvariable ist die Risikoprämie stets Null) Es gilt, dass die Risikoprämie bei einem... risikoaversen Entscheider positiv ist... risikoneutralen Entscheider Null ist... risikofreudigen Entscheider negativ ist 29

30 Grafische Illustration ,

31 Beweis bei Risikoaversion Wenn der Entscheider risikoavers ist, dann gilt (per Definition) Da strikt wachsend ist kann die Gleichung nur für erfüllt sein 31

32 Beweis bei Risikofreude Wenn der Entscheider risikoavers ist, dann gilt (per Definition) Da strikt wachsend ist kann die Gleichung nur für erfüllt sein 32

33 Beweis bei Risikoneutralität Wenn der Entscheider risikoavers ist, dann gilt (per Definition) Da strikt wachsend ist kann die Gleichung nur für erfüllt sein 33

34 5.4 Risikoabbau Es gibt verschiedene Methoden mit deren Hilfe Risiken abgebaut werden können: Diversifikation (Risikoreduzierung durch Kombination nicht perfekt positiv korrelierter Risiken) Beispiel 1: Ein Anleger investiert sein Vermögen nicht nur in Aktien einer Firma, sondern in Aktien mehrerer Firmen Beispiel 2: Sie können zwei Läden eröffnen. Beide (a) in getrennten Märkten oder (b) in einem Markt. Der Gewinn eines Ladens ist 1, wenn der Markt boomt und 0 wenn nicht. Beides ist gleich wahrscheinlich und die Entwicklung beider Märkte ist unkorreliert. Daraus folgt, dass bei Läden in getrennten Märkten der Gesamtgewinn 0 ist mit Wkt. ¼, 1 ist mit Wkt. ½ und 2 ist mit Wkt. ¼. Wenn beide Läden in einem Markt sind ist der Gesamtgewinn 0 mit Wkt. ½ und 2 mit Wkt. ½. Beide Alternativen liefern den gleichen erwarteten Gesamtgewinn; (b) ist aber riskanter. Vgl. Auszahlungen Aufgabe

35 Versicherung (vgl. Aufgabe 5.3) Beschaffung weiterer Informationen Beispiel: Investition in Marktforschung, um richtige Kapazität einer Fabrik zu bestimmen 35

36 Zusammenfassung I Erwartungsnutzenmaximierung: Nutzen einer Alternative/Zufallsvariable gleicht dem Erwartungswert der Nutzen der einzelnen Konsequenzen Formal: Risikoprämie: Zahlungsbereitschaft eines Entscheiders für die Vermeidung von Unsicherheit Formal: Risikoprämie löst 36

37 Zusammenfassung II Risikoaversion: für alle nicht deg. strikt konkav Risikoneutralität: für alle nicht deg. linear Risikofreude: für alle strikt konvex 37

38 Aufgabe 5.1 (T) Wir würfeln mit einem gezinkten Würfel Die Punktzahlen bis sind gleich wahrscheinlich Die Punktezahl ist doppelt so wahrscheinlich wie die Punktzahl Bestimmen Sie die Wahrscheinlichkeiten der einzelnen Punktzahlen Rechnen Sie die erwartete Anzahl der Punkte aus bei dem Wurf des Würfels aus 38

39 Aufgabe 5.2 (T) Eine Entscheiderin kann zwischen zwei Projekten wählen Projekt A erbringt eine Auszahlung von mit Wahrscheinlichkeit, mit Wkt. und mit Wkt. Projekt B erbringt eine Auszahlung von Wahrscheinlichkeit und mit Wkt. Der Bernoulli Nutzen der Entscheiderin ist mit Welches Projekt sollte die Entscheiderin wählen? 39

40 Aufgabe 5.3 (T) Lisa besitzt ein Fahrrad im Wert von Ihr Bernoulli Nutzen ist, wobei ihr sonstiges Vermögen darstellt und den Wert ihres Fahrrades Das Fahrrad wird mit einer Wahrscheinlichkeit von gestohlen Eine Versicherungspolice kostet Sollte Lisa eine Versicherung abschließen? Was sollte sie machen wenn ist? Interpretieren Sie die Ergebnisse 40

41 Aufgabe 5.4 (T) Max hat Geldeinheiten, welche er anlegen will Entweder in Festgeld (dieses bringt einen Zins von ) oder in einen Aktienfond (dieser bringt mit gleicher Wahrscheinlichkeit einen Verlust von oder einen Gewinn von ) Wieviel sollte er in welche Anlageform investieren, wenn sein Bernoulli Nutzen ist? Wie ändert sich seine Entscheidung, wenn der Aktienfond mit gleicher Wahrscheinlichkeit einen Verlust von oder einen Gewinn von erbringt? 41

42 Aufgabe 5.5 (T) Eine Entscheiderin hat einen Bernoulli Nutzen von Ihr Projekt bringt eine Auszahlung von Wahrscheinlichkeit und mit Wkt. mit Wie viel ist sie maximal bereit zu bezahlen, um statt des Projekts die erwartete Auszahlung des Projekts zu bekommen? 42

Kapitel 5: Entscheidung unter Unsicherheit

Kapitel 5: Entscheidung unter Unsicherheit Kapitel 5: Entscheidung unter Unsicherheit Hauptidee: Die Konsequenzen einer Entscheidung sind oft unsicher. Wenn jeder möglichen Konsequenz eine Wahrscheinlichkeit zugeordnet wird, dann kann eine rationale

Mehr

Vorlesung 3: Risikoaversion

Vorlesung 3: Risikoaversion Vorlesung 3: Risikoaversion Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 3 (FS 11) Risikoaversion 1 / 21 1. Modellrahmen In diesem Kapitel betrachten wir nur monetäre

Mehr

2.4 Entscheidung bei Risiko

2.4 Entscheidung bei Risiko 2.4 Entscheidung bei Risiko Entscheidung bei Risiko nimmt an, dass für jeden Zustand S j seine Eintrittswahrscheinlichkeit P(S j ) bekannt ist Eintrittswahrscheinlichkeiten bestimmbar als statistische

Mehr

Vorlesung 2: Risikopräferenzen im Zustandsraum

Vorlesung 2: Risikopräferenzen im Zustandsraum Vorlesung 2: Risikopräferenzen im Zustandsraum Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie VL 2, FS 12 Risikopräferenzen im Zustandsraum 1/29 2.1 Motivation

Mehr

I. Grundlagen. I. Grundlagen 1. Entscheidungen unter Unsicherheit. 1. Entscheidungen unter Unsicherheit

I. Grundlagen. I. Grundlagen 1. Entscheidungen unter Unsicherheit. 1. Entscheidungen unter Unsicherheit . Entscheidungen unter Unsicherheit I. Grundlagen. Entscheidungen unter Unsicherheit Elemente des Entscheidungsproblems eines Wirtschaftssubekts: Der Entscheidungsträger kann zwischen verschiedenen Aktionen

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Stefan Neuß Sebastian Soika http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_203/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Christoph Lex Dominik Lohmaier http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_04/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

Kapitel 8. Erwarteter Nutzen. Intertemporaler Nutzen für Mehrperioden-Entscheidungen

Kapitel 8. Erwarteter Nutzen. Intertemporaler Nutzen für Mehrperioden-Entscheidungen Kapitel 8 Erwarteter Nutzen Josef Leydold c 2006 Mathematische Methoden VIII Erwarteter Nutzen / 27 Lernziele Nutzenfunktion zur Risikobewertung Erwarteter Nutzen Maße für Risikoaversion Indifferenzkurven

Mehr

Wichtige Informationen vorab

Wichtige Informationen vorab Wichtige Informationen vorab Wir haben eine Mailing Liste "Vorles- UebSS09Kapitalmarkt" eingerichtet. Über diese Mailingliste erhalten Sie in Zukunft die Vorlesungsunterlagen und die Übungsunterlagen.

Mehr

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit Grundzüge der Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit 1 BESCHREIBUNG VON RISIKO 2 Entscheidung unter Risiko Annahme: Wir kennen alle möglichen (sich gegenseitig ausschliessenden)

Mehr

Nochmal: Indifferenzwahrscheinlichkeiten und Nutzenfunktion Reihung: Selbständigkeit Erfolg Geschäftsführer Vorstandsassistent Insolvenz

Nochmal: Indifferenzwahrscheinlichkeiten und Nutzenfunktion Reihung: Selbständigkeit Erfolg Geschäftsführer Vorstandsassistent Insolvenz Nochmal: Indifferenzwahrscheinlichkeiten und Nutzenfunktion Reihung: Selbständigkeit Erfolg Geschäftsführer Vorstandsassistent Insolvenz Ref.-L.1: Selbst. Erfolg Sicher (300000) π = 1 1-π = 0 Selbständigkeit

Mehr

Aufgabe 1.3. Teil a) Teil b)

Aufgabe 1.3. Teil a) Teil b) Informationsökonomik: Anreize, Verträge, Institutionen L ösung Blatt 1 FT 2012 Aufgabe 1.3 Faire Prämie Versicherungen können nicht beobachten, welchen Typen sie vor sich haben, daher werden sie den Erwartungswert

Mehr

Mikroökonomik. Unsicherheit. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46

Mikroökonomik. Unsicherheit. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46 Mikroökonomik Unsicherheit Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Unsicherheit 1 / 46 Gliederung Einführung Haushaltstheorie Das Budget Präferenzen, Indi erenzkurven und Nutzenfunktionen

Mehr

EV = (0, 2)(125) + (0, 3)(100) + (0, 5)(50) = 80.

EV = (0, 2)(125) + (0, 3)(100) + (0, 5)(50) = 80. Mikroökonomie I Übungsaufgaben Erwartungsnutzen 1. Warum ist die Varianz ein besseres Maß der Variabilität als die Spannweite? Die Spannweite ist der Unterschied zwischen dem höchsten möglichen Ergebnis

Mehr

Vorlesung 1: Einleitung

Vorlesung 1: Einleitung Vorlesung 1: Einleitung Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 1, FS 12 Einleitung 1/17 1.1 Motivation In der Vorlesung Intermediate Microecoomics haben

Mehr

Grundlagen der Versicherungs- und Sozialversicherungsökonomik. Risiko: objektive oder subjektive Wahrscheinlichkeiten

Grundlagen der Versicherungs- und Sozialversicherungsökonomik. Risiko: objektive oder subjektive Wahrscheinlichkeiten Grundlagen der Versicherungs- und Sozialversicherungsökonomik Entscheidungstheorie bei Sicherheit (z. B. trad. Mikroökonomik, lineare Programmierung etc. bei Risiko (Unsicherheit und Ungewissheit Risiko:

Mehr

Vorlesung 4: Risikoallokation

Vorlesung 4: Risikoallokation Vorlesung 4: Risikoallokation Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie, FS 12 Risikoallokation 1/23 2 / 23 4.1 Einleitung Bisher haben wir uns ausschliesslich

Mehr

5.2DasKriteriumdeserwartetenNutzens

5.2DasKriteriumdeserwartetenNutzens 5.2DasKriteriumdeserwartetenNutzens BisherhabenwirunsichereSituationen beschrieben, jedoch noch nicht gesagt, wie die HaltunggegenüberRisikodasVerhaltenbeeinflußt.DieswerdenwirindiesemAbschnitt untersuchen.

Mehr

2. Rechnen Sie auf mindestens fünf genaue Ziffern (das sind nicht notwendigerweise fünf Nachkommastellen) im Endergebnis. 1

2. Rechnen Sie auf mindestens fünf genaue Ziffern (das sind nicht notwendigerweise fünf Nachkommastellen) im Endergebnis. 1 Fach: Prüfer: Finanzierung und Investition Prof. Dr. Dr. A. Löffler Veranstaltung: W2261 Entscheidungstheorie WS 8/9 Name Vorname Matrikelnummer Punkte Note Beachten Sie bitte folgende Hinweise: 1. Schreiben

Mehr

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7: Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln

Mehr

Wann ist diese Vorgehensweise berechtigt? Hierzu:

Wann ist diese Vorgehensweise berechtigt? Hierzu: IV. Risiko und Unsicherheit Risiko: Eine Entscheidung treffen, ohne den wahren Zustand der Welt zu kennen. Aber man kennt die Wahrscheinlichkeitsverteilung für die relevanten Zustände der Welt. z. B. {

Mehr

Vorlesung 2: Erwartungsnutzen

Vorlesung 2: Erwartungsnutzen Vorlesung 2: Erwartungsnutzen Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2 (FS 11) Erwartungsnutzen 1 / 28 1. Modellrahmen 1.1 Die Alternativen Wir betrachten

Mehr

Kapitel 8: Wettbewerbsangebot

Kapitel 8: Wettbewerbsangebot Kapitel 8: Wettbewerbsangebot Hauptidee: Eine Firma, die auch im Outputmarkt ein Preisnehmer ist, wählt einen Produktionsplan, der optimal ist gegeben Inputpreise und Outputpreis 8.1 Das Angebot der Firma

Mehr

2. Gesundheitsfinanzierung

2. Gesundheitsfinanzierung 2. Gesundheitsfinanzierung Inhalte dieses Abschnitts 2.1 Grundmodell der Versicherung Versicherungsmotiv Optimale Versicherungsnachfrage Aktuarisch faire und unfaire Prämien 145 2.1 Grundmodell der Versicherung

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Teil I: Konsumententheorie

Teil I: Konsumententheorie Teil I: Konsumententheorie 1 Kapitel 1: Präferenzen Hauptidee: Eine Konsumentscheidung kann als Wahl zwischen Güterbündeln modelliert werden, gemäß der Präferenzen des Konsumenten. Die Konzepte Indifferenzkurve,

Mehr

Übung zur Vorlesung Multiagentensysteme

Übung zur Vorlesung Multiagentensysteme Ludwig-Maximilians-Universität München SS 2007 Institut für Informatik Aufgabenblatt 1 Dr. Brandt / Fischer & Harrenstein 23. April 2007 Übung zur Vorlesung Multiagentensysteme Tutorübung: 25. April 2007

Mehr

Historische Renditen, Experteninterviews, Analyse von Marktpreisen

Historische Renditen, Experteninterviews, Analyse von Marktpreisen 1 Portfoliotheorie 1.1 Grundlagen der Portfoliotheorie 1.1.1 Welche vier grundsätzlichen Anlageziele werden von Investoren verfolgt? Minimales Risiko Liquidation wenn nötig Hohe Rendite Gewinnmaximierung

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Offene Fragen Warum ist ein ET bereit, für eine Feuerversicherung mit einer Versicherungshöhe von 1 Million und einer Jahreseintrittswahrscheinlichkeit

Mehr

Vorlesung 5: Probleme der Erwartungsnutzentheorie

Vorlesung 5: Probleme der Erwartungsnutzentheorie Vorlesung 5: Probleme der Erwartungsnutzentheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 5 (FS 11) Probleme der Erwartungsnutzentheorie 1 / 24 1. Einleitung

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre. Lösungshinweise zur Einsendearbeit 2 (WS 2010/2011)

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre. Lösungshinweise zur Einsendearbeit 2 (WS 2010/2011) Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, WS 010/011 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Kapitel 4: Gemischte Strategien

Kapitel 4: Gemischte Strategien Kapitel 4: Gemischte Strategien Literatur: Tadelis Chapter 6 Prof. Dr. Philipp Weinschenk, Lehrstuhl für Mikroökonomik, TU Kaiserslautern Kapitel 4.1: Motivation Motivation In vielen Spielen gibt es kein

Mehr

Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016

Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016 Übungen zu Wahrscheinlichkeitstheorie Judith Kloas, Wolfgang Woess, Jonas Ziefle SS 2016 43) [3 Punkte] Sei φ(t) die charakteristische Funktion der Verteilungsfunktion F (x). Zeigen Sie, dass für jedes

Mehr

Lösungshinweise zu Übungsblatt 2

Lösungshinweise zu Übungsblatt 2 Lösungshinweise zu Übungsblatt 2 Aufgabe 1: Unsicherheit Gegeben sei ein Individuum mit streng monoton steigender und konkaver von Neumann- Morgenstern Nutzenfunktion. a) Erklären Sie anhand einer geeigneten

Mehr

Gymnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe Gmnasium Hilpoltstein Grundwissen 8. Jahrgangsstufe Wissen / Können Aufgaben und Beispiele. Proportionalität Proportionale Zuordnungen und sind proportional zueinander, wenn zum n-fachen Wert von der n-fache

Mehr

Materialien zur Vorlesung. Portfolio-Selektion

Materialien zur Vorlesung. Portfolio-Selektion Materialien zur Vorlesung Portfolio-Selektion Burkhard Erke Quellen: Schmidt/Terberger, Kap. 8; Brealey/Myers, Kap. 7/8 Juli 2002 Lernziele Diversifikation mindert das Risiko eines Portefeuilles Effiziente

Mehr

Kapitel 14: Unvollständige Informationen

Kapitel 14: Unvollständige Informationen Kapitel 14: Unvollständige Informationen Hauptidee: Für das Erreichen einer effizienten Allokation auf Wettbewerbsmärkten ist es notwendig, dass jeder Marktteilnehmer dieselben Informationen hat. Informationsasymmetrie

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

2.Wichtige Begriffe für Entscheidungen bei Unsicherheit

2.Wichtige Begriffe für Entscheidungen bei Unsicherheit .Wichtige Begriffe für Entscheidungen bei Unsicherheit. Grundlagen Bisher: Rationales Individuum trifft Entscheidungen für Konsumpläne bei Sicherheit. Jetzt: Rationales Individuum trifft Entscheidungen

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion Kapitel 2 Erwartungswert 2.1 Erwartungswert einer Zufallsvariablen Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion È ist definiert als Ü ÜÈ Üµ Für spätere

Mehr

Investition und Finanzierung

Investition und Finanzierung - Zusatzfolien zur Portfoliotheorie und CAPM- Portfoliotheorie Die Portfoliotheorie geht auf Harry Markowitz zurück. Sie gibt Anlegern Empfehlungen, wie sie ihr Vermögen auf verschiedenen Anlagemöglichkeiten

Mehr

Kapitel 13: Unvollständige Informationen

Kapitel 13: Unvollständige Informationen Kapitel 13: Unvollständige Informationen Hauptidee: Für das Erreichen einer effizienten Allokation auf Wettbewerbsmärkten ist es notwendig, dass jeder Marktteilnehmer dieselben Informationen hat. Informationsasymmetrie

Mehr

Eindimensionale Zufallsvariablen

Eindimensionale Zufallsvariablen Eindimensionale Grundbegriffe Verteilungstypen Diskrete Stetige Spezielle Maßzahlen für eindimensionale Erwartungswert Varianz Standardabweichung Schwankungsintervalle Bibliografie Bleymüller / Gehlert

Mehr

Das St. Petersburg Paradox

Das St. Petersburg Paradox Das St. Petersburg Paradox Johannes Dewender 28. Juni 2006 Inhaltsverzeichnis 1 Das Spiel 2 2 Das Paradox 3 3 Lösungsvorschläge 4 3.1 Erwartungsnutzen............................... 4 3.2 Risikoaversion..................................

Mehr

Einführung in die Finanzwirtschaft

Einführung in die Finanzwirtschaft Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Einführung in die Finanzwirtschaft Prof. Dr. Marc Gürtler Gegenstand: Maßnahmen der Beschaffung und Verwendung monetärer Mittel im Rahmen

Mehr

Vorbereitung Blatt 13: Gleichverteilung auf [0, 1]

Vorbereitung Blatt 13: Gleichverteilung auf [0, 1] Vorbereitung Blatt 3: Gleichverteilung auf [, ] Jörg Nikutta. Januar 3 Wir werden in Übung 3 eine für Sie noch ungewohnte Art der Wahrscheinlichkeitsrechnung verwenden. Diese möchte ich vorab näher bringen:

Mehr

Mentalitäts-Check zur Risikobereitschaft bei Geldanlagen

Mentalitäts-Check zur Risikobereitschaft bei Geldanlagen Mentalitäts-Check zur Risikobereitschaft bei Geldanlagen Name: Adresse: Telefon: Email: Datum: 1. Wie schätzen Sie Ihre finanzielle Risikobereitschaft im Vergleich zu anderen Menschen ein? Extrem niedrig

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag studienbegleitende Klausur Finanzmathematik I Aufgabe (7 Punkte) Vorgelegt sei ein Wahrscheinlichkeitsraum (Ω, F, P) und

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

2. Entscheidungsregeln. Handhabung von Unsicherheit

2. Entscheidungsregeln. Handhabung von Unsicherheit II Agenda 1. Sensitivitätsanalyse 2. Entscheidungsregeln 3. Dialektische Planung 2 1. Sensitivitätsanalyse 3 Definition: Sensitivitätsanalyse = Sensibilitätsanalyse Empfindlichkeitsanalyse Verfahren zur

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner.

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner. Bachelor-Kursprüfung Kapitalmarkttheorie Schwerpunktmodul Finanzmärkte 6 Kreditpunkte WS 2014/15 23.2.2015 Prof. Dr. Lutz Arnold Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer

Mehr

Teil II: Produzententheorie

Teil II: Produzententheorie Teil II: Produzententheorie 1 Kapitel 6: Produktion und Technologie Hauptidee: Eine Firma verwandelt Inputs in Outputs. Dieser Transformationsprozess wird beschrieben durch die Produktionsfunktion. 6.1

Mehr

Kapitel 2: Die Entscheidung des Konsumenten

Kapitel 2: Die Entscheidung des Konsumenten Kapitel 2: Die Entscheidung des Konsumenten Hauptidee: Die Konsumentin wählt das Güterbündel, das sie unter all denen, die sie sich leisten kann, am liebsten hat. 2.1 Budgetbeschränkung Der Marktwert eines

Mehr

Risikomessung mit dem Conditional Value-at-Risk

Risikomessung mit dem Conditional Value-at-Risk Jendrik Hanisch Risikomessung mit dem Conditional Value-at-Risk Implikationen für das Entscheidungsverhalten. Bibliothek j k Mit einem Geleitwort von \* \, -^ Prof. Dr. Wolfgang Kürsten A; Verlag Dr. Kovac

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

1. EINFÜHRUNG INS STATE-PRICING 1

1. EINFÜHRUNG INS STATE-PRICING 1 1. EINFÜHRUNG INS STATE-PRICING 1 1. Einführung ins State-Pricing In diesem Kapitel betrachten wir eine Periode. Das heisst, wir können nur zu den Zeitpunkten 0 und 1 handeln. Im weiteren arbeiten wir

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors Level Grundlagen Blatt Dokument mit Aufgaben Aufgabe A Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors gilt.

Mehr

i Pr(X = i). Bsp: Sei X die Summe zweier Würfe eines Würfels. Dann gilt E[X] =

i Pr(X = i). Bsp: Sei X die Summe zweier Würfe eines Würfels. Dann gilt E[X] = Erwartungswert Definition Erwartungswert Der Erwartungswert einer diskreten ZV ist definiert als E[X] = i i Pr(X = i). E[X] ist endlich, falls i i Pr(X = i) konvergiert, sonst unendlich. Bsp: Sei X die

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Mikroökonomik B (Bachelor)

Mikroökonomik B (Bachelor) Bitte eintragen: Matrikel-Nr.: Mikroökonomik B (Bachelor) Prüfung vom 24.09.203 Wichtige Hinweise: Sie haben 90 Minuten Zeit, um die folgenden drei Aufgaben zu insgesamt 90 Punkten zu bearbeiten. Teilen

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Kapitel 9. Lösung Schritt: Normierung der Nutzenfunktionen. Aufgabe 9.1

Kapitel 9. Lösung Schritt: Normierung der Nutzenfunktionen. Aufgabe 9.1 Kapitel 9: Entscheidung bei Risiko und einem Ziel 37 Kapitel 9 Lösung 9. Aufgabe 9. Welche Beziehung besteht zwischen Wert - und Nutzenfunktionen? Beschreiben Sie zwei Verfahren zur Ermittlung von Nutzenfunktionen

Mehr

4 ZU V5"4. Er wart ungsnut zenhyp ot hese. Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen

4 ZU V54. Er wart ungsnut zenhyp ot hese. Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen 4 ZU V5"4 Er wart ungsnut zenhyp ot hese Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen Vorwort 15 1.1 Zufall und die Erwartungsnutzentheorie 16 1.2 Inhalt und Fortgang

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 4 23. Oktober 2009 Kapitel 1. Mengen, Abbildungen und Funktionen (Fortsetzung) Berechnung der Umkehrfunktion 1. Man löst die vorgegebene Funktionsgleichung

Mehr

Neue Institutionenökonomik, Aufgabe 18 Seite 1

Neue Institutionenökonomik, Aufgabe 18 Seite 1 Neue Institutionenökonomik, Aufgabe 18 Seite 1 Allgemeine Informationen zum Principal-Agent-Modell Es geht hier nun um die Vertragsausgestaltung zwischen dem Eigentümer (Prinzipal) einer Firma und dem

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Finanzwirtschaft. Foliensatz Vertiefungskurs aus ABWL: im Sommersemester Teil / 2 und 7 Univ. Ass. Dr. Matthias G.

Finanzwirtschaft. Foliensatz Vertiefungskurs aus ABWL: im Sommersemester Teil / 2 und 7 Univ. Ass. Dr. Matthias G. Universität Wien Institut für Betriebswirtschaftslehre ABWL IV: Finanzwirtschaft 400 026/2+7 Univ. Ass. Dr. M.G. Schuster Foliensatz Vertiefungskurs aus ABWL: Finanzwirtschaft im Sommersemester 2004 2.

Mehr

Diskrete Zufallsvariable*

Diskrete Zufallsvariable* Diskrete Zufallsvariable* Aufgabennummer: 1_37 Aufgabentyp: Aufgabenformat: Multiple Choice (1 aus 6) Grundkompetenz: WS 3.1 Typ 1 T Typ Die unten stehende Abbildung zeigt die Wahrscheinlichkeitsverteilung

Mehr

Lösungen zu Übungsaufgaben Blatt 9

Lösungen zu Übungsaufgaben Blatt 9 Diskrete Zufallsgrößen Zu Aufgabe Die zufällige Anzahl X von Ausfällen eines Servers pro Jahr genüge folgender Verteilung: ai 0 3 4 5 6 >6 pi /0 /0 3/0 /0 /0 /0 /0 0 Ein Ausfall des Servers verursacht

Mehr

Einführung in die Finanzwirtschafti Einführung in die Finanzwirtschaft. Institut für Finanzwirtschaft Prof. Dr. Marc Gürtler 0

Einführung in die Finanzwirtschafti Einführung in die Finanzwirtschaft. Institut für Finanzwirtschaft Prof. Dr. Marc Gürtler 0 Einführung in die Finanzwirtschafti Einführung in die Finanzwirtschaft Institut für Finanzwirtschaft Prof. Dr. Marc Gürtler Einführung in die Finanzwirtschafti Gegenstand: Maßnahmen der Beschaffung und

Mehr

Kapitel 6: Produktion und Technologie

Kapitel 6: Produktion und Technologie Kapitel 6: Produktion und Technologie Hauptidee: Die Firma verwandelt Inputs in Outputs. Dieser Transformationsprozess wird beschrieben durch die Produktionsfunktion. 6.1 Die Firma und ihre Technologie

Mehr

Vorlesung 3: Versicherungsnachfrage

Vorlesung 3: Versicherungsnachfrage Vorlesung 3: Versicherungsnachfrage Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie, FS 12 Versicherungsnachfrage 1/20 2 / 20 3. 1 Das Versicherungsnachfrageproblem

Mehr

Teil 2: Dynamische Spiele mit vollständigen Informationen

Teil 2: Dynamische Spiele mit vollständigen Informationen Teil : Dynamische Spiele mit vollständigen Informationen Kapitel 5: Grundsätzliches Literatur: Tadelis Chapter 7 Prof. Dr. Philipp Weinschenk, Lehrstuhl für Mikroökonomik, TU Kaiserslautern Kapitel 5.:

Mehr

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion

5.4 Verteilungsfunktion Verteilungsfunktion diskreten Zufallsvariablen stetigen Zufallsvariablen Verteilungsfunktion 5. Verteilungsfunktion Die Verteilungsfunktion gibt an welche Wahrscheinlichkeit sich bis zu einem bestimmten Wert der Zufallsvarialben X kumuliert Die Verteilungsfunktion F() gibt an, wie groß die die

Mehr

Kapitel 9: Marktgleichgewicht

Kapitel 9: Marktgleichgewicht Kapitel 9: Marktgleichgewicht Hauptidee: In einem Wettbewerbsmarkt bestimmen Nachfrage und Angebot den Preis. Das Wettbewerbsgleichgewicht ist eine Vorhersage darüber, was zu erwarten ist, wenn jeder Marktteilnehmer

Mehr

4. Die Laplacesche Gleichverteilung

4. Die Laplacesche Gleichverteilung Universität Basel Wirtschaftswissenschaftliches Zentrum Grundlagen der Stochastik Dr. Thomas Zehrt Inhalt: 1. Die Ereignismenge 2. Die Wahrscheinlichkeitsverteilung 3. Eigenschaften einer Wahrscheinlichkeitsverteilung

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient. Die Riskoprämie ergibt sich also als ein Vielfaches der Varianz der zugrundeliegenden Unsicherheit Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Mehr

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir Kapitel 3: Entropie Motivation Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir log N Bits log p N Bits Die Information steht

Mehr

Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }.

Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }. 1 Grundlagen Entscheidungstheorie: Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }. Annahmen: Der Entscheidungsträger ist gezwungen, eine der betrachteten

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

2. Rechnen Sie auf mindestens fünf genaue Ziffern (das sind nicht notwendigerweise fünf Nachkommastellen) im Endergebnis. 1

2. Rechnen Sie auf mindestens fünf genaue Ziffern (das sind nicht notwendigerweise fünf Nachkommastellen) im Endergebnis. 1 Fach: Prüfer: Finanzierung und Investition Prof. Dr. Dr. A. Löffler Veranstaltung: W2261 Entscheidungstheorie WS 08/09 Name Vorname Matrikelnummer Punkte Note Beachten Sie bitte folgende Hinweise: 1. Schreiben

Mehr

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man x / M. Man sagt, M ist Teilmenge von N und schreibt M N, wenn für jedes x M auch x N gilt.

Mehr

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Einleitung Ein Online-Algorithmus muss Ausgaben berechnen, ohne zukünftige Eingaben zu kennen. Für die Bewertung von

Mehr

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Stimmt das immer und in welchem Sinne?

Stimmt das immer und in welchem Sinne? 1 KAP 6. Dominanz und Nash-GG Nash-GG (teilweise) dadurch motiviert: schränkt Menge möglicher Spielausgänge stärker ein als Dominanz Stimmt das immer und in welchem Sinne? Gibt s stets weniger Nash-GGe

Mehr

1 x. Eine kurze Erinnerung an die Definition der Betragsfunktion:

1 x. Eine kurze Erinnerung an die Definition der Betragsfunktion: Wie rechne ich mit Ungleichungen? Die do s und don t s mit Beispielen aus der Miniklausur Lukas Steenvoort Addition und Subtraktion 1 ) Dies funktioniert ähnlich wie bei Gleichungen addieren wir denselben

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

Portfolioselection. Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen?

Portfolioselection. Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen? Portfolioselection Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen? Investieren in Aktien ist riskant Risiko einer Aktie kann in 2 Teile zerlegt werden: o Unsystematisches Risiko

Mehr

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion:

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion: Ist das Arrow-Pratt-Maß der absoluten Risikoaversion bekannt, so lässt sich daraus die Nutzenfunktion bestimmen: Mithilfe der Substitution y := U (w) dy = U (w)dw gilt: und daher U (w) U (w) dw = A a (w)dw

Mehr

Haushaltstheorie. Ökonomische Entscheidungen und Märkte IK. Alexander Ahammer. Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz

Haushaltstheorie. Ökonomische Entscheidungen und Märkte IK. Alexander Ahammer. Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz Haushaltstheorie Ökonomische Entscheidungen und Märkte IK Alexander Ahammer Institut für Volkswirtschaftslehre Johannes Kepler Universität Linz Letztes Update: 31. Oktober 2017, 13:15 Alexander Ahammer

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr