Vorlesung 1: Einleitung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung 1: Einleitung"

Transkript

1 Vorlesung 1: Einleitung Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 1, FS 12 Einleitung 1/17

2 1.1 Motivation In der Vorlesung Intermediate Microecoomics haben wir nur Entscheidungen bei Sicherheit betrachtet. In vielen Entscheidungssituationen hängt das Ergebnis aber nicht nur von der gewählten Aktion des Entscheidungsträgers, sondern auch von anderen Einflüssen ab, die aus Sicht des Entscheidungsträgers zufällig sind. Fragen: Wie können wir solche Unsicherheit beschreiben? Wie können wir Präferenzen über unsichere Ergebnisse (bzw. über Aktionen mit unsicheren Ergebnissen) beschreiben? Was bedeutet Rationalität in diesem Zusammenhang? Welche beobachtbaren Implikationen ergeben sich aus der Annahme des rationalen Verhaltens? Entscheidung VL 1, FS 12 Einleitung 2/17

3 1.2. Entscheidung unter Risiko In der Vorlesung werden wir eine bestimmte Form von Entscheidungen unter Unsicherheit modellieren, die zumeist als Entscheidung unter Risiko bezeichnet wird. Damit ist gemeint, dass ein Individuum zwar nicht mit Bestimmtheit wissen kann, welche Konsequenz die Wahl einer Aktion hat, dass aber eine Wahrscheinlichkeitsverteilung über die möglichen Konsequenzen einer Aktion als Teil der Beschreibung des Entscheidungsproblems gegeben ist. Mit anderen Worten: Es wird die Auswahl aus einer Menge von Wahrscheinlichkeitsverteilungen modelliert. An dieser Stelle werden wir einige hierzu erforderliche Grundbegriffe einführen. Entscheidung VL 1, FS 12 Einleitung 3/17

4 1.3 Lotterien Eine Lotterie wird durch zwei Objekte beschrieben: 1. Eine Menge von möglichen Ergebnissen oder Konsequenzen. 2. Eine Wahrscheinlichkeitsverteilung über die Menge der Ergebnisse. Entscheidung VL 1, FS 12 Einleitung 4/17

5 1.3 Lotterien Beispiel für eine Lotterie: Sie können entweder 60 Franken oder 20 Franken gewinnen. Diese Ergebnisse treten jeweils mit Wahrscheinlichkeit 0.5 ein. Grafische Darstellung durch einen Wahrscheinlichkeitsbaum: Jeder Endknoten stellt ein Ergebnis dar, welches entsprechend vermerkt ist. Die Wahrscheinlichkeit, mit der ein Ergebnis eintritt, ist an der Kante vermerkt, die zu dem jeweiligen Endknoten führt. Entscheidung VL 1, FS 12 Einleitung 5/17

6 1.3 Lotterien Beispiel für ein Entscheidungsproblem mit Lotterien: Sie haben die Wahl zwischen Lotterien A und B (d.h. Sie müssen sich für eine der beiden entscheiden). Welche wählen Sie? Entscheidung VL 1, FS 12 Einleitung 6/17

7 1.3 Lotterien Im Prinzip kann man sich die Menge der möglichen Ergebnisse sehr allgemein vorstellen Wir werden jedoch ausser in einigen Beispielen zunächst davon ausgehen, dass die Menge der möglichen Ergebnisse, die mit X bezeichnet wird, endlich viele Elemente enthält: X = {x 1,,x n }, Zumeist betrachten wir den Fall sogenannter monetärer Lotterien, bei dem x i R für alle i = 1,,n gilt und diese Ergebnisse als Geldbeträge interpretiert werden. Entscheidung VL 1, FS 12 Einleitung 7/17

8 1.3 Lotterien Sind die Ergebnisse durch X = {x 1, x n } gegeben, so kann die Wahrscheinlichkeitsverteilung über die Ergebnisse als p = (p 1,, p n ) mit 0 p i 1 und n i=1 p i = 1 geschrieben werden, wobei p i die Wahrscheinlichkeit ist, mit der das Ergebnis x i eintritt. Eine entsprechende Lotterie kann dann als L = (x 1, p 1 ; ;x n, p n ) geschrieben werden. Man bezeichnet eine solche Lotterie auch als einfache Lotterie. Ist aus dem Kontext klar, was die Menge der möglichen Ergebnisse ist, so schreibt man vereinfachend L = (p 1,, p n ). Entscheidung VL 1, FS 12 Einleitung 8/17

9 1.4 Der Erwartungswert einer monetären Lotterie Ein (aus historischer Sicht) natürlicher Ansatz zur Bewertung von monetären Lotterien, ist die Betrachtung des Erwartungswertes. Definition (Erwartungswert) Der Erwartungswert einer monetären Lotterie ist E[L] = n i=1 p i x i. Beachte, dass die Definition des Erwartungswertes voraussetzt, dass es sich bei den Ergebnisse um reelle Zahlen handelt deswegen betrachten wir hier nur monetäre Lotterien. Entscheidung VL 1, FS 12 Einleitung 9/17

10 1.4 Der Erwartungswert einer monetären Lotterie Die Berechnung der Erwartungswerte führt auf ein natürliches Entscheidungskriterium: Erwartungswertkriterium Entscheide Dich bei der Auswahl zwischen zwei Lotterien L und L für diejenige, mit dem grösseren Erwartungswert. Aus Sicht der modernen Entscheidungstheorie bezeichnet man ein Individuum, dessen Auswahlentscheidungen durch das Erwartungswertkriterium beschrieben werden, als risikoneutral. Das Problem ist, dass sich viele Individuen in den meisten Situationen offenkundig nicht risikoneutral verhalten. Hinzu kommt, dass das Erwartungswertkriterium nichts zur Beschreibung der Entscheidung bei Lotterien mit nicht-monetären Konsequenzen beitragen kann. Entscheidung VL 1, FS 12 Einleitung 10/17

11 1.4 Der Erwartungswert einer monetären Lotterie Beispiel für ein Entscheidungsproblem mit Lotterien: Welche der beiden Lotterien A und B würden Sie wählen? Ist Ihre Entscheidung mit dem Erwartungswertkriterium vereinbar? Entscheidung VL 1, FS 12 Einleitung 11/17

12 1.5 Bernoulli und das St. Petersburg-Paradoxon Daniel Bernoulli ( ) lehrte ab 1733 an der Universität Basel. veröffentlichte 1738 einen Aufsatz, in dem als erster eine Erwartungsnutzenbewertung von monetären Lotterien vorschlug. bis dahin wurde lediglich das Erwartungswertkriterium betrachtet. Entscheidung VL 1, FS 12 Einleitung 12/17

13 1.5 Bernoulli und das St. Petersburg-Paradoxon Das folgende Beispiel, welches Bernoulli betrachtete, wurde als das St. Petersburg-Paradoxon bekannt: Eine Münze wird so oft geworfen, bis sie auf Kopf landet. Landet sie beim ersten Wurf auf Kopf, erhält man zwei Franken... Landet sie beim zweiten Wurf auf Kopf, erhält man vier Franken... usw., d.h. landet sie beim i-ten Wurf auf Kopf erhält man 2 i Franken. Die dazugehörige Lotterie ist durch X = {x i R x i = 2 i mit i N} und p i = 1/2 i für i N gegeben. Beachte: Dieses ist keine einfache Lotterie. Entscheidung VL 1, FS 12 Einleitung 13/17

14 1.5 Bernoulli und das St. Petersburg-Paradoxon Der Erwartungwert der betrachteten Lotterie ist eine unendliche Summe: E[L] = i=1 p i x i = = =, so dass nach dem Erwartungswertkriterium diese Lotterie jedem sicheren Geldbetrag ganz gleich wie hoch er ist vorzuziehen wäre. Anders gesagt: das Erwartungswertkriterium impliziert, dass man jeden beliebigen Geldbetrag dafür zahlen sollte, an diesem Spiel teilzunehmen. Wieviel würden Sie zahlen? Entscheidung VL 1, FS 12 Einleitung 14/17

15 1.5 Bernoulli und das St. Petersburg-Paradoxon Bernoullis Lösungsvorschlag: Vergleiche monetäre Lotterien nicht an Hand ihres Erwartungswertes, sondern berechne von jedem Ergebnis zuerst den (natürlichen) Logarithmus: u i = ln(x i ), bilde dann den Erwartungswert der so transformierten Ergebnisse, U(L) = n i=1 p i u i = n i=1 und ersetze E[L] durch U(L) in dem Erwartungswertkriterium. p i ln(x i ), Entscheidung VL 1, FS 12 Einleitung 15/17

16 1.5 Bernoulli und das St. Petersburg-Paradoxon Anwendung von Bernoulli s Lösungsvorschlag auf die St.Petersburg-Lotterie ergibt: U(L) = i=1 = ln(2) 1 2 i ln(2i ) i i=1 2 i = ln(2) 2 = ln(4). Die Schlussfolgerung ist, dass die St. Petersburg-Lotterie genauso gut ist, wie den Geldbetrag 4 mit Sicherheit zu erhalten Anmerkungen: Die St. Petersburg-Lotterie ist ein Gedankenexperiment. Bernoullis Erwartungsnutzenbewertung erscheint genauso willkürlich wie das Erwartungswertkriterium. Entscheidung VL 1, FS 12 Einleitung 16/17

17 1.6 Weiteres Vorgehen In Analogie zum Fall der Entscheidung unter Unsicherheit werden wir Entscheidungen unter Risiko durch eine rationale Präferenzrelation auf der Menge der möglichen Lotterien modellieren... und dann weitere Annahmen an diese Präferenzrelationen einführen... sowie deren Konsequenzen für eine Nutzendarstellung untersuchen. Im Zentrum steht dabei die Modellierung von risikoaversen Verhalten sowie die Frage unter welchen Annahmen eine Präferenzrelation über Lotterien eine Erwartungsnutzendarstellung besitzt. Entscheidung VL 1, FS 12 Einleitung 17/17

Vorlesung 5: Probleme der Erwartungsnutzentheorie

Vorlesung 5: Probleme der Erwartungsnutzentheorie Vorlesung 5: Probleme der Erwartungsnutzentheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 5 (FS 11) Probleme der Erwartungsnutzentheorie 1 / 24 1. Einleitung

Mehr

Vorlesung 6: Alternativen zur Erwartungsnutzentheorie

Vorlesung 6: Alternativen zur Erwartungsnutzentheorie Vorlesung 6: Alternativen zur Erwartungsnutzentheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 1 / 21 1.

Mehr

Übung zur Vorlesung Multiagentensysteme

Übung zur Vorlesung Multiagentensysteme Ludwig-Maximilians-Universität München SS 2007 Institut für Informatik Aufgabenblatt 1 Dr. Brandt / Fischer & Harrenstein 23. April 2007 Übung zur Vorlesung Multiagentensysteme Tutorübung: 25. April 2007

Mehr

Kapitel 5: Entscheidung unter Unsicherheit

Kapitel 5: Entscheidung unter Unsicherheit Kapitel 5: Entscheidung unter Unsicherheit Hauptidee: Die Konsequenzen einer Entscheidung sind oft unsicher. Wenn jeder möglichen Konsequenz eine Wahrscheinlichkeit zugeordnet wird, dann kann eine rationale

Mehr

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Einleitung Ein Online-Algorithmus muss Ausgaben berechnen, ohne zukünftige Eingaben zu kennen. Für die Bewertung von

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Stefan Neuß Sebastian Soika http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_203/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Christoph Lex Dominik Lohmaier http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_04/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

4 ZU V5"4. Er wart ungsnut zenhyp ot hese. Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen

4 ZU V54. Er wart ungsnut zenhyp ot hese. Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen 4 ZU V5"4 Er wart ungsnut zenhyp ot hese Dogmenhistorische Ausgangslage, analytische Voraussetzungen und moderne Entwicklungen Vorwort 15 1.1 Zufall und die Erwartungsnutzentheorie 16 1.2 Inhalt und Fortgang

Mehr

12. Vorlesung. 19. Dezember 2006 Guido Schäfer

12. Vorlesung. 19. Dezember 2006 Guido Schäfer LETZTE ÄNDERUNG: 6. JANUAR 007 Vorlesung: Einführung in die Spieltheorie WS 006/007. Vorlesung 9. Dezember 006 Guido Schäfer 4 Bayesian Games Wir haben bisher immer angenommen, dass jeder Spieler vollständige

Mehr

3. Betriebswirtschaftliche Entscheidungslehre 3.1 Einleitung

3. Betriebswirtschaftliche Entscheidungslehre 3.1 Einleitung 3.1 Einleitung Auf Basis von Zielvorstellungen sollen die Konsequenzen von Handlungsalternativen ermittelt werden deskriptive Entscheidungstheorie: beschreibt, wie in der Realität Entscheidungen in konkreten

Mehr

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2

Mehr

Übung 2: Konsumententheorie

Übung 2: Konsumententheorie Übung 2: Konsumententheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Intermediate Microeconomics HS 11 Übung 2 1 / 44 2 / 44 Präferenzen Aufgabe 1 Worum geht es? Annahmen

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 28.05.2009 1 Korrektur zur letzten Vorlesung Bsp. Fehlerfortpflanzung in einer Messung c B a 2 2 E c Var c a b A b 2 2 2 n h( x)

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit Grundzüge der Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit 1 BESCHREIBUNG VON RISIKO 2 Entscheidung unter Risiko Annahme: Wir kennen alle möglichen (sich gegenseitig ausschliessenden)

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form)

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form) 1 KAP 9. Dynamische Spiele Bisher: alle Spieler ziehen simultan bzw. können Aktionen der Gegenspieler nicht beobachten Nun: Dynamische Spiele Spieler können nacheinander ziehen bzw. die Entscheidugen anderer

Mehr

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3 Übersicht Teil 2 Kaitel 7 und Kaitel 8: Gleichgewichte in gemischten Strategien Übersicht Teil 2 2 Übersicht Einleitung Was ist eine gemischte Strategie? Nutzen aus gemischten Strategien Reaktionsfunktionen

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen.

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Betrachtungen zu Sprache, Logik und Beweisen Sprache Wir gehen von unserem Alphabet einigen Zusatzsymbolen aus.

Mehr

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko 1 5.Unsicherheit Bisher sind wir von vollständiger Planungssicherheit seitens der Entscheidungsträger ausgegangen. Dies trifft in vielen Fällen natürlich nicht den Kern eines Entscheidungsproblems.Wennz.B.eineEntscheidungfürdenKaufvonAktiengetroffen

Mehr

Elemente der Stochastik (SoSe 2016) 10. Übungsblatt

Elemente der Stochastik (SoSe 2016) 10. Übungsblatt Dr. M. Weimar 3.06.206 Elemente der Stochastik (SoSe 206) 0. Übungsblatt Aufgabe (2+2+2+2+3= Punkte) Zur zweimaligen Drehung des nebenstehenden Glücksrads (mit angenommener Gleichverteilung bei jeder Drehung)

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

3. Betriebswirtschaftliche Entscheidungslehre 3.6 Entscheidung unter Risiko

3. Betriebswirtschaftliche Entscheidungslehre 3.6 Entscheidung unter Risiko Dominanzprinzipien : Absolute Dominanz: Eine Alternative A i dominiert eine Alternative A j absolut, wenn das geringstmögliche Ergebnis von A i nicht kleiner ist als das grösstmögliche Ergebnis von A j,

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

1 Mengen und Aussagen

1 Mengen und Aussagen $Id: mengen.tex,v 1.2 2010/10/25 13:57:01 hk Exp hk $ 1 Mengen und Aussagen Der wichtigste Grundbegriff der Mathematik ist der Begriff einer Menge, und wir wollen damit beginnen die klassische, 1878 von

Mehr

Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }.

Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }. 1 Grundlagen Entscheidungstheorie: Der Entscheidungsträger wählt aus einer Menge von Alternativen, dem Aktionenraum A = {a 1, a 2, a m }. Annahmen: Der Entscheidungsträger ist gezwungen, eine der betrachteten

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

13. Handeln unter Unsicherheit

13. Handeln unter Unsicherheit 13. Handeln unter Unsicherheit Inhalt: Einführung in utzentheorie Auswahl einzelner Aktionen Sequentielle Entscheidungsprobleme Markov Entscheidungsprozesse Value Iteration 1 S Grundlagen der utzentheorie

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

13. Handeln unter Unsicherheit

13. Handeln unter Unsicherheit 13. Handeln unter Unsicherheit Inhalt: Einführung in utzentheorie Auswahl einzelner Aktionen Sequentielle Entscheidungsprobleme Markov Entscheidungsprozesse Value Iteration (basierend auf Folien von Volker

Mehr

Die projektive Ebene Was sind unendlich ferne Punkte?

Die projektive Ebene Was sind unendlich ferne Punkte? Die projektive Ebene Was sind unendlich ferne Punkte? Prof. Dr. Hans-Georg Rück Fachbereich Mathematik/Informatik Universität Kassel Heinrich-Plett-Str. 40 34132 Kassel Zusammenfassung: Wir konstruieren

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 1 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 1: (Verzweigungsprozess) Die

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus

Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus Sofie Waltl I. Homo oeconomicus In der neoklassischen Sichtweise der Volkswirtschaft basieren viele Modelle auf der Annahme, dass Menschen

Mehr

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten.

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. 3. Laplaceexperimente. Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. Laplace-Münze: p(k) = p(z) = / Laplace-Würfel: p() =... = p(6) = / 6.

Mehr

Kapitel 2: Entscheidungstheorie

Kapitel 2: Entscheidungstheorie Kapitel 2: Entscheidungstheorie 2.1 Einleitung Wie schon im Modulararbeitsbuch angegeben, wollen wir im zweiten Kapitel die Problemgebiete behandeln, die sich auf folgende Situationen beziehen: 2.2 Entscheidungen

Mehr

Statische Spiele mit unvollständiger Information: Bayesianische-Spiele

Statische Spiele mit unvollständiger Information: Bayesianische-Spiele Statische Spiele mit unvollständiger Information: Bayesianische-Spiele In einigen Situationen verfügen Spieler (nur) über unvollständige Information. Möglicherweise kennen sie die relevanten Charakteristika

Mehr

Kapitel 4: Gemischte Strategien. Literatur: Tadelis Chapter 6

Kapitel 4: Gemischte Strategien. Literatur: Tadelis Chapter 6 Kapitel 4: Gemischte Strategien Literatur: Tadelis Chapter 6 Idee In vielen Spielen gibt es kein Nash Gleichgewicht in reinen Strategien (und auch kein Gleichgewicht in dominanten Strategien) Darüber hinaus

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen

Mehr

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir Kapitel 3: Entropie Motivation Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir log N Bits log p N Bits Die Information steht

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Berechnung von W für die Elementarereignisse einer Zufallsgröße

Berechnung von W für die Elementarereignisse einer Zufallsgröße R. Albers, M. Yanik Skript zur Vorlesung Stochastik (lementarmathematik) 5. Zufallsvariablen Bei Zufallsvariablen geht es darum, ein xperiment durchzuführen und dem entstandenen rgebnis eine Zahl zuzuordnen.

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme Universität Hamburg Fachbereich Mathematik Seminar: Proseminar Graphentheorie Dozentin: Haibo Ruan Sommersemester 2011 Ausarbeitung zum Modulabschluss Graphentheorie spannende Bäume, bewertete Graphen,

Mehr

Repetitionsaufgaben schriftliche Matur 2016 Teil 1

Repetitionsaufgaben schriftliche Matur 2016 Teil 1 Kantonsschule Solothurn Repetitionsaufgaben Matura 16 Teil 1 RYS Repetitionsaufgaben schriftliche Matur 2016 Teil 1 1. Gleichungen / Funktionen / Kurzaufgaben 1.1. a) x + 10 = 16 b) by + cy = mb + mc c)

Mehr

4. Die Laplacesche Gleichverteilung

4. Die Laplacesche Gleichverteilung Universität Basel Wirtschaftswissenschaftliches Zentrum Grundlagen der Stochastik Dr. Thomas Zehrt Inhalt: 1. Die Ereignismenge 2. Die Wahrscheinlichkeitsverteilung 3. Eigenschaften einer Wahrscheinlichkeitsverteilung

Mehr

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man x / M. Man sagt, M ist Teilmenge von N und schreibt M N, wenn für jedes x M auch x N gilt.

Mehr

2.3 Kriterien der Entscheidungsfindung: Präferenzen

2.3 Kriterien der Entscheidungsfindung: Präferenzen .3 Kriterien der Entscheidungsfindung: Präferenzen Der Einfachheit halber beschränken wir uns auf n = ( zwei Güter). Annahme: Konsumenten können für sich herausfinden, ob sie x = ( x, ) dem Güterbündel

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

Übung 4: Gleichgewicht und Effizienz

Übung 4: Gleichgewicht und Effizienz Übung 4: Gleichgewicht und Effizienz Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Mikroökonomie Übung 4 (FS 10) Gleichgewicht und Effizienz 1 / 25 Aufgabe 1 Worum geht es? Marktangebotsfunktion

Mehr

... sondern auch von den Entscheidungen anderer Akteure

... sondern auch von den Entscheidungen anderer Akteure 1 Was ist Spieltheorie? Spieltheorie untersucht Situationen, in denen ökonomische Akteure miteinander interagieren Das bedeutet: Die Konsequenzen einer Entscheidung für mich hängen nicht nur von meiner

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität.

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. Spieltheorie Sommersemester 2007 1 Wiederholte Spiele Grundlegende Konzepte Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. 2. Wichtige Phänomene sind

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Offene Fragen Warum ist ein ET bereit, für eine Feuerversicherung mit einer Versicherungshöhe von 1 Million und einer Jahreseintrittswahrscheinlichkeit

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

2. Gesundheitsfinanzierung

2. Gesundheitsfinanzierung 2. Gesundheitsfinanzierung Inhalte dieses Abschnitts 2.1 Grundmodell der Versicherung Versicherungsmotiv Optimale Versicherungsnachfrage Aktuarisch faire und unfaire Prämien 145 2.1 Grundmodell der Versicherung

Mehr

Das erste Mal Erkenntnistheorie

Das erste Mal Erkenntnistheorie Das erste Mal... Das erste Mal...... Erkenntnistheorie Systemische Therapie hat nicht nur theoretische Grundlagen, sie hat sich in der letzten Dekade auch in verschiedene Richtungen und Ansätze aufgesplittert

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

Übersicht Wahrscheinlichkeitsrechnung EF

Übersicht Wahrscheinlichkeitsrechnung EF Übersicht Wahrscheinlichkeitsrechnung EF. Grundbegriffe der Wahrscheinlichkeitsrechnung (eite ). Regeln zur Berechnung von Wahrscheinlichkeiten (eite ). Bedingte Wahrscheinlichkeit und Vierfeldertafel

Mehr

Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz 1 betragen (2) Weniger als 3 mal Wappen ( ) 32 (3) Mindestens 1 mal Wappen ( )

Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz 1 betragen (2) Weniger als 3 mal Wappen ( ) 32 (3) Mindestens 1 mal Wappen ( ) R. Brinkmann http://brinkmann-du.de Seite 7.09.0 Lösungen Stochastik vermischt II Ergebnisse: E E E E4 E E6 Ergebnis Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz betragen. Ergebnisse

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (1) 1 / 22 Gliederung 1 Unsicheres Wissen 2 Schließen

Mehr

1 Beschreibung der Grundlagen

1 Beschreibung der Grundlagen Westsächsische Hochschule Zwickau Fachgruppe Mathematik Grundlagen Inhaltsverzeichnis Aufgaben zu den Grundlagen findet man über den folgenden Link: Aufgaben zu den Grundlagen 01 1 Beschreibung der Grundlagen

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung In der linearen

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

Teil I: Konsumententheorie

Teil I: Konsumententheorie Teil I: Konsumententheorie 1 Kapitel 1: Präferenzen Hauptidee: Eine Konsumentscheidung kann als Wahl zwischen Güterbündeln modelliert werden, gemäß der Präferenzen des Konsumenten. Die Konzepte Indifferenzkurve,

Mehr

Klausur zur Vorlesung Spieltheorie

Klausur zur Vorlesung Spieltheorie Dr. Tone Arnold Sommersemester 2007 Klausur zur Vorlesung Spieltheorie Die Klausur besteht aus vier Vorfragen und drei Hauptfragen, von denen jeweils zwei zu bearbeiten sind. Sie haben für die Klausur

Mehr

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient. Die Riskoprämie ergibt sich also als ein Vielfaches der Varianz der zugrundeliegenden Unsicherheit Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Mehr

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion Kapitel 2 Erwartungswert 2.1 Erwartungswert einer Zufallsvariablen Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion È ist definiert als Ü ÜÈ Üµ Für spätere

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen BOS 12 NT 98 Seite 1 Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen Mathematik (nichttechnische Ausbildungsrichtungen) (Arbeitszeit für eine A- und eine S-Aufgabe insgesamt

Mehr

Satz von Borel-Cantelli. Limes inferior von Mengen. Limes superior von Mengen. Stetigkeit. Konvergenz von Zufallsvariablen. Kolmogorow-Ungleichung

Satz von Borel-Cantelli. Limes inferior von Mengen. Limes superior von Mengen. Stetigkeit. Konvergenz von Zufallsvariablen. Kolmogorow-Ungleichung Satz von Borel-Cantelli Limes inferior von Mengen Limes superior von Mengen Stetigkeit Konvergenz von Zufallsvariablen Kolmogorow-Ungleichung Tschebyschow-Ungleichung Konvergenzkriterien Starkes Gesetz

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Mengenlehre 1-E1. M-1, Lubov Vassilevskaya

Mengenlehre 1-E1. M-1, Lubov Vassilevskaya Mengenlehre 1-E1 M-1, Lubov Vassilevskaya Abb.: Schloss (Fragment), Fulda 1-E2 M-1, Lubov Vassilevskaya Abb.: Glöcken, Darstellung einer Menge Ohne es zu wissen begegnet jedes Kleinkind dem Prinzip der

Mehr

Kombinatorik von Zahlenfolgen

Kombinatorik von Zahlenfolgen 6. April 2006 Vorlesung in der Orientierungswoche 1 Kombinatorik von Zahlenfolgen Einige Beispiele Jeder kennt die Fragen aus Intelligenztests, in denen man Zahlenfolgen fortsetzen soll. Zum Beispiel könnten

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag studienbegleitende Klausur Finanzmathematik I Aufgabe (7 Punkte) Vorgelegt sei ein Wahrscheinlichkeitsraum (Ω, F, P) und

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

1. Einleitung: Markt und Preis

1. Einleitung: Markt und Preis 1. Einleitung: Markt und Preis Georg Nöldeke WWZ, Universität Basel Mikroökonomie (FS 10) Einleitung 1 / 31 1. Einleitung 1.1. Was ist Mikroökonomie? Ziel der Mikroökonomie ist es, menschliches Verhalten

Mehr

PHILOSOPHIE. Einführung in die Praktische Philosophie. Begleitbuch

PHILOSOPHIE. Einführung in die Praktische Philosophie. Begleitbuch PHILOSOPHIE Einführung in die Praktische Philosophie Begleitbuch Philosophie Urheberrecht: Dieses Begleitbuch ist zu Ihrem persönlichen und nicht kommerziellen Gebrauch bestimmt und urheberrechtlich geschützt.

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

K2 MATHEMATIK KLAUSUR 3

K2 MATHEMATIK KLAUSUR 3 K2 MATHEMATIK KLAUSUR 3 NACHTERMIN 2..23 Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max 3 5 5 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 3 4 5 3 4 4 3 Punkte WT Ana a b c Summe P. (max 8 4 3

Mehr

Der natürliche Logarithmus. logarithmus naturalis

Der natürliche Logarithmus. logarithmus naturalis Der natürliche Logarithmus ln logarithmus naturalis Zur Erinnerung: Die Exponentialfunktion y = exp(x) ist festgelegt durch 2 y = exp(x) y (x) = y(x) 0 x y(0) = 2 Zur Erinnerung: e := y() 2.78 exp(x) =

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr