Vergleich der Portfoliomodelle I Seminar Portfoliokreditrisiko

Größe: px
Ab Seite anzeigen:

Download "Vergleich der Portfoliomodelle I Seminar Portfoliokreditrisiko"

Transkript

1 Vergleich der Portfoliomodelle I Seminar Portfoliokreditrisiko Manuel Molitor

2 Agenda 1. WEF Kritik vs 4. in 5. in 6. 2

3 Eigenschaften Nur auf Ausfall-Ereignisse fokussiert Ausfälle sind Poisson-Verteilt Risikofaktoren Gamma-Verteilt Ausfallrisiko nicht an der Kapitalstruktur gebunden Annahme: Ausfallwahrscheinlichkeit in einer Periode gleich hoch für die selbe Periodendauer in der Zukunft Die Anzahl der Ausfälle in einer bestimmten Periode sind unabhängig zu einer anderen Periode 3

4 Eigenschaften Die bedingte Wahrscheinlichkeit p i (x) eines Ausfall des Schuldners i Einer Funktion von der jeweiligen Ratingklasse des Schuldners i Die Realisation der Risikofaktoren x Der Vektor der Faktorladungen K p ( x) = p ( x w ) i ς( i) k ik k = 1 Intuition: Die Risikofaktoren x dienen die unbedingte Wahrscheinlichkeit zu erhöhen/reduzieren 4

5 Wahrscheinlichkeitserzeugende Funktion (WEF) Ausfälle werden durch die WEF berechnet WEF dient zum Herleiten von Einzelwahrscheinlichkeiten und der Verteilungsfunktion Annahmen bei einer WEF F k (z): Wenn K 1 und K 2 unabhängige ZV sind, dann ist die WEF von den Summen K 1 +K 2 gleich dem Produkt zweier WEF Wenn F k (z x) mit einer Verteilungsfunktion H(x) für x F ( z) F ( z x) dh ( x) K = x K 5

6 Kritik zu Exposure konstant Keine Migrationsrisiken Verliert an Genauigkeit durch Exposure Bänder Poisson: E[x]=Var[x] nicht empirisch nachgewiesen Nur für geringe Ausfallwahrscheinlichkeiten 6

7 Agenda Eigenschaften CM2S Kritik Rating Agencies 3. vs 4. in 5. in 6. 7

8 Eigenschaften Misst Korrelation in Kreditqualität für alle Gruppen von Schuldnern Nicht direkt möglich Basiert auf gemeinsame Wahrscheinlichkeit von asset returns Nur equity returns (Vereinfachung der Kapitalstruktur) Kernstück: Latente ZV Monte Carlo Simulation recovery rate flexibel 8

9 Annahmen Kredit-Homogenität: Alle Schuldner Kredithomogen in der gleichen Ratingklasse Gleiche Migrationswahrscheinlichkeiten Gleiche Ausfallwahrscheinlichkeiten Equity Preis als Proxy Unterliegt der Normalverteilung 9

10 Eigenschaften Misst Ausfälle + Auf- und Abstufung zwischen den Ratingklassen Modellierung durch eine unbeobachtbare latente ZV y i, die verbunden mit Schuldner i ist yi = xwi + ηiεi w i : relative Sensitivität des Schuldners i zu den Risikofaktoren η i : relative Wichtigkeit des idiosynkratischen Risikos für den Schuldner 10

11 Eigenschaften Schuldner Ausfall, wenn: xw i + ηiεi < C ζ ( i) Die C ζ Werte so gesetzt, dass die unbedingte Ausfallwahrscheinlichkeit für gerateten ζ Schuldner entspricht p ζ p ζ wie bei definiert 11

12 CM2S Restriktive Version von Nur zwei Zustände Ausfall Nicht-Ausfall Verlust bei Ausfall ist fixiert Also keine speziellen Risiken in der Rückzahlung 12

13 Kritik zu Übergangswahrscheinlichkeiten basieren auf durchschnittliche historischen Frequenzen von Ausfällen und Kreditmigrationen Alle Firmen der gleichen Ratingklasse gleiches Ausfallrisiko Aktuelle Ausfallraten sind gleich der historischen Ausfallraten Kreditratingänderung = Kreditqualitätsänderung Kreditrating Ausfallraten 13

14 Rating Agenturen Ordinale Ranking Nur langsame Veränderung wg historischen Frequenzen überschätzt die wahre W. für das bleiben in der gleichen Ratingklasse Durchschnittliche historische PD überschätzt die PD für typischen Firmen in einer Ratingklasse Wenn die W. in der gleichen Klasse zu bleiben und die PD zu groß sind Übergangswahrscheinlichkeiten zu klein 14

15 Agenda vs Vergleich Vor- und Nachteile 4. in 5. in 6. 15

16 Vergleich Gemeinsamkeiten: Deterministische Zinsraten Deterministische Exposures Keine Marktrisiken Keine nicht-lineare Produkte 16

17 Flexibilität Vorteile Multi-State Modell mit Migrationsmatrizen spezielle Risiken bei recovery rate Nachteile Rechnerintensiv Kredit-Homogenität Historische Daten 17

18 Vorteile Sehr Computerfreundlich Output übersichtlich Analytisches Modell Nachteile Exposure konstant Exposure Bänder->Genauigkeit Keine Migrationsrisiken Poisson->E[x]=Var[x] ->keine empirsiche Evidenz Keine Analyse von Daten p A nicht sinnvoll geschätzt 18

19 Vergleich beider Modelle Asset-basiertes Modell Lineares Modell Monte Carlo Simulation Normalverteilung Kreditmigrationen Spezielle Risiken bei recovery rate Unbeobachtbare latente ZV Monte Carlo Simulation Ausfallbasierendes Modell Mischmodell Rein mathematischer Struktur Poisson-Verteilt Faktorladungen/Gewichtung Gammaverteilt Keine Migrationsberücksichtigung Fixe recovery rate Hilfsvariablen 19

20 Agenda vs 4. in Implementieren von in Exkurs: Taylor Entwicklung 5. in 6. 20

21 Implementieren von + Ziel: Credit Risk + implizite bedingte PD-fkt. p i (x) I ( z x) = exp(log(1 + p ( x)( z 1))) exp( p ( x)( z 1)) i i i : yi = xwi + ηiεi Schuldner fällt aus, wenn xw i + ηiεi < C ζ ( i) ε i ist standardnormal verteilt p ( x) = Φ(( C xw ) / η ) i ζ ( i) i i 21

22 Implementieren von + Annahme: Ausfall-Ereignisse unabhängig zw. Schuldern Bedingte WEF für Ausfälle I ( z x) = π I ( z x) π exp( p ( x)( z 1)) = exp( µ ( x)( z 1)) i i i Auch hier die Poisson-Approximation möglich i Durch Integration nach x: I ( z) = I( z x) ΦΩ( x) dx Alle Risikofaktoren werden durch die Dichte berücksichtigt 22

23 Exkurs: Taylor Entwicklung Taylor Entwicklung von f(x): 1 f x f x x x ( n) n ( ) = ( 0)( 0) n= 0 n! Allein mit Hilfe der Funktions- und Ableitungswerte an ein und derselben Stelle x 0 f(x) mit jeder gewünschten Genauigkeit berechnen 23

24 Implementieren von + Koeffizient vor z n ist: unbedingte Wahrscheinlichkeit für genau n Ausfälle im PF n n µ ( x) z I ( z) = exp( µ ( x)) ΦΩ( x) dx n! Wobei n= 0 1 n I ( z) = exp( µ ( x)) µ ( x) ΦΩ ( x) dx z n= 0 n! ( x) p ( x) µ i n Übliche WEF: I = ( z) p( ndefaults) z n n= 0 24

25 Agenda vs 4. in 5. in Implementieren von in Kleine Formunterschiede 6. 25

26 Implementieren von CR + in CM Hier CM2S für Vereinfachung Bestimmen die latente Variable für Schuldner i 1 K yi = xk wik εi k = 1 x k und w ik wie in gamma verteilt Die idiokratischen Risikofaktoren sind i.i.d., exponentiell mit 1 verteilt ε i 26

27 Implementieren von CR + in CM Schuldner fällt aus, wenn K Pr( yi < pζ ( i) x) = Pr εi < pζ ( i) xkwik x k = 1 Da Exponentialfunktion X Exp( λ) x P( X x) = 1 e λ Mit λ =1 K Pr( y < p x) = 1 exp p x w i ζ ( i) ζ ( i) k ik k = 1 27

28 Implementieren von CR + in CM K Pr( y < p x) = 1 exp p x w i ζ ( i) ζ ( i) k ik k = 1 Selbe Approximation: K ζ ( i) k ik = i k = 1 p x w p ( x) 1+ x e Unbedingte Ausfallwahrscheinlichkeit ist p wie benötigt log(1 + x) x x 1 K pζ ( i) = xk wik pi ( x) k = 1 28

29 Kleine Formunterschiede Übliche CM Modell: latente variable ist lineare Summe von normalen ZV Hier: multiplikative Form > gleiche Idee CM: Schwellenwerte: Funktion von p ζ Hier: p ζ >Prozess identisch 29

30 Agenda vs 4. in 5. in 6. Unterschiede Verteilungsannahmen und Funktionsformen Abschluß 30

31 Unterschiede zwischen den Modellen Verteilungsannahmen Funktionsformen Wesentliche Unwesentliche Lösungstechniken mathematische Sprache Methoden der Kalibriation 31

32 Verteilungsannahmen und Funktionsformen Beide Modelle: Wahl der Verteilung des systematischen Risikofaktors x Funktionsform der bedingten PD p i (x) die Form der gemeinsamen Verteilung über Schuldnerausfälle im Portfolio CM : NV und p ( x) = Φ(( C xw ) / η ) i ζ ( i) i i beeinflussen die Ergebnisse stark CR: Gammaverteilung und bedingte WEF kleine Abweichung von der Gamma Spezifikaten signifikanten Unterschied in der tail percentile Werten 32

33 CreditRisk CM Version Möglich: Monte Carlo Version von CreditRisk Vermeidet Poissonverteilung Vermeidet Verlust exposures Approximation Ermöglicht Rückzahlungsrisiken Verliert Computerfreundlichkeit Orthogonalität in CR auch möglich Mehr Vorsicht bei Identifizierung und Kalibrierung der Sektorrisiken 33

34 : Ausfall-basierend; Analytisch : Asset-basierend; Monte-Carlo Simulation Keine gravierende mathematische Unterschiede Deutliche Unterschiede durch Funktionsformen und Verteilungsannahmen 34

35 Literatur Gordy, M.B. (2000): A comparative anatomy of credit risk models, Journal of Banking and Finance, 24, Crouhy, M., Galai, D., Mark, R. (2000): Comparative analysis of current credit risk models, Journal of Banking and Finance, 24, Credit Suisse First Boston (CSFB) (1997): CreditRisk+: A credit risk management framework, Technical report, Credit Suisse First Boston. 35

36 Vielen Dank für eure Aufmerksamkeit! 36

CreditMetrics. Portfoliokreditrisiko Seminar. 10. Oktober Sebastian Sandner. Statistik Seminar bei PD Dr. Rafael Weißbach Universität Mannheim

CreditMetrics. Portfoliokreditrisiko Seminar. 10. Oktober Sebastian Sandner. Statistik Seminar bei PD Dr. Rafael Weißbach Universität Mannheim CreditMetrics Portfoliokreditrisiko Seminar 10. Oktober 2007 Sebastian Sandner Statistik Seminar bei PD Dr. Rafael Weißbach Universität Mannheim Gliederung Page 1. Einführung in Credit Metrics 4 2. Durchführung

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Einführung in das Kreditportfoliorisiko TEIL II. 12. September 2007 Verena Arendt

Einführung in das Kreditportfoliorisiko TEIL II. 12. September 2007 Verena Arendt Einführung in das Kreditportfoliorisiko TEIL II 12. September 2007 Verena Arendt 1 1. Einführung 2. Modelle 3. Parameter a. Expected Loss b. Unexpected Loss c. Loss Distribution 4. Basel II 5. Conclusion

Mehr

Seminar Quantitatives Risikomanagement

Seminar Quantitatives Risikomanagement Seminar Quantitatives Risikomanagement Kreditrisikomanagement II Fabian Wunderlich Mathematisches Institut der Universität zu Köln Sommersemester 2009 Betreuung: Prof. Schmidli, J. Eisenberg Contents 1

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen;

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen; Risikomaße basierend auf die Verlustverteilung Sei F L := F Ln+1 die Verteilung der Verlust L n+1. Die Parameter von F Ln+1 werden anhand von historischen Daten entweder direkt oder mit Hilfe der Risikofaktoren

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser 1 Agenda Rendite- und Risikoanalyse eines Portfolios Gesamtrendite Kovarianz Korrelationen

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 6. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Gaußdichte Gaußdichte der Normalverteilung: f ( x) = 1 2π σ x e 2 2 x ( x µ ) / 2σ x Gaußdichte der Standardnormalverteilung:

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Die n-dimensionale Normalverteilung

Die n-dimensionale Normalverteilung U. Mortensen Die n-dimensionale Normalverteilung Es wird zunächst die -dimensionale Normalverteilung betrachtet. Die zufälligen Veränderlichen X und Y seien normalverteilt. Gesucht ist die gemeinsame Verteilung

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

Serie: Bestimmung von Ausfallwahrscheinlichkeiten - Teil 3

Serie: Bestimmung von Ausfallwahrscheinlichkeiten - Teil 3 69 www.risknews.de 09.2002 Kreditrisiko Serie: Bestimmung von Ausfallwahrscheinlichkeiten - Teil 3 Stochastische Ausfallwahrscheinlichkeiten Credit Risk+ Ein Beitrag von Uwe Wehrspohn Eine zentrale Annahme

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Gefährliche Wechselwirkung von Markt- und Kreditrisiko: Beispiel Fremdwährungskredite

Gefährliche Wechselwirkung von Markt- und Kreditrisiko: Beispiel Fremdwährungskredite Gefährliche Wechselwirkung von Markt- und Kreditrisiko: Beispiel Fremdwährungskredite Thomas Breuer Martin Jandačka Klaus Rheinberger Martin Summer PPE Research Centre, FH Vorarlberg, Austria Oesterreichische

Mehr

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung

Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung M.Sc. Brice Hakwa hakwa@uni-wuppertal.de Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung - Zusammenfassung zum Thema: Berechnung von Value-at-Risk

Mehr

Statistik für Informatiker, SS Verteilungen mit Dichte

Statistik für Informatiker, SS Verteilungen mit Dichte 1/39 Statistik für Informatiker, SS 2017 1.1.6 Verteilungen mit Dichte Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo17/ 17.5.2017 Zufallsvariablen mit Dichten sind ein kontinuierliches

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Charakteristische Funktionen

Charakteristische Funktionen Kapitel 9 Charakteristische Funktionen Jeder Wahrscheinlichkeitsverteilung auf (, B 1 ) (allgemeiner: (R n, B n )) ist eine komplexwertige Funktion, ihre charakteristische Funktion, zugeordnet, durch die

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

7 Zufallszahlen, Simulation

7 Zufallszahlen, Simulation 7 Zufallszahlen, Simulation Es ist nützlich, Folgen von i.i.d. R[0, 1]-verteilten Zufallszahlen auf einem Rechner erzeugen zu können vgl. Simulation, Monte-Carlo-Verfahren). Letztere sind i.a. keine echten

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

Kategorielle Zielgrössen

Kategorielle Zielgrössen Kategorielle Zielgrössen 27.11.2017 Motivation Bisher gesehen: Regressionsmodelle für diverse Arten von Zielgrössen Y. kontinuierliche Zielgrösse Lineare Regression Binäre/binomiale Zielgrösse Logistische

Mehr

Statistik II. Regressionsanalyse. Statistik II

Statistik II. Regressionsanalyse. Statistik II Statistik II Regressionsanalyse Statistik II - 23.06.2006 1 Einfachregression Annahmen an die Störterme : 1. sind unabhängige Realisationen der Zufallsvariable, d.h. i.i.d. (unabh.-identisch verteilt)

Mehr

Modelle für Daten mit kontinuierlichen Wertebereich Verteilungen mit (Wahrscheinlichkeits-)Dichte. Normalverteilung N (µ, σ 2 ) mit Dichte

Modelle für Daten mit kontinuierlichen Wertebereich Verteilungen mit (Wahrscheinlichkeits-)Dichte. Normalverteilung N (µ, σ 2 ) mit Dichte Statistik II für Wirtschaftswissenschaftler Folie 6.1 Modelle für Daten mit kontinuierlichen Wertebereich Verteilungen mit (Wahrscheinlichkeits-)Dichte I) Werte in (, ), Parameter µ (, ), σ 2 > 0 Normalverteilung

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Beispiel 6 (Multivariate Normalverteilung)

Beispiel 6 (Multivariate Normalverteilung) Beispiel 6 (Multivariate Normalverteilung) Sei X N(µ,Σ). Es existiert eine Matrix A IR d k, sodass X d = µ+az wobei Z N k (0,I) und AA T = Σ. Weiters gilt Z = RS wobei S ein gleichmäßig verteilter Zufallsvektor

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten 2.1 Stochastische Unabhängigkeit von Ereignissen Gegeben sei ein W-Raum (Ω, C, P. Der Begriff der stochastischen Unabhängigkeit von

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 5: Markov-Chain-Monte-Carlo-Verfahren Randolf Altmeyer February 1, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 3: Lineares Modell, Klassifikation, PCA Randolf Altmeyer January 9, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

10 Transformation von Zufallsvariablen

10 Transformation von Zufallsvariablen 10 Transformation von Zufallsvariablen Sei X : Ω R eine Zufallsvariable mit Verteilungsfunktion F X (x) = P(X < x). Wir betrachten eine Funktion g: R R und sei Zufallsvariable Y : Ω R mit Y = g(x). Y :

Mehr

Zuverlässigkeitstheorie

Zuverlässigkeitstheorie 3. Grundbegriffe der Wahrscheinlichkeitsrechnung Prof. Jochen Seitz Fachgebiet Kommunikationsnetze 20. November 2008 Übersicht Gesetz der großen Zahlen von Bernoulli 1 Gesetz der großen Zahlen von Bernoulli

Mehr

Beziehungen zwischen Verteilungen

Beziehungen zwischen Verteilungen Kapitel 5 Beziehungen zwischen Verteilungen In diesem Kapitel wollen wir Beziehungen zwischen Verteilungen betrachten, die wir z.t. schon bei den einzelnen Verteilungen betrachtet haben. So wissen Sie

Mehr

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015

Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015 Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler

Mehr

Vorlesung 7: Value-at-Risk für Kreditrisiken

Vorlesung 7: Value-at-Risk für Kreditrisiken Vorlesung 7: Value-at-Risk für Kreditrisiken 17. April 2015 Dr. Patrick Wegmann Universität Basel WWZ, Department of Finance patrick.wegmann@unibas.ch www.wwz.unibas.ch/finance Die Verlustverteilung im

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I Model CreditRisk + : The Ecoomic Perspective of Portfolio Credit Risk Part I Semiar: Portfolio Credit Risk Istructor: Rafael Weißbach Speaker: Pablo Kimmig Ageda 1. Asatz ud Ziele Was ist CreditRisk +

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Spezielle Verteilungen

Spezielle Verteilungen Spezielle Verteilungen Prof. Sabine Attinger Jun. Prof. Anke Hildebrandt Beschreibende Statistik Lagemaße: 1. Mittelwert: µ = x = 1 n n i= 1 x i 3. Median=0.5 Perzentil Beschreibende Statistik Streumaße:

Mehr

Gesetze der großen Zahlen

Gesetze der großen Zahlen Kapitel 0 Gesetze der großen Zahlen 0. Einführung Im ersten Kapitel wurde auf eine Erfahrungstatsache im Umgang mit zufälligen Erscheinungen aufmerksam gemacht, die man gewöhnlich als empirisches Gesetz

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Ist Risiko messbar? oder Kann man eindeutig beurteilen, ob ein Anlageprodukt als Basisanlage geeignet ist?

Ist Risiko messbar? oder Kann man eindeutig beurteilen, ob ein Anlageprodukt als Basisanlage geeignet ist? Ist Risiko messbar? oder Kann man eindeutig beurteilen, ob ein Anlageprodukt als Basisanlage geeignet ist? Für alle Anlageprodukte / Wertpapiere gilt Risikofreier Zins 1% + Risikoprämien? + Management?

Mehr

Wechselkurse und Finanzmarkt-Indizes

Wechselkurse und Finanzmarkt-Indizes 8. Mai 2008 Inhaltsverzeichnis 1 Wechselkurse Einführung Wechselkurs US Dollar - Deutsche Mark Statistischer Prozess 2 Reinjektion Eigenschaften der Fluktuationen von x(τ) 3 Diffusion auf Finanzmärkten

Mehr

Risikomanagement in Banken Dominik Zeillinger, Oktober 2016

Risikomanagement in Banken Dominik Zeillinger, Oktober 2016 Risikomanagement in Banken Dominik Zeillinger, Oktober 2016 Aufbau von Kreditzinsen Gewinn/Weitere Kosten ZKB / Aufschlag / Spread Standardstück- Kosten Liquiditäts-Kosten Liquiditätsrisiko Kreditzins

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

1. Wahrscheinlichkeitsverteilungen und Versicherungsanwendungen 1.1 Wichtige diskrete Verteilungen a. Poisson-Verteilung.

1. Wahrscheinlichkeitsverteilungen und Versicherungsanwendungen 1.1 Wichtige diskrete Verteilungen a. Poisson-Verteilung. 1. Wahrscheinlichkeitsverteilungen und Versicherungsanwendungen 1.1 Wichtige diskrete Verteilungen a. Poisson-Verteilung. Sei N eine zufällige Variable, ist ein Poisson-Verteilung mit Parameter λ definiert

Mehr

Satz 61 (Chebyshev-Ungleichung)

Satz 61 (Chebyshev-Ungleichung) Die folgende Abschätzung ist nach Pavnuty Lvovich Chebyshev (1821 1894) benannt, der ebenfalls an der Staatl. Universität in St. Petersburg wirkte. Satz 61 (Chebyshev-Ungleichung) Sei X eine Zufallsvariable,

Mehr

Maximum-Likelihood Schätzung

Maximum-Likelihood Schätzung Maximum-Likelihood Schätzung VL Forschungsmethoden 1 Wiederholung Einführung: Schätzung 2 Likelihood-Schätzung und Generalisiertes Lineares Modell Zufallsverteilungen 3 Lernziele 1 Grundzüge der Likelihood-Schätzung

Mehr

Sprungprozesse in der Finanzmathematik

Sprungprozesse in der Finanzmathematik Sprungprozesse in der Finanzmathematik Stefan Kassberger Frankfurt School of Finance and Management Antrittsvorlesung am 22.3.2012 1. Empirische Beobachtungen 2. Jump-Prozesse und alternative Verteilungen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Skript Statistik. Gerhard Kuhn, rechnenmachtspass.de Version 3

Skript Statistik. Gerhard Kuhn, rechnenmachtspass.de Version 3 Skript Statistik Gerhard Kuhn, rechnenmachtspass.de Version 3 1 Deskriptive Statistik 1.1 Grundbegriffe [SR13] 1.1.1 Die wichtigsten Skalen 1) nominale Skala: Beispiel: Automarken 2) odinale Skala (Rangskala):

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Ü b u n g s b l a t t 12

Ü b u n g s b l a t t 12 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 5. 6. 007 Ü b u n g s b l a t t Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

Auswertung von Messungen Teil II

Auswertung von Messungen Teil II Auswertung von Messungen Teil II 1. Grundgesamtheit und Stichprobe. Modellverteilungen.1 Normalverteilung. Binominalverteilung.3 Poissonverteilung.4 Näherungen von Binominal- und Poissonverteilung 3. Zentraler

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

CreditMetrics. Portfoliokreditrisko Seminar. Korrelation und Asset Value Ansatz. 17. Oktober 2007 Robert Schilling

CreditMetrics. Portfoliokreditrisko Seminar. Korrelation und Asset Value Ansatz. 17. Oktober 2007 Robert Schilling Korrelation und Ansatz Portfoliokreditrisko Seminar 7. Oktober 007 Robert Schilling Seminarleitung: PD Dr. Rafael Weißbach Universität Mannheim Berechnung des Exposures Schätzung der Volatilität Schätzung

Mehr

Stochastik Praktikum Markov Chain Monte Carlo Methoden

Stochastik Praktikum Markov Chain Monte Carlo Methoden Stochastik Praktikum Markov Chain Monte Carlo Methoden Humboldt-Universität zu Berlin 14.10.2010 Problemstellung Wie kann eine Zufallsstichprobe am Computer simuliert werden, deren Verteilung aus einem

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Schadenversicherungsmathematik Statische Risikomodelle Exposure Pricing in der nicht-proportionalen Rückversicherung

Schadenversicherungsmathematik Statische Risikomodelle Exposure Pricing in der nicht-proportionalen Rückversicherung Schadenversicherungsmathematik Statische Risikomodelle Exposure Pricing in der nicht-proportionalen Rückversicherung Prof. Dr. Michael Fröhlich, DAV Aktuar Gliederung 1. Einleitung 2. Exposurekurven in

Mehr

Zufallszahlen in Testbetten und Simulationen

Zufallszahlen in Testbetten und Simulationen Zufall Wofür brauchen wir Zufallszahlen? Zufall Wofür brauchen wir Zufallszahlen? Simulation von Dingen, die wir nicht genau beschreiben wollen Zufall Wofür brauchen wir Zufallszahlen? Simulation von Dingen,

Mehr

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt

Simulation von Zufallszahlen. Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Simulation von Zufallszahlen Grundlage: zufällige Quelle von Zufallszahlen, durch einfachen rekursiven Algorithmus am Computer erzeugt Definition: Eine Folge von Pseudo-Zufallszahlen U i ist eine deterministische

Mehr

Einführung in die Informatik mit Java

Einführung in die Informatik mit Java Vorlesung vom 08.01.2008 Übersicht 1 Polygonzüge und Anfangswertprobleme 2 Das Diffusionsmodell nach Bass 3 Erweiterung des Modells 4 Ein Parameteranpassungsproblem Polygonzüge und Anfangswertprobleme

Mehr

Prüfung. Wahrscheinlichkeit und Statistik. ETH Zürich SS 2016 Prof. Dr. P. Embrechts August BSc INFK. Nachname. Vorname.

Prüfung. Wahrscheinlichkeit und Statistik. ETH Zürich SS 2016 Prof. Dr. P. Embrechts August BSc INFK. Nachname. Vorname. ETH Zürich SS 2016 Prof. Dr. P. Embrechts August 2016 Prüfung Wahrscheinlichkeit und Statistik BSc INFK Nachname Vorname Legi Nummer Das Folgende bitte nicht ausfüllen! Aufgabe Max. Punkte Summe Kontrolle

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

The ROC curve in screening with multiple markers: An application to the triple test in prenatal diagnostics

The ROC curve in screening with multiple markers: An application to the triple test in prenatal diagnostics Statistische Methoden in Evidenz-basierter Medizin und Health Technology Assessment 20. bis 21. November 2003 Freiburg The ROC curve in screening with multiple markers: An application to the triple test

Mehr

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β

Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : ) 1/γ. G γ,ν,β = 1 (1 + γ x ν β Die POT Methode (Peaks over Threshold) Definition 18 (Die verallgemeinerte Pareto Verteilung (GPD)) Die standard GPD G γ : G γ (x) = { 1 (1 + γx) 1/γ für γ 0 1 exp{ x} für γ = 0 wobei x D(γ) D(γ) = { 0

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Kapitel 4. Zensierte (censored) und gestutzte (truncated) abhängige Variablen, Sample Selection

Kapitel 4. Zensierte (censored) und gestutzte (truncated) abhängige Variablen, Sample Selection Kapitel 4 Zensierte (censored) und gestutzte (truncated) abhängige Variablen, Sample Selection In den vorhergehenden Abschnitten haben wir uns mit Fällen beschäftigt, in denen die abhängige Variable y

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Credit Risk I. Einführung in die Kreditrisikomodellierung. Georg Pfundstein Betreuer: Rupert Hughes-Brandl. 02. Juli 2010

Credit Risk I. Einführung in die Kreditrisikomodellierung. Georg Pfundstein Betreuer: Rupert Hughes-Brandl. 02. Juli 2010 Credit Risk I Einführung in die Kreditrisikomodellierung. Georg Pfundstein Betreuer: Rupert Hughes-Brandl 02. Juli 2010 Georg Pfundstein Credit Risk I 02. Juli 2010 1 / 40 Inhaltsverzeichnis 1 Grundlagen

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 1. Dezember 21 1 Integralrechnung Flächeninhalt Stammfunktion Rechenregeln 2 Dichten von Erwartungswert und Varianz

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr