Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38"

Transkript

1 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Offene Fragen Warum ist ein ET bereit, für eine Feuerversicherung mit einer Versicherungshöhe von 1 Million und einer Jahreseintrittswahrscheinlichkeit von 0,0001 eine Jahresprämie von 250 zu zahlen, die bedeutend höher als der Erwartungswert 100 ist? Warum spielen Woche für Woche Millionen Menschen Zahlenlotto, obwohl die Teilnahme zu einem kleineren Erwartungswert (nur ca. 50% Ausschüttung) führt als die Nichtteilnahme? DAS BERNOULLI-Prinzip Beurteilung von Glücksspielen nicht durch Erwartungswert der möglichen Gewinne, sondern durch Erwartungswert des aus den Gewinnen resultierenden Nutzens

2 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 39 Grundgedanke des BERNOULLI-Prinzips: Existenz einer Nutzenfunktion u, die Ergebniswerte entsprechend der subjektiven Einschätzung eines Entscheidungsträgers in Nutzenwerte umwandelt: 1. Allen Ergebnissen x ij einer Handlungsalternative a i wird mittels einer Nutzenfunktion u(x) ein Nutzenwert u ij = u(x ij ) zugeordnet. 2. Der entscheidungsrelevante Präferenzwert Φ(a i ) einer Handlungsalternative a i wird als Erwartungswert dieser Nutzenwerte ermittelt. Maximierung der Nutzenerwartungswerte a b E[u(Xa)] E[u(Xb)]. Dabei ist E[u(X)] = u(xi ) pi mit pi = P(X = xi) i bei diskret verteiltem X und E[u(X)] = u (x)f (x)dx bei kontinuierlich verteiltem X mit der Wahrscheinlichkeitsdichte f(x). UTILITY-Funktion, BERNOULLI-Nutzen, Risiko- Nutzen, V. NEUMANN-MORGENSTERN-Nutzen oder Risikopräferenzfunktion

3 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 40 Bernoulli: Die zu einem Entscheidungsträger gehörende Funktion u ist eine kardinale Nutzenfunktion, die bis auf steigende lineare Transformationen eindeutig bestimmt ist. D.h. eine Nutzenfunktion u und eine aus u durch lineare Transformation hervorgegangene Nutzenfunktion û = au + β für a > 0, β beliebig, liefern die gleiche Präferenzordnung der zur Auswahl stehenden Alternativen. D.h. Die Nutzenfunktion selbst liegt erst dann numerisch eindeutig fest, wenn für zwei Konsequenzen x und y die Nutzenwerte willkürlich fixiert werden. Bei monetären Auszahlungen i.d.r. Normierung u(0) = 0 und u(1) = 1 Nutzenfunktionen sind personen- und situationsabhängig. BERNOULLI-Prinzip ist nicht auf Risikosituationen mit monetären Auszahlungen beschränkt. unterschiedlichste Ergebniswerte lassen sich in vergleichbare abstrakte Nutzenwerte transformieren und die Präferenzordnung ist dann einfach bestimmbar.

4 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 41 Grund für hohe Verbreitung des Konzepts in der Literatur Problem in der Praxis: Bestimmung der Nutzenfunktion Empirische Ermittlung des BERNOULLI-Nutzens Grundidee nach RAMSEY [1931] Vorlage von relativ einfach strukturierten, hypothetischen Indifferenzsituationen a 1 1 x a 2 mit c x d p 1-p c d Die Wahrscheinlichkeit p wird solange variiert, bis der Entscheidungsträger zwischen a 1 und a 2 indifferent wird, d.h. beide Alternativen stiften den gleichen Nutzen "x ist das Sicherheitsäquivalent (SÄ) der zufallsabhängigen Auszahlung a2 "

5 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 42 Über Wiederholungen und aus dem registrierten Verhalten des Entscheidungsträgers läßt sich die Nutzenfunktion u berechnen: Konkrete Vorgehensweise 1. Normierung der Nutzenfunktion u(x min ) = 0 und u(x max ) = 1 2. hypothetische Indifferenzsituation sichere Alternative a 1 = SÄ: Auswahl eines weiteren bekannten Ergebnisses x zufallsabhängige Alternative a 2 mit p für besten Wert und (1-p) für schlechtesten Wert der Ergebnismatrix a 1 1 x a 2 p 1-p x max x min

6 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 43 ET muss nun nach subjektivem Ermessen die Wahrscheinlichkeit p(x max ) so benennen, daß er indifferent zwischen beiden Alternativen ist. Orientierungshilfe: prinzipielle Risikoeinstellung risikoneutraler ET Indifferenz bei SÄ = EW risikofreudiger ET SÄ > EW risikoscheuer ET SÄ < EW Für diese p(x max ) stimmen Nutzenerwartungswerte von a 1 und a 2 überein!! d.h. u(x) = u(x max ) p + u(x min ) (1-p) = 1 p + 0 (1-p) u(x) = p der Nutzenwert des Sicherheitsäquivalents entspricht der subjektiven Indifferenzwahrscheinlichkeit!!

7 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel p x min EW x max 3. Für übrige Werte der Ergebnismatrix analog hypothetische Indifferenzsituation und Bestimmung der Nutzenwerte Möglichkeit der Bestimmung der Nutzenfunktion durch (beliebige) Variation der Ergebniswerte u(x) = p(x) 4. Bestimmung des Erwartungsnutzens der Handlungsalternativen Maximierung des Nutzenerwartungswertes! Beispiel Empirische Bestimmung der Nutzenwerte Entscheidungssituation bei Risiko 0,5 s 1 0,3 s 2 0,2 s 3 E(a)

8 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 45 a a

9 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 46 a a 2 Für x = : 1-p p ,5 s 1 0,3 s 2 0,2 s 3 E(a) a 1 a 2

10 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel Begründung des Bernoulli-Prinzips BERNOULLI: "Der Entscheidungsträger besitzt eine Nutzenfunktion u, so daß er in allen Risikosituationen seine Aktionen anhand des zugehörigen Nutzenerwartungswertes beurteilt." empirische Bestätigung??!! Experimentelle Nutzenmessungen z. B. [FRIEDMAN, SAVAGE 1948]; [MOSTELLER, NOGEE 1951]; [DAVIDSON, SIEGEL, SUPPES 1957]; [BECKER, de GROOT, MARSCHAK 1963]; [KAHNEMANN, TVERSKY 1979]; [ HERSHEY, KUNREUTHER, SCHOEMAKER 1982]; [SCHAUENBERG 1990]. Empirisch orientierte Arbeiten, die sich kritisch über die Tragfähigkeit des BERNOULLI-Prinzips zur Erklärung des Verhaltens in Risikosituationen äußert, stammen z. B. [ALLAIS 1953] und [KAHNEMAN, TVERSKY 1979]. BERNOULLI-Nutzen ist eindeutig festgelegt, denn er impliziert immer eine Risikosituation und zieht seine inhaltliche Rechtfertigung aus der Anwendung des Bernoulli-Prinzips. Mit der Transformation von Ergebnis- in Nutzenwerte verleiht der ET simultan seiner Risiko- und seiner Höhenpräferenz Ausdruck. Anders W. Krelle [1968]: Zunächst Höhenpräferenz, dann Unsicherheitspräferenz.

11 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 48 Axiomatische Begründung des Bernoulli-Prinzips: Formulierung einfacher Forderungen, die ein Entscheidungsprinzip erfüllen muß, um als rationale Handlungsempfehlung akzeptiert werden Akzeptanz der Plausibilität der Axiome begründet dann Rationalität des Bernoulli-Kriteriums! Axiomensystem von V. NEUMANN/MORGENSTERN [1944] Axiomensystem von LUCE/RAIFFA [1957] Axiomensystem von SCHNEEWEIß [1967] 1. Ordinales Prinzip 2. Stetigkeitsaxiom 3. Substitutionsaxiom 1. Ordinales Prinzip Die Präferenzrelation ist transitiv und vollständig, d. h. a) Für je drei Zufallsvariablen X, Y, V gilt: X Y und Y V X V Transitivität b) Für je zwei Zufallsvariablen X und Y gilt: X Y oder Y X Vollständigkeit

12 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 49 d.h. widerspruchsfreie und vollständige Präferenzen 2. Stetigkeitsaxiom Drei Auszahlungen x, y und v mit y x v, es existiert ein p ]0, 1[, so daß die feste Auszahlung x der Zweipunktverteilung y p v gleichwertig wird: x ~ y p v Das Stetigkeitsaxiom ist eine notwendige Voraussetzung für das BERNOULLI-Prinzip, denn bei Gültigkeit des BER- NOULLI-Prinzips folgt aus der Indifferenz x ~ y p v die Gleichung u(x) = p u(y) + (1 - p) u(v). Die Auflösung nach p ergibt p = u(v) u(x) u(v) u(y) Grundlage der Lotterie zur praktischen Bestimung einer Nutzenfunktion Problem: Warum lassen sich ETs in der Praxis nicht auf diese Art Nutzenfunktionsbestimmung ein???

13 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel Substitutionsaxiom Ist V eine beliebige zufallsabhängige Auszahlung und p [0, 1] eine beliebige Wahrscheinlichkeit, so gilt X Y X p V Y p V. die geforderte Äquivalenz besagt für die Nutzenerwartungswerte: E[u(X)] E[u(Y)] p E[u(X)] + (1 - p) E[u(V)] p E[u(Y)] + (1 - p) E[u(V)] Die Bezeichnung Substitutionsaxiom rührt daher, daß es gestattet, von einer zusammengesetzten zufallsabhängigen Auszahlung Y p V zu einer gleichwertigen oder präferierten zufallsabhängigen Auszahlung X p V zu gelangen, indem man Y durch das gleichwertige oder präferierte X substituiert. Fortsetzbarkeit der Erwartungswertbildung Obwohl das Substitutionsaxiom plausibel ist, wurde es besonders heftig diskutiert und kritisiert. Es war auch

14 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 51 nicht in dieser Form im V. NEUMANN-MORGENSTERNschen Axiomensystem enthalten, sondern wurde dort durch andere Axiome ersetzt.

15 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel Diskussion ausgewählter Nutzenfunktionen Lineare Nutzenfunktionen Konvexe Nutzenfunktionen Konkave Nutzenfunktionen Nutzenfunktionen mit konvexen und konkaven Stücken Annahme: monetäre Auszahlungen Normierung der Nutzenfunktion gemäß u(0) = 0 und u(1) = 1 Punkte (0, 0) und (1, 1). monoton steigende Nutzenfunktion Weitere Eigenschaften hängen von den speziellen Vorstellungen des ET ab.

16 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 53 Lineare Nutzenfunktion u(x) = x Entscheider orientiert sich nur am Erwartungswert Erwartungswert der Auszahlg. = Nutzenerwartungswert SÄ = EW u(x) Entscheider ist risikoneutral x Bsp.: Er wird Versicherungsabschlüssen gegenüber indifferent sein, wenn Prämie = Schadenserwartungswert; er ignoriert die Streuung

Betriebswirtschaftliche Entscheidungstheorie und Anwendung

Betriebswirtschaftliche Entscheidungstheorie und Anwendung Betriebswirtschaftliche Entscheidungstheorie und Anwendung Kapitel 5: Entscheidungen unter Risiko Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität

Mehr

3. Betriebswirtschaftliche Entscheidungslehre 3.6 Entscheidung unter Risiko

3. Betriebswirtschaftliche Entscheidungslehre 3.6 Entscheidung unter Risiko Dominanzprinzipien : Absolute Dominanz: Eine Alternative A i dominiert eine Alternative A j absolut, wenn das geringstmögliche Ergebnis von A i nicht kleiner ist als das grösstmögliche Ergebnis von A j,

Mehr

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Rosa Lee Annette Weiß Miriam Hussein Mirco Lomb Inhalt 1. Einleitung 2. Entscheidungstheorie 3. Erwartungsnutzentheorie

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Finanzierung und Investition

Finanzierung und Investition Kruschwitz/Husmann (2012) Finanzierung und Investition 1/40 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München 7. Auflage, Kapitel 2 Kruschwitz/Husmann (2012) Finanzierung

Mehr

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Einleitung Ein Online-Algorithmus muss Ausgaben berechnen, ohne zukünftige Eingaben zu kennen. Für die Bewertung von

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Stefan Neuß Sebastian Soika http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_203/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

betriebliche Entscheidungslehre

betriebliche Entscheidungslehre Verwaltungs- und Wirtschafts-Akademie betriebliche Entscheidungslehre Dr. Martens 1 Bedeutung der Entscheidungstheorie 2 Grundmodell der Entscheidungstheorie 2.1 Entscheidungsfeld 2.1.1 Handlungsalternativen

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Christoph Lex Dominik Lohmaier http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_04/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

Kapitel 5: Entscheidung unter Unsicherheit

Kapitel 5: Entscheidung unter Unsicherheit Kapitel 5: Entscheidung unter Unsicherheit Hauptidee: Die Konsequenzen einer Entscheidung sind oft unsicher. Wenn jeder möglichen Konsequenz eine Wahrscheinlichkeit zugeordnet wird, dann kann eine rationale

Mehr

Wichtige Informationen vorab

Wichtige Informationen vorab Wichtige Informationen vorab Wir haben eine Mailing Liste "Vorles- UebSS09Kapitalmarkt" eingerichtet. Über diese Mailingliste erhalten Sie in Zukunft die Vorlesungsunterlagen und die Übungsunterlagen.

Mehr

Johann Wolfgang Goethe - Universität Frankfurt am Main

Johann Wolfgang Goethe - Universität Frankfurt am Main Fachbereich Wirtschaftswissenschaften Institut für Statistik und Mathematik Johann Wolfgang Goethe - Universität Frankfurt am Main ENTSCHEIDUNGSTHEORIE Klausur vom 0.0.004 Prof. Dr. H. Rommelfanger Als

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 3, 4, 5 und 6, SS 2012 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Einsendearbeit 2 (SS 2012)

Mehr

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion:

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion: Ist das Arrow-Pratt-Maß der absoluten Risikoaversion bekannt, so lässt sich daraus die Nutzenfunktion bestimmen: Mithilfe der Substitution y := U (w) dy = U (w)dw gilt: und daher U (w) U (w) dw = A a (w)dw

Mehr

Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }.

Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }. 1 Grundlagen Entscheidungstheorie: Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }. Annahmen: Der Entscheidungsträger ist gezwungen, eine der betrachteten

Mehr

2.3 Kriterien der Entscheidungsfindung: Präferenzen

2.3 Kriterien der Entscheidungsfindung: Präferenzen .3 Kriterien der Entscheidungsfindung: Präferenzen Der Einfachheit halber beschränken wir uns auf n = ( zwei Güter). Annahme: Konsumenten können für sich herausfinden, ob sie x = ( x, ) dem Güterbündel

Mehr

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Seminararbeit eingereicht bei Prof. Dr. Klaus Peter Kaas Lehrstuhl für Marketing I, Fachbereich Wirtschaftswissenschaften

Mehr

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014

Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014 Sommersemester 2014 Repetitorium zum Staatsexamen für Lehramtsstudenten Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201 Lehrstuhl für ABWL und Wirtschaftsinformatik Prof. Dr. Alexandros

Mehr

Nutzenmessung. Geschichte, Paradoxien, Anomalien

Nutzenmessung. Geschichte, Paradoxien, Anomalien Nutzenmessung. Geschichte, Paradoxien, Anomalien Grundlagen von Entscheidungs- und Spieltheorie 1. Die Anfänge: Glücksspiele 2. Petersburger Paradox 3. Messung subjektiven Nutzens nach Neumann-Morgenstern

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaften der Universität Konstanz, No. 11

Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaften der Universität Konstanz, No. 11 econstor www.econstor.eu Der Open-Access-Publikationsserver der ZBW Leibniz-Informationszentrum Wirtschaft The Open Access Publication Server of the ZBW Leibniz Information Centre for Economics Ronning,

Mehr

Mikroökonomie 1. Prof. Dr. Dennis A. V. Dittrich. Universität Erfurt. Wintersemester 08/09

Mikroökonomie 1. Prof. Dr. Dennis A. V. Dittrich. Universität Erfurt. Wintersemester 08/09 Mikroökonomie 1 Prof. Dr. Dennis A. V. Dittrich Universität Erfurt Wintersemester 08/09 Prof. Dittrich (Universität Erfurt) 1. Vorlesung 2008 Winter 1 / 41 Informationen zur Lehrveranstaltung Webseite

Mehr

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

Betriebswirtschaftliche Entscheidungstheorie

Betriebswirtschaftliche Entscheidungstheorie Prof. Dr. Günter Sieben Prof. Dr. Thomas Schildbach Betriebswirtschaftliche Entscheidungstheorie 3., überarbeitete und erweiterte Auflage 1990 Werner-Verlag Düsseldorf VII Inhaltsverzeichnis I. Begriffsbestimmung

Mehr

Vorlesung 6: Alternativen zur Erwartungsnutzentheorie

Vorlesung 6: Alternativen zur Erwartungsnutzentheorie Vorlesung 6: Alternativen zur Erwartungsnutzentheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 1 / 21 1.

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Mikroökonomik B 2. Entscheidung bei Unsicherheit

Mikroökonomik B 2. Entscheidung bei Unsicherheit Mikroökonomik B 2. Entscheidung bei Unsicherheit Dennis L. Gärtner 14. April 2011 Entscheidung bei Unsicherheit Literaturangaben: Varian (2007), Kapitel 12, 13 Jehle und Reny (2001), Kapitel 2.4 Kreps

Mehr

Vorlesung 2: Risikopräferenzen im Zustandsraum

Vorlesung 2: Risikopräferenzen im Zustandsraum Vorlesung 2: Risikopräferenzen im Zustandsraum Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie VL 2, FS 12 Risikopräferenzen im Zustandsraum 1/29 2.1 Motivation

Mehr

Studienbuch Finanzierung und Investition

Studienbuch Finanzierung und Investition Dorothea Schäfer Lutz Kruschwitz Mike Schwake Studienbuch Finanzierung und Investition wde G Walter de Gmyter Berlin New York 1995 Inhalt 1 Sichere Zahlungen 1 1.1 Einmalige sichere Zahlungen 1 1.1.1 Budgetrestriktion

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzierung - Vorlesung 7 03.12.2013 - Prof. Dr. Rainer Elschen Prof. Dr. Rainer Elschen - 145 - 2.4 Bestimmung von Investitionsprogrammen Prof. Dr. Rainer Elschen - 146 - Investitionsprogrammentscheidung

Mehr

Risikoeinstellungen empirisch

Risikoeinstellungen empirisch Risikoeinstellungen empirisch Risk attitude and Investment Decisions across European Countries Are women more conservative investors than men? Oleg Badunenko, Nataliya Barasinska, Dorothea Schäfer http://www.diw.de/deutsch/soep/uebersicht_ueber_das_soep/27180.html#79569

Mehr

Ludwig-Maximilians-Universität Institut für Statistik. Statistische Herausforderungen sozialwissenschaftlicher Studien:

Ludwig-Maximilians-Universität Institut für Statistik. Statistische Herausforderungen sozialwissenschaftlicher Studien: Ludwig-Maximilians-Universität Institut für Statistik Statistische Herausforderungen sozialwissenschaftlicher Studien: Framing Effekt (Vorbereitungsmaterial) Khac Phuoc Le Betreuer: Prof. Dr. Thomas Augustin

Mehr

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit Grundzüge der Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit 1 BESCHREIBUNG VON RISIKO 2 Entscheidung unter Risiko Annahme: Wir kennen alle möglichen (sich gegenseitig ausschliessenden)

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Übungsaufgaben zu Kapitel 6: Finanzmärkte und Erwartungen

Übungsaufgaben zu Kapitel 6: Finanzmärkte und Erwartungen Kapitel 6 Übungsaufgaben zu Kapitel 6: Finanzmärkte und Erwartungen Übungsaufgabe 6-1a 6-1a) Welche Typen von Zinsstrukturkurven kennen Sie? Stellen Sie die Typen graphisch dar und erläutern Sie diese.

Mehr

Portfolioselection. Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen?

Portfolioselection. Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen? Portfolioselection Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen? Investieren in Aktien ist riskant Risiko einer Aktie kann in 2 Teile zerlegt werden: o Unsystematisches Risiko

Mehr

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie

Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Thema Nr. 4: Versicherungsentscheidungen der Nachfrager aus Sicht der Erwartungsnutzentheorie Seminararbeit eingereicht bei Prof. Dr. Klaus Peter Kaas Lehrstuhl für Marketing I, Fachbereich Wirtschaftswissenschaften

Mehr

Vorlesung 1: Einleitung

Vorlesung 1: Einleitung Vorlesung 1: Einleitung Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 1, FS 12 Einleitung 1/17 1.1 Motivation In der Vorlesung Intermediate Microecoomics haben

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Betriebswirtschaft 1. 1. Entscheidungstheorie

Betriebswirtschaft 1. 1. Entscheidungstheorie Betriebswirtschaft 1 Betriebswirtschaft 1 1. Entscheidungstheorie Lars Schmidt-Thieme Wirtschaftsinformatik und Maschinelles Lernen (ISMLL) Institut für Betriebswirtschaft und Wirtschaftsinformatik & Institut

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Vorlesung. Informationsökonomik und die Theorie der Firma

Vorlesung. Informationsökonomik und die Theorie der Firma Vorlesung Informationsökonomik und die Theorie der Firma Ulrich Schwalbe Universität Hohenheim 5. Vorlesung 28.11.2007 Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 5. Vorlesung 28.11.2007

Mehr

Carl Friedrich Gethmann. Die rationale Rekonstruktion von Risiken bei Schadenszenarien mit großem Schadensausmaß ( Katastrophen )

Carl Friedrich Gethmann. Die rationale Rekonstruktion von Risiken bei Schadenszenarien mit großem Schadensausmaß ( Katastrophen ) Carl Friedrich Gethmann Die rationale Rekonstruktion von Risiken bei Schadenszenarien mit großem Schadensausmaß ( Katastrophen ) 1 Gefahrenwahrnehmung und Risikobeurteilung 2 Risikovergleiche und pragmatische

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Übung zur Vorlesung Multiagentensysteme

Übung zur Vorlesung Multiagentensysteme Ludwig-Maximilians-Universität München SS 2007 Institut für Informatik Aufgabenblatt 1 Dr. Brandt / Fischer & Harrenstein 23. April 2007 Übung zur Vorlesung Multiagentensysteme Tutorübung: 25. April 2007

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, WS 2009/2010 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X)

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X) Ich habe eine Frage zur Tschebyschew Ungleichung. In der Aufgabe 4 des Übungsblattes 3 benötigt man ja die Ungleichung. In diesem Falle war der Bereich (0, 20) symmetrisch um den Erwartungswert µ = 5.

Mehr

ETWR TEIL B ÜBUNGSBLATT 1 WS14/15

ETWR TEIL B ÜBUNGSBLATT 1 WS14/15 ETWR TEIL B ÜBUNGSBLATT 1 WS14/15 OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG F A K U L T Ä T F Ü R W I R T S C H A F T S W I S S E N S C H A FT LEHRSTUHL FÜR EMPIRISCHE WIRTSCHAFTSFORSCHUNG & GESUNDHEITSÖKONOMIE,

Mehr

Kapitel 4 Nutzenmaximierung

Kapitel 4 Nutzenmaximierung Kapitel 4 Nutzenmaximierung Vor- und Nachbereitung: Varian, Chapters 4 und 5 (mit Appendix) Frank, Chapter 3 (mit Appendix) Übungsblatt 4 Klaus M. Schmidt, 008 4.1 Die Nutzenfunktion Indifferenzkurven

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Übungsaufgaben zur Vorlesung Risikotransformationstheorie

Übungsaufgaben zur Vorlesung Risikotransformationstheorie Übungsaufgaben zur Vorlesung Risikotransformationstheorie 2 Unsicherheit 2.1 Stochastische Größen (1) Berechnen Sie Erwartungswert und Varianz für folgende Zufallsvariable: X = 0 100 400 04, 05, 01,! (2)

Mehr

Value Based Management

Value Based Management Value Based Management Vorlesung 2 Shareholder-Bewertung von Cashflows PD. Dr. Louis Velthuis 4.11.2005 Wirtschaftswissenschaften PD. Dr. Louis Velthuis Seite 1 1 Einführung Value Based Management beinhaltet

Mehr

2. Gesundheitsfinanzierung

2. Gesundheitsfinanzierung 2. Gesundheitsfinanzierung Inhalte dieses Abschnitts 2.1 Grundmodell der Versicherung Versicherungsmotiv Optimale Versicherungsnachfrage Aktuarisch faire und unfaire Prämien 145 2.1 Grundmodell der Versicherung

Mehr

Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus

Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus Sofie Waltl I. Homo oeconomicus In der neoklassischen Sichtweise der Volkswirtschaft basieren viele Modelle auf der Annahme, dass Menschen

Mehr

Die Psychologie der Entscheidung

Die Psychologie der Entscheidung Prof. Dr. phil. Helmut Jungermann ist Professor für Psychologie an der Technischen Universität Berlin mit den Schwerpunkten Entscheidungsforschung und Risikoforschung. Er ist Mitglied in zahlreichen Fachgesellschaften,

Mehr

8. Öentlich bereitgestellte private Güter

8. Öentlich bereitgestellte private Güter 8. Öentlich bereitgestellte private Güter Staatliche Bereitstellung privater Güter, z.b. medizinische Versorgung oder Schulwesen: i.d.r. weitgehend aus Steuermitteln statt Gebühren nanziert Verbrauch rationiert.

Mehr

4 ZU V5"4. Er wart ungsnut zenhyp ot hese. Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen

4 ZU V54. Er wart ungsnut zenhyp ot hese. Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen 4 ZU V5"4 Er wart ungsnut zenhyp ot hese Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen Vorwort 15 1.1 Zufall und die Erwartungsnutzentheorie 16 1.2 Inhalt und Fortgang

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Effizienzgründe für die Existenz einer Sozialversicherung

Effizienzgründe für die Existenz einer Sozialversicherung Soziale Sicherung A.3.1 Effizienzgründe für die Existenz einer Sozialversicherung Erster Hauptsatz der Wohlfahrtsökonomik: In einer Ökonomie mit rein privaten Gütern und einer perfekten Eigentumsordnung

Mehr

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2.

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2. Fibonacci-Zahlen als Beispiel Für f = (f n ) = (0,,, 2, 3, 5, 8, 3, 2, 34,...) gilt Rekursion erzeugende Funktion f n2 = f n f n (n 0), f 0 = 0, f = f(z) = f n z n = z z z 2 Partialbruchzerlegung mit φ

Mehr

AUTOMATISIERTE HANDELSSYSTEME

AUTOMATISIERTE HANDELSSYSTEME UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie

Mehr

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@fh-koeln.de Übungen zur Vorlesung Wirtschaftsstatistik Wiederholungsaufgaben für die Klausur

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Grundlagen. Entscheidung unter Risiko. Entscheidungstheoretische Grundlagen. Risiko oder Unsicherheit? Risiko: Fairer Würfel W, Entscheidung zwischen

Grundlagen. Entscheidung unter Risiko. Entscheidungstheoretische Grundlagen. Risiko oder Unsicherheit? Risiko: Fairer Würfel W, Entscheidung zwischen Entscheidung unter Risiko Entscheidungstheoretische Grundlagen Ein Entscheider, seine Entscheidung betrifft nur ihn selbst, aber es gibt Risiko: Risikopräferenzen: Ein Eckpfeiler des Verhaltens (neben

Mehr

Grundlagen der Volkswirtschaftslehre Übungsblatt 11

Grundlagen der Volkswirtschaftslehre Übungsblatt 11 Grundlagen der Volkswirtschaftslehre Übungsblatt 11 Robert Poppe robert.poppe@uni-mannheim.de Universität Mannheim 25. November 2010 Überblick 1 Produktion und Wachstum 2 Kreditmarkt 3 Risikoeinstellung

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

Fragen und Aufgaben zu Kapitel I1

Fragen und Aufgaben zu Kapitel I1 1 Fragen und Aufgaben zu Kapitel I1 1. Nennen Sie zu den genannten Begründungen, warum sich Banken so verhalten, als ob sie risikoscheu seien, einige Gegenargumente. Eigeninteresse der Bankmanager Gegenargumente:

Mehr

IK Ökonomische Entscheidungen & Märkte

IK Ökonomische Entscheidungen & Märkte LVA-Leiter: Martin Halla Einheit 4: Das Verbraucherverhalten (Kapitel 3) Einheit 4-1 - Verbraucherverhalten Budgetbeschränkung: Man kann nicht alles haben, was man sich wünscht! Konsumentenpräferenzen:

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient. Die Riskoprämie ergibt sich also als ein Vielfaches der Varianz der zugrundeliegenden Unsicherheit Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Mehr

(Lineare) stochastische Optimierung

(Lineare) stochastische Optimierung (Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:

Mehr

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann,

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Carlheinrich Heiland WS 00/01 ABWL- Übungsaufgaben zum Abschnitt I Grundlagen und zum Abschnitt II Entscheidungstheorie Seite 1 von 14

Carlheinrich Heiland WS 00/01 ABWL- Übungsaufgaben zum Abschnitt I Grundlagen und zum Abschnitt II Entscheidungstheorie Seite 1 von 14 Seite 1 von 14 I./2. [1] Rationalprinzip a) Welche Handlungsweisen gibt das allgemeine Rationalprinzip vor übertragen auf wirtschaftliche Entscheidungen für die Fälle (1) der output ist fest vorgegeben;

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Übungsblatt 5. Für die Abgabe dieses Übungsblattes müssen auch die Nebenrechnungen durchgeführt werden. Sonst wird dieses Übungsblatt nicht gewertet.

Übungsblatt 5. Für die Abgabe dieses Übungsblattes müssen auch die Nebenrechnungen durchgeführt werden. Sonst wird dieses Übungsblatt nicht gewertet. Übungsblatt 5 Für die Abgabe dieses Übungsblattes müssen auch die Nebenrechnungen durchgeführt werden. Sonst wird dieses Übungsblatt nicht gewertet. 1. Ein Unternehmen ist A. ein Betrieb, der nach dem

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Übersicht. 1 Unsicherheit und Klimawandel. 2 Umgang mit Unsicherheit in IAMs. 3 Strukturelle Unsicherheit: Weitzmans Dismal Theorem

Übersicht. 1 Unsicherheit und Klimawandel. 2 Umgang mit Unsicherheit in IAMs. 3 Strukturelle Unsicherheit: Weitzmans Dismal Theorem Vorlesung 8: Bewertung III 1/15 Übersicht 1 Unsicherheit und Klimawandel 2 Umgang mit Unsicherheit in IAMs 3 Strukturelle Unsicherheit: Weitzmans Dismal Theorem Vorlesung 8: Bewertung III 2/15 Unsicherheit

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Asachenputtel Datenqualität? Ups der erste Fehler...

Asachenputtel Datenqualität? Ups der erste Fehler... Asachenputtel Datenqualität? Ups der erste Fehler... Deutsche Gesellschaft für Informations- und Datenqualität e.v. Dipl. Kfm. Michael Mielke Präsident wie war das nochmal... Armes Mädchen Mutter gestorben

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Internationale Finanzierung 6. Bewertung von Aktien

Internationale Finanzierung 6. Bewertung von Aktien Übersicht Kapitel 6: 6.1. Einführung 6.2. Aktienbewertung mittels Kennzahlen aus Rechnungswesen 6.3. Aktienbewertung unter Berücksichtigung der Wachstumschancen 6.4. Aktienbewertung mittels Dividenden

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Kompaktskript zur Vorlesung Stochastische Risikoanalyse

Kompaktskript zur Vorlesung Stochastische Risikoanalyse Kompaktskript zur Vorlesung Stochastische Risikoanalyse Friedrich-Schiller-Universität Jena Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Wirtschafts- und Sozialstatistik Prof. Dr. P. Kischka Sommersemester

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator Überblick Grundlagen Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Klausur und Unterlagen

Klausur und Unterlagen Entscheidungstheorie Wintersemester 2004/2005 Christian Klein Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg Klausur und Unterlagen Klausur: ABWL, 60-minütig, erlaubte

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Makroökonomie I Vorlesung 8. Die Phillipskurve (Kapitel8)

Makroökonomie I Vorlesung 8. Die Phillipskurve (Kapitel8) Leopold von Thadden Makroökonomie I Vorlesung 8 Wintersemester 2013/2014 Die Phillipskurve (Kapitel8) Diese Präsentation verwendet Lehrmaterialien von Pearson Studium 2009 Olivier Blanchard/Gerhard Illing:

Mehr