Vorlesung 1: Einleitung

Größe: px
Ab Seite anzeigen:

Download "Vorlesung 1: Einleitung"

Transkript

1 Vorlesung 1: Einleitung Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 1, FS 12 Einleitung 1/17

2 1.1 Motivation In der Vorlesung Intermediate Microecoomics haben wir nur Entscheidungen bei Sicherheit betrachtet. In vielen Entscheidungssituationen hängt das Ergebnis aber nicht nur von der gewählten Aktion des Entscheidungsträgers, sondern auch von anderen Einflüssen ab, die aus Sicht des Entscheidungsträgers zufällig sind. Fragen: Wie können wir solche Unsicherheit beschreiben? Wie können wir Präferenzen über unsichere Ergebnisse (bzw. über Aktionen mit unsicheren Ergebnissen) beschreiben? Was bedeutet Rationalität in diesem Zusammenhang? Welche beobachtbaren Implikationen ergeben sich aus der Annahme des rationalen Verhaltens? Entscheidung VL 1, FS 12 Einleitung 2/17

3 1.2. Entscheidung unter Risiko In der Vorlesung werden wir eine bestimmte Form von Entscheidungen unter Unsicherheit modellieren, die zumeist als Entscheidung unter Risiko bezeichnet wird. Damit ist gemeint, dass ein Individuum zwar nicht mit Bestimmtheit wissen kann, welche Konsequenz die Wahl einer Aktion hat, dass aber eine Wahrscheinlichkeitsverteilung über die möglichen Konsequenzen einer Aktion als Teil der Beschreibung des Entscheidungsproblems gegeben ist. Mit anderen Worten: Es wird die Auswahl aus einer Menge von Wahrscheinlichkeitsverteilungen modelliert. An dieser Stelle werden wir einige hierzu erforderliche Grundbegriffe einführen. Entscheidung VL 1, FS 12 Einleitung 3/17

4 1.3 Lotterien Eine Lotterie wird durch zwei Objekte beschrieben: 1. Eine Menge von möglichen Ergebnissen oder Konsequenzen. 2. Eine Wahrscheinlichkeitsverteilung über die Menge der Ergebnisse. Entscheidung VL 1, FS 12 Einleitung 4/17

5 1.3 Lotterien Beispiel für eine Lotterie: Sie können entweder 60 Franken oder 20 Franken gewinnen. Diese Ergebnisse treten jeweils mit Wahrscheinlichkeit 0.5 ein. Grafische Darstellung durch einen Wahrscheinlichkeitsbaum: Jeder Endknoten stellt ein Ergebnis dar, welches entsprechend vermerkt ist. Die Wahrscheinlichkeit, mit der ein Ergebnis eintritt, ist an der Kante vermerkt, die zu dem jeweiligen Endknoten führt. Entscheidung VL 1, FS 12 Einleitung 5/17

6 1.3 Lotterien Beispiel für ein Entscheidungsproblem mit Lotterien: Sie haben die Wahl zwischen Lotterien A und B (d.h. Sie müssen sich für eine der beiden entscheiden). Welche wählen Sie? Entscheidung VL 1, FS 12 Einleitung 6/17

7 1.3 Lotterien Im Prinzip kann man sich die Menge der möglichen Ergebnisse sehr allgemein vorstellen Wir werden jedoch ausser in einigen Beispielen zunächst davon ausgehen, dass die Menge der möglichen Ergebnisse, die mit X bezeichnet wird, endlich viele Elemente enthält: X = {x 1,,x n }, Zumeist betrachten wir den Fall sogenannter monetärer Lotterien, bei dem x i R für alle i = 1,,n gilt und diese Ergebnisse als Geldbeträge interpretiert werden. Entscheidung VL 1, FS 12 Einleitung 7/17

8 1.3 Lotterien Sind die Ergebnisse durch X = {x 1, x n } gegeben, so kann die Wahrscheinlichkeitsverteilung über die Ergebnisse als p = (p 1,, p n ) mit 0 p i 1 und n i=1 p i = 1 geschrieben werden, wobei p i die Wahrscheinlichkeit ist, mit der das Ergebnis x i eintritt. Eine entsprechende Lotterie kann dann als L = (x 1, p 1 ; ;x n, p n ) geschrieben werden. Man bezeichnet eine solche Lotterie auch als einfache Lotterie. Ist aus dem Kontext klar, was die Menge der möglichen Ergebnisse ist, so schreibt man vereinfachend L = (p 1,, p n ). Entscheidung VL 1, FS 12 Einleitung 8/17

9 1.4 Der Erwartungswert einer monetären Lotterie Ein (aus historischer Sicht) natürlicher Ansatz zur Bewertung von monetären Lotterien, ist die Betrachtung des Erwartungswertes. Definition (Erwartungswert) Der Erwartungswert einer monetären Lotterie ist E[L] = n i=1 p i x i. Beachte, dass die Definition des Erwartungswertes voraussetzt, dass es sich bei den Ergebnisse um reelle Zahlen handelt deswegen betrachten wir hier nur monetäre Lotterien. Entscheidung VL 1, FS 12 Einleitung 9/17

10 1.4 Der Erwartungswert einer monetären Lotterie Die Berechnung der Erwartungswerte führt auf ein natürliches Entscheidungskriterium: Erwartungswertkriterium Entscheide Dich bei der Auswahl zwischen zwei Lotterien L und L für diejenige, mit dem grösseren Erwartungswert. Aus Sicht der modernen Entscheidungstheorie bezeichnet man ein Individuum, dessen Auswahlentscheidungen durch das Erwartungswertkriterium beschrieben werden, als risikoneutral. Das Problem ist, dass sich viele Individuen in den meisten Situationen offenkundig nicht risikoneutral verhalten. Hinzu kommt, dass das Erwartungswertkriterium nichts zur Beschreibung der Entscheidung bei Lotterien mit nicht-monetären Konsequenzen beitragen kann. Entscheidung VL 1, FS 12 Einleitung 10/17

11 1.4 Der Erwartungswert einer monetären Lotterie Beispiel für ein Entscheidungsproblem mit Lotterien: Welche der beiden Lotterien A und B würden Sie wählen? Ist Ihre Entscheidung mit dem Erwartungswertkriterium vereinbar? Entscheidung VL 1, FS 12 Einleitung 11/17

12 1.5 Bernoulli und das St. Petersburg-Paradoxon Daniel Bernoulli ( ) lehrte ab 1733 an der Universität Basel. veröffentlichte 1738 einen Aufsatz, in dem als erster eine Erwartungsnutzenbewertung von monetären Lotterien vorschlug. bis dahin wurde lediglich das Erwartungswertkriterium betrachtet. Entscheidung VL 1, FS 12 Einleitung 12/17

13 1.5 Bernoulli und das St. Petersburg-Paradoxon Das folgende Beispiel, welches Bernoulli betrachtete, wurde als das St. Petersburg-Paradoxon bekannt: Eine Münze wird so oft geworfen, bis sie auf Kopf landet. Landet sie beim ersten Wurf auf Kopf, erhält man zwei Franken... Landet sie beim zweiten Wurf auf Kopf, erhält man vier Franken... usw., d.h. landet sie beim i-ten Wurf auf Kopf erhält man 2 i Franken. Die dazugehörige Lotterie ist durch X = {x i R x i = 2 i mit i N} und p i = 1/2 i für i N gegeben. Beachte: Dieses ist keine einfache Lotterie. Entscheidung VL 1, FS 12 Einleitung 13/17

14 1.5 Bernoulli und das St. Petersburg-Paradoxon Der Erwartungwert der betrachteten Lotterie ist eine unendliche Summe: E[L] = i=1 p i x i = = =, so dass nach dem Erwartungswertkriterium diese Lotterie jedem sicheren Geldbetrag ganz gleich wie hoch er ist vorzuziehen wäre. Anders gesagt: das Erwartungswertkriterium impliziert, dass man jeden beliebigen Geldbetrag dafür zahlen sollte, an diesem Spiel teilzunehmen. Wieviel würden Sie zahlen? Entscheidung VL 1, FS 12 Einleitung 14/17

15 1.5 Bernoulli und das St. Petersburg-Paradoxon Bernoullis Lösungsvorschlag: Vergleiche monetäre Lotterien nicht an Hand ihres Erwartungswertes, sondern berechne von jedem Ergebnis zuerst den (natürlichen) Logarithmus: u i = ln(x i ), bilde dann den Erwartungswert der so transformierten Ergebnisse, U(L) = n i=1 p i u i = n i=1 und ersetze E[L] durch U(L) in dem Erwartungswertkriterium. p i ln(x i ), Entscheidung VL 1, FS 12 Einleitung 15/17

16 1.5 Bernoulli und das St. Petersburg-Paradoxon Anwendung von Bernoulli s Lösungsvorschlag auf die St.Petersburg-Lotterie ergibt: U(L) = i=1 = ln(2) 1 2 i ln(2i ) i i=1 2 i = ln(2) 2 = ln(4). Die Schlussfolgerung ist, dass die St. Petersburg-Lotterie genauso gut ist, wie den Geldbetrag 4 mit Sicherheit zu erhalten Anmerkungen: Die St. Petersburg-Lotterie ist ein Gedankenexperiment. Bernoullis Erwartungsnutzenbewertung erscheint genauso willkürlich wie das Erwartungswertkriterium. Entscheidung VL 1, FS 12 Einleitung 16/17

17 1.6 Weiteres Vorgehen In Analogie zum Fall der Entscheidung unter Unsicherheit werden wir Entscheidungen unter Risiko durch eine rationale Präferenzrelation auf der Menge der möglichen Lotterien modellieren... und dann weitere Annahmen an diese Präferenzrelationen einführen... sowie deren Konsequenzen für eine Nutzendarstellung untersuchen. Im Zentrum steht dabei die Modellierung von risikoaversen Verhalten sowie die Frage unter welchen Annahmen eine Präferenzrelation über Lotterien eine Erwartungsnutzendarstellung besitzt. Entscheidung VL 1, FS 12 Einleitung 17/17

Vorlesung 5: Probleme der Erwartungsnutzentheorie

Vorlesung 5: Probleme der Erwartungsnutzentheorie Vorlesung 5: Probleme der Erwartungsnutzentheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 5 (FS 11) Probleme der Erwartungsnutzentheorie 1 / 24 1. Einleitung

Mehr

Vorlesung 6: Alternativen zur Erwartungsnutzentheorie

Vorlesung 6: Alternativen zur Erwartungsnutzentheorie Vorlesung 6: Alternativen zur Erwartungsnutzentheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 1 / 21 1.

Mehr

Übung zur Vorlesung Multiagentensysteme

Übung zur Vorlesung Multiagentensysteme Ludwig-Maximilians-Universität München SS 2007 Institut für Informatik Aufgabenblatt 1 Dr. Brandt / Fischer & Harrenstein 23. April 2007 Übung zur Vorlesung Multiagentensysteme Tutorübung: 25. April 2007

Mehr

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus

Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Überblick: Entscheidungstheoretische Konzepte Seminar Online-Optimierung Diana Balbus Einleitung Ein Online-Algorithmus muss Ausgaben berechnen, ohne zukünftige Eingaben zu kennen. Für die Bewertung von

Mehr

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen

Übung zu Risiko und Versicherung Entscheidungstheoretische Grundlagen Übung zu Risiko Entscheidungstheoretische Grundlagen Christoph Lex Dominik Lohmaier http://www.inriver.bwl.lmu.de Newsletter Auf der Homepage unter http://www.inriver.bwl.uni-muenchen.de/studium/sommer_04/bachelorveranstaltungen/risiko_und_versicherungen/index.html

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 28.05.2009 1 Korrektur zur letzten Vorlesung Bsp. Fehlerfortpflanzung in einer Messung c B a 2 2 E c Var c a b A b 2 2 2 n h( x)

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

12. Vorlesung. 19. Dezember 2006 Guido Schäfer

12. Vorlesung. 19. Dezember 2006 Guido Schäfer LETZTE ÄNDERUNG: 6. JANUAR 007 Vorlesung: Einführung in die Spieltheorie WS 006/007. Vorlesung 9. Dezember 006 Guido Schäfer 4 Bayesian Games Wir haben bisher immer angenommen, dass jeder Spieler vollständige

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit

Grundzüge der. Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit Grundzüge der Kapitel 5 Mikroökonomie (Mikro I) Entscheidungen unter Unsicherheit 1 BESCHREIBUNG VON RISIKO 2 Entscheidung unter Risiko Annahme: Wir kennen alle möglichen (sich gegenseitig ausschliessenden)

Mehr

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen.

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Betrachtungen zu Sprache, Logik und Beweisen Sprache Wir gehen von unserem Alphabet einigen Zusatzsymbolen aus.

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form)

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form) 1 KAP 9. Dynamische Spiele Bisher: alle Spieler ziehen simultan bzw. können Aktionen der Gegenspieler nicht beobachten Nun: Dynamische Spiele Spieler können nacheinander ziehen bzw. die Entscheidugen anderer

Mehr

13. Handeln unter Unsicherheit

13. Handeln unter Unsicherheit 13. Handeln unter Unsicherheit Inhalt: Einführung in utzentheorie Auswahl einzelner Aktionen Sequentielle Entscheidungsprobleme Markov Entscheidungsprozesse Value Iteration 1 S Grundlagen der utzentheorie

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

13. Handeln unter Unsicherheit

13. Handeln unter Unsicherheit 13. Handeln unter Unsicherheit Inhalt: Einführung in utzentheorie Auswahl einzelner Aktionen Sequentielle Entscheidungsprobleme Markov Entscheidungsprozesse Value Iteration (basierend auf Folien von Volker

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus

Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus Wie rational sind wir eigentlich? Die Grenzen des Homo oeconomicus Sofie Waltl I. Homo oeconomicus In der neoklassischen Sichtweise der Volkswirtschaft basieren viele Modelle auf der Annahme, dass Menschen

Mehr

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko

5.Unsicherheit. 5.1WahrscheinlichkeitundRisiko 1 5.Unsicherheit Bisher sind wir von vollständiger Planungssicherheit seitens der Entscheidungsträger ausgegangen. Dies trifft in vielen Fällen natürlich nicht den Kern eines Entscheidungsproblems.Wennz.B.eineEntscheidungfürdenKaufvonAktiengetroffen

Mehr

1 Mengen und Aussagen

1 Mengen und Aussagen $Id: mengen.tex,v 1.2 2010/10/25 13:57:01 hk Exp hk $ 1 Mengen und Aussagen Der wichtigste Grundbegriff der Mathematik ist der Begriff einer Menge, und wir wollen damit beginnen die klassische, 1878 von

Mehr

Repetitionsaufgaben schriftliche Matur 2016 Teil 1

Repetitionsaufgaben schriftliche Matur 2016 Teil 1 Kantonsschule Solothurn Repetitionsaufgaben Matura 16 Teil 1 RYS Repetitionsaufgaben schriftliche Matur 2016 Teil 1 1. Gleichungen / Funktionen / Kurzaufgaben 1.1. a) x + 10 = 16 b) by + cy = mb + mc c)

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

4. Die Laplacesche Gleichverteilung

4. Die Laplacesche Gleichverteilung Universität Basel Wirtschaftswissenschaftliches Zentrum Grundlagen der Stochastik Dr. Thomas Zehrt Inhalt: 1. Die Ereignismenge 2. Die Wahrscheinlichkeitsverteilung 3. Eigenschaften einer Wahrscheinlichkeitsverteilung

Mehr

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man x / M. Man sagt, M ist Teilmenge von N und schreibt M N, wenn für jedes x M auch x N gilt.

Mehr

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme

Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme Universität Hamburg Fachbereich Mathematik Seminar: Proseminar Graphentheorie Dozentin: Haibo Ruan Sommersemester 2011 Ausarbeitung zum Modulabschluss Graphentheorie spannende Bäume, bewertete Graphen,

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

Elemente der Stochastik (SoSe 2016) 10. Übungsblatt

Elemente der Stochastik (SoSe 2016) 10. Übungsblatt Dr. M. Weimar 3.06.206 Elemente der Stochastik (SoSe 206) 0. Übungsblatt Aufgabe (2+2+2+2+3= Punkte) Zur zweimaligen Drehung des nebenstehenden Glücksrads (mit angenommener Gleichverteilung bei jeder Drehung)

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen

Mehr

Die projektive Ebene Was sind unendlich ferne Punkte?

Die projektive Ebene Was sind unendlich ferne Punkte? Die projektive Ebene Was sind unendlich ferne Punkte? Prof. Dr. Hans-Georg Rück Fachbereich Mathematik/Informatik Universität Kassel Heinrich-Plett-Str. 40 34132 Kassel Zusammenfassung: Wir konstruieren

Mehr

1 Beschreibung der Grundlagen

1 Beschreibung der Grundlagen Westsächsische Hochschule Zwickau Fachgruppe Mathematik Grundlagen Inhaltsverzeichnis Aufgaben zu den Grundlagen findet man über den folgenden Link: Aufgaben zu den Grundlagen 01 1 Beschreibung der Grundlagen

Mehr

Übung 4: Gleichgewicht und Effizienz

Übung 4: Gleichgewicht und Effizienz Übung 4: Gleichgewicht und Effizienz Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Mikroökonomie Übung 4 (FS 10) Gleichgewicht und Effizienz 1 / 25 Aufgabe 1 Worum geht es? Marktangebotsfunktion

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?

Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung? Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben

Mehr

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität.

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. Spieltheorie Sommersemester 2007 1 Wiederholte Spiele Grundlegende Konzepte Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. 2. Wichtige Phänomene sind

Mehr

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38

Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Prof. Dr. H. Rommelfanger: Entscheidungstheorie, Kapitel 3 38 Offene Fragen Warum ist ein ET bereit, für eine Feuerversicherung mit einer Versicherungshöhe von 1 Million und einer Jahreseintrittswahrscheinlichkeit

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 4

Stochastik und Statistik für Ingenieure Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl

Mehr

... sondern auch von den Entscheidungen anderer Akteure

... sondern auch von den Entscheidungen anderer Akteure 1 Was ist Spieltheorie? Spieltheorie untersucht Situationen, in denen ökonomische Akteure miteinander interagieren Das bedeutet: Die Konsequenzen einer Entscheidung für mich hängen nicht nur von meiner

Mehr

2. Gesundheitsfinanzierung

2. Gesundheitsfinanzierung 2. Gesundheitsfinanzierung Inhalte dieses Abschnitts 2.1 Grundmodell der Versicherung Versicherungsmotiv Optimale Versicherungsnachfrage Aktuarisch faire und unfaire Prämien 145 2.1 Grundmodell der Versicherung

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

Das erste Mal Erkenntnistheorie

Das erste Mal Erkenntnistheorie Das erste Mal... Das erste Mal...... Erkenntnistheorie Systemische Therapie hat nicht nur theoretische Grundlagen, sie hat sich in der letzten Dekade auch in verschiedene Richtungen und Ansätze aufgesplittert

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

1. Einleitung: Markt und Preis

1. Einleitung: Markt und Preis 1. Einleitung: Markt und Preis Georg Nöldeke WWZ, Universität Basel Mikroökonomie (FS 10) Einleitung 1 / 31 1. Einleitung 1.1. Was ist Mikroökonomie? Ziel der Mikroökonomie ist es, menschliches Verhalten

Mehr

Mengenlehre 1-E1. M-1, Lubov Vassilevskaya

Mengenlehre 1-E1. M-1, Lubov Vassilevskaya Mengenlehre 1-E1 M-1, Lubov Vassilevskaya Abb.: Schloss (Fragment), Fulda 1-E2 M-1, Lubov Vassilevskaya Abb.: Glöcken, Darstellung einer Menge Ohne es zu wissen begegnet jedes Kleinkind dem Prinzip der

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

n=1 a n mit reellen Zahlen a n einen

n=1 a n mit reellen Zahlen a n einen 4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben Einleitung Dieses sind die kompletten Präsenzaufgaben, die bei der Übung zur Vorlesung Einführung in die Stochastik im Sommersemester 2007 gerechnet wurden. Bei Rückfragen und Anmerkungen bitte an brune(at)upb.de

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen Spielen Nash-Gleichgewicht Beste-Ant

Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen Spielen Nash-Gleichgewicht Beste-Ant Abstrakte Analyse des Nash-Gleichgewichtes Seminar von Olga Schäfer Fachbereich Mathematik der Universität Siegen Siegen, 29. Juli 2009 Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient. Die Riskoprämie ergibt sich also als ein Vielfaches der Varianz der zugrundeliegenden Unsicherheit Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

Prüfungsteil 2, Aufgabe 8 Stochastik

Prüfungsteil 2, Aufgabe 8 Stochastik Prüfung Mathematik Nordrhein-Westfalen 2013 (LK) Aufgabe 7: (WTR) Abitur Mathematik: Prüfungsteil 2, Aufgabe 8 Nordrhein-Westfalen 2012 GK Aufgabe a (1) und (2) 1. SCHRITT: VERTEILUNG ANGEBEN Da die Anzahl

Mehr

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion

Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion Kapitel 2 Erwartungswert 2.1 Erwartungswert einer Zufallsvariablen Definition 2.1 Der Erwartungswert einer diskreten Zufallsvariablen mit Wahrscheinlichkeitsfunktion È ist definiert als Ü ÜÈ Üµ Für spätere

Mehr

Grundzüge der Investitions- und Finanzierungstheorie

Grundzüge der Investitions- und Finanzierungstheorie Grundzüge der Investitions- und Finanzierungstheorie Von Dr. Reinhard H.^chmidt 2., durchgesehene Auflage GABLER Inhaltsverzeichnis I. Teil Grundlagen 1. Kapitel Gegenstand, Betrachtungsweisen und Grundbegriffe

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen BOS 12 NT 98 Seite 1 Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen Mathematik (nichttechnische Ausbildungsrichtungen) (Arbeitszeit für eine A- und eine S-Aufgabe insgesamt

Mehr

Rubiks Cube Anleitung für alle Würfel mit ungerader Anzahl an Kantensteinen

Rubiks Cube Anleitung für alle Würfel mit ungerader Anzahl an Kantensteinen Einleitung Für den klassischen 3X3X3 Zauberwürfel gibt es einige Anleitungen im Netz. Sucht man jedoch Lösungen für größere Würfel (5X5X5 oder 7X7X7), so wird es entweder schnell sehr kompliziert, grundlegend

Mehr

Delegation oder Zentralisation von Entscheidungskompetenzen

Delegation oder Zentralisation von Entscheidungskompetenzen Reihe: Marketing, Handel und Management Band 3 Herausgegeben von Prof. Dr. Rainer Olbrich, Hagen Dr. habil. Dirk Battenfeld Delegation oder Zentralisation von Entscheidungskompetenzen Erkenntnisfortschritte

Mehr

Fachbuchreihe für Studium Fortbildung Praxis. Rehkugler/Schindel. Entscheidungstheorie. Erklärung und Gestaltung betrieblicher Entscheidungen

Fachbuchreihe für Studium Fortbildung Praxis. Rehkugler/Schindel. Entscheidungstheorie. Erklärung und Gestaltung betrieblicher Entscheidungen Fachbuchreihe für Studium Fortbildung Praxis Rehkugler/Schindel Erklärung und Gestaltung betrieblicher Entscheidungen 3. Auflage, München 1986 53 INHALT Seite EINFÜHRUNG 11 1. Was ist? 11 2. Wege entscheidungstheoretischer

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

Übung 4: Gleichgewicht und Effizienz in Wettbewerbsmärkten

Übung 4: Gleichgewicht und Effizienz in Wettbewerbsmärkten Übung 4: Gleichgewicht und Effizienz in Wettbewerbsmärkten Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Intermediate Microeconomics (HS 10) Übung 4 1 / 35 Marktnachfrage und aggregierte

Mehr

Entscheidungsanalyse

Entscheidungsanalyse Entscheidungsanalyse Klaus Rheinberger, Thomas Steinberger FH Vorarlberg, WINGB, 2016/17 1 Entscheidungsanalyse Strategien, Szenarien und Risiko 1.1 Entscheidungsbaum 1. Festlegung der Zielgröße: Was soll

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Kombinatorik von Zahlenfolgen

Kombinatorik von Zahlenfolgen 6. April 2006 Vorlesung in der Orientierungswoche 1 Kombinatorik von Zahlenfolgen Einige Beispiele Jeder kennt die Fragen aus Intelligenztests, in denen man Zahlenfolgen fortsetzen soll. Zum Beispiel könnten

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie Übersicht : Evolutionäre Spieltheorie Einleitung Evolutionäre Biologie Evolutionäre Spieltheorie: Idee Gefangenendilemma (Beispiel) Evolutionäre Stabilität Beispiele Wiederholtes Gefangenendilemma Chicken-Spiel

Mehr

K2 MATHEMATIK KLAUSUR 3

K2 MATHEMATIK KLAUSUR 3 K2 MATHEMATIK KLAUSUR 3 NACHTERMIN 2..23 Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max 3 5 5 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 3 4 5 3 4 4 3 Punkte WT Ana a b c Summe P. (max 8 4 3

Mehr

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Konvergenz einer Folge: Inhalt Drei Verhaltensmuster von Folgen. Beispiele 1 ) = 1 n, = n n +1, 2 ) = ( 1)n n +1 n und ihre graphischen Darstellungen.,

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung In der linearen

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Betriebswirtschaftliche Entscheidungstheorie und Anwendung

Betriebswirtschaftliche Entscheidungstheorie und Anwendung Betriebswirtschaftliche Entscheidungstheorie und Anwendung Kapitel 5: Entscheidungen unter Risiko Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Partielle Informationen in Währungskrisenmodellen

Partielle Informationen in Währungskrisenmodellen Christian Bauer Partielle Informationen in Währungskrisenmodellen Verlag Dr. Kovac Inhaltsverzeichnis Einleitung 1 I Entscheidungen und die Qualität von Informationen 7 1 Entscheidungstheoretische Einordnung

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

Summenformel für arithmetische Reihen. Summenformel für geometrische Reihen. Wie groß ist die Summe der Zahlen von 1 bis n?

Summenformel für arithmetische Reihen. Summenformel für geometrische Reihen. Wie groß ist die Summe der Zahlen von 1 bis n? Summenformel für arithmetische Reihen Wie groß ist die Summe der Zahlen von bis n? + + 3 + + (n ) + n n + (n ) + (n ) + + + + Idee: Reihe umkehren s n = n(n+) Diese Überlegung lässt sich auf beliebige

Mehr

Der natürliche Logarithmus. logarithmus naturalis

Der natürliche Logarithmus. logarithmus naturalis Der natürliche Logarithmus ln logarithmus naturalis Zur Erinnerung: Die Exponentialfunktion y = exp(x) ist festgelegt durch 2 y = exp(x) y (x) = y(x) 0 x y(0) = 2 Zur Erinnerung: e := y() 2.78 exp(x) =

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

Nutzenmessung. Geschichte, Paradoxien, Anomalien

Nutzenmessung. Geschichte, Paradoxien, Anomalien Nutzenmessung. Geschichte, Paradoxien, Anomalien Grundlagen von Entscheidungs- und Spieltheorie 1. Die Anfänge: Glücksspiele 2. Petersburger Paradox 3. Messung subjektiven Nutzens nach Neumann-Morgenstern

Mehr

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom Übungsaufgaben 8. Übung SS 16: Woche vom 30. 5. 3.6. 2016 Stochastik II: Klassische Wkt.-Berechnung; Unabhängigkeit Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr