Schadenversicherungsmathematik Statische Risikomodelle Exposure Pricing in der nicht-proportionalen Rückversicherung

Größe: px
Ab Seite anzeigen:

Download "Schadenversicherungsmathematik Statische Risikomodelle Exposure Pricing in der nicht-proportionalen Rückversicherung"

Transkript

1 Schadenversicherungsmathematik Statische Risikomodelle Exposure Pricing in der nicht-proportionalen Rückversicherung Prof. Dr. Michael Fröhlich, DAV Aktuar

2 Gliederung 1. Einleitung 2. Exposurekurven in der nicht-proportionalen Rückversicherung 3. Exposure Pricing in der Sachversicherung 4. Exposure Pricing in der Haftpflichtversicherung 5. Literatur 2 Exposure Pricing in der nicht-proportionalen Rückversicherung

3 1.Einleitung Risikoprofil und Aufteilung der Originalprämie zwischen Erst- und Rückversicherer Erstversicherer fragt beim Rückversicherer eine nicht-proportionale Deckung in Form eines Schadenexzedenten (XL Haftung in excess of Priorität (Haftung xs Priorität an. Pricing von pro Risiko XLs sollte Exposure bzw. Exponierung mit berücksichtigen. Exposure Pricing basiert auf sogenannten Risikoprofilen. Beispiel für ein Risikoprofil.xls Hauptproblem des Exposure Pricings: Faire Aufteilung der Originalprämie zwischen Erst- und Rückversicherer. Zuerst Eliminierung der Kosten und Marge des Erstversicherers aus der Originalprämie. Dann Aufteilung der Risikoprämie pro Versicherungssummenband mittels Exposurekurven. Unterscheidung zwischen Sachversicherung und Haftpflichtversicherung nötig PMLs (possible maximum loss und Policenlimits. 3 Exposure Pricing in der nicht-proportionalen Rückversicherung

4 2.Exposurekurven in der nicht-proportionalen Rückversicherung Heuristische Herleitung Erläuterung der oberen linken Abbildung: Anordnung der Schäden einer Periode gemäß Schadenhöhe. Treppenfunktion ist empirische Schadenverteilung. Horizontale Achse ist Schadengrad a, d.h.schaden in % der Versicherungssumme / des PMLs. Vertikale Achse ist Anzahl der Schäden mit Schadengrad kleiner gleich a. Erläuterung der oberen rechten Abbildung: Zeigt die zur empirischen Schadenverteilung zugehörige Exposurekurve bzw. Schadengradkurve. Horizontale Achse repräsentiert Priorität a in % der Versicherungssumme bzw. des PMLs. Vertikale Achse zeigt die Entlastung für den Gesamtschaden. 4 Exposure Pricing in der nicht-proportionalen Rückversicherung

5 2.Exposurekurven in der nicht-proportionalen Rückversicherung Heuristische Herleitung - Extremfall Im Extremfall eines Portefeuilles mit ausschließlich Total-Schäden sehen die empirische Schadenverteilung und die (proportionale Exposurekurve wie folgt aus: 5 Exposure Pricing in der nicht-proportionalen Rückversicherung

6 2.Exposurekurven in der nicht-proportionalen Rückversicherung Mathematische Herleitung Wir betrachten ein Risiko i eines Versicherungs-Portefeuilles von I Risiken und verwenden das kollektive Modell. Dann hat Risiko i in fester Periode (z.b. ein Jahr den Gesamtschaden S N i : = Xin mit Schadenanzahl Ni und stochastisch unabhängigen Schadenhöhen Xi1, Xi2,... mit Verteilungsfunktion Fi. n= 1 Der Gesamtschaden R des Portefeuilles für einen unlimitierten XL mit Priorität a > entspricht dann: N i I R = max ( Xin a,, und für den Preis des XLs folgt mit Xi für Xin: i= 1n= 1 I I I Ε( Ni Ε( max ( Xi a, i ( max i, ( i ( 1 i ( i Ε R = Ε N Ε X a = Ε S = r a Ε S Ε ( Ni Ε ( Xi i= 1 i= 1 i= 1 a ( 1 i F x dx Ε( min ( Xi, a mit r i ( a : = =. Hier geht die Gleichung X ( Xi i = min ( Xi, a + max ( Xi a, ein. Ε F x dx ( 1 i heißt Schadenentlastungskoeffizient des Risikos zur XL-Priorität a, und die Funktion ri a i a ri a Schadenentlastungskurve bzw. Exposurekurve. Problem in der Praxis : Bestimmung von Fi für jedes Risiko i unmöglich. heißt 6 Exposure Pricing in der nicht-proportionalen Rückversicherung

7 3.Exposure Pricing in der Sachversicherung Verteilung der Schadengrade In der Sachversicherung haben Risiken aus gleichen Risiko-Klassen dieselbe Verteilung G der X Schadengrade Y : i i =, wobei vi den PML vom Risiko i bezeichnet. Insbesondere ist G unabhängig von i für vi Risiken derselben Risiko-Klasse. Es folgt: und es ist G w ri a a min, ( min ( X i i, a Ε Y v Ε i r a = = = mit Ε( Xi Ε( Yi v i w ( 1 G y dy ( 1 r w : = für w 1 und r w : = 1 für w > 1, 1 G y dy Xi = P w die Verteilung der Schadengrade. v i Bemerkungen: r ist auf,1 streng monton wachsend und konkav. rgy,, i sind unabhängig von Inflation und Währungskursschwankungen. Die Rückversicherer haben mehrere Sachversicherungs-Exposurekurven. 7 Exposure Pricing in der nicht-proportionalen Rückversicherung

8 3.Exposure Pricing in der Sachversicherung Die verwendeten Exposurekurven und die Berechnung der XL-Prämie in der Praxis Die Berechnung der XL-Risikoprämie pro PML-Bandmitte mit zugehöriger Originalprämie für pro Risiko Sachversicherungs XL Haftung xs Priorität aus aktuellem PML -Risikoprofil mit Schadenquote SQ und einer geeignet gewählten Exposurekurve ergibt sich wie folgt: Der Faktor SQ Originalprämie wird multipliziert mit der Differenz Priorität+Haftung Priorität Exposurekurve - Exposurekurve PML-Band Mitte PML-Band Mitte Summe aller XL-Prämien pro PML-Band liefert gesamte XL-Risikoprämie. Problem: Policen mit "multi locations" im Risikoprofil. Bemerkung :In Sachversicherung brauchen Rückversicherer Risiko-Profil auf PML-Basis und nicht auf Versicherungssummenbasis. Am Beispiel aus der Praxis sieht es wie folgt aus: XL_Exposure_Pricing_Sach.xls 8 Exposure Pricing in der nicht-proportionalen Rückversicherung

9 4.Exposure Pricing in der Haftpflichtversicherung Increase Limit Factors und Riebesells Formel - In allgemeiner Haftpflichtversicherung gibt es keine PMLs, sondern Policenlimits. - Anstatt Exposurekurven werden Increased Limit Factors (ILF und Verdopplungsfaktore n verwendet "Zuschlagsquotierung". b v - ILF v ( v : =, wobei b( v die Risikoprämie zum Policenlimit v und b( v die Risikoprämie zum Basislimit v darstellen. b v - In den USA stellt das Insurance Services Office (ISO auf statistischen Daten basierende ILF-Tabellen zur Verfügung für verschiedene Haftpflichtversicherungssparten. Wenn man eine ILF-Tabelle gegeben hat und Policenlimit v verdoppelt wird, berechnet der Versicherer die zugehörige b( 2v b( v ILFv ( 2v ILF v v Risikoprämie zu b( 2v = b( v ( 1 + z( v mit Verdopplungsfaktor z( v : = =. b( v ILFv ( v In Deutschland und vielen anderen Ländern verwendet man keine ILFs, sondern einen konstanten Verdopplungsfaktor z Sei b : = b v die Risikoprämie zum Basispolicenlimit v > für ein Risiko mit Schadenhöhen-Zufallsgröße X. 2 k k Es gilt b 2v = b 1 + z und analog b 4v = b 1 + z und allgemein b 2 v = b 1 + z für k N bzw. b tv = b ( t log z t > v sfaktor z (,1 : für beliebiges. Es folgt für alle Policenlimits > und Verdopplung,1 : Riebesells Formel v log 1 b( v = b ( + z = b v ( + z 2 log2 1 v v. 9 Exposure Pricing in der nicht-proportionalen Rückversicherung

10 4.Exposure Pricing in der Haftpflichtversicherung Berechnung der Rückversicherungsprämie in der Praxis Wenn Riebesells Prämienfunktion b als kollektives Modell darstellbar wäre, erhielten wir für Policenlimit v und Schadenanzahl-Zufallsgröße N : v ( min, ( 1 F( x dx. Es folgt b' ( v Ε( N ( 1 F( v und lim b' ( v b v =Ε N Ε Xv =Ε N = = im Widerspruch zu Ε ( N v endlich. Mack und Fackler zeigen aber, daß man b in einem Intervall, u zu einer linearen Funktion modifizieren kann und b dann als kollektives Modell darstellbar ist. Falls nun ein Risiko mit Versicherungssumme vi und Priorität a mit < a vi rückversichert werden soll, erhalten wir mit Schadenhöhen-Zufallsgröße X : ri a ( min (, min ( Xv, ( Xv i b ( v i 2( + z Ε X a log 1 b a a : = = = Ε min, v i als Schadenentlastungsfunktion, und r i ist unabhängig von Inflation und Währungskursschwankungen. Die Berechnung der XL-Risikoprämie pro Policenlimitband vi mit zugehöriger Originalprämie aus aktuellem Policenlimit-Risikoprofil für einen pro Risiko Haftpflichtversicherungs XL Haftung xs Priorität ergibt sich mit Notation der Riebesell Formel und Schadenquote SQ wie folgt: Der Faktor SQ Originalprämie wird { {( ri ri ( ri }} multipliziert mit max, min Pr iorität+haftung - Priorität, 1 Priorität. Die Summe dieser XL-Prämien pro Policenlimitband liefert uns die gesamte XL-Risikoprämie. Dies sei erklärt am Beispiel: XL_Exposure_Pricing_Haftpflicht.xls 1 Exposure Pricing in der nicht-proportionalen Rückversicherung

11 5.Literatur Bernegger, S., The Swiss Re Exposure Curves, ASTIN Bulletin 27 (1997, Mack, T. Und Fackler, M., Exposure Rating in Liability Reinsurance, ASTIN Colloquium Berlin 23. Riebesell, P., Einführung in die Versicherungsmathematik, Berlin Exposure Pricing in der nicht-proportionalen Rückversicherung

Schadenversicherungsmathematik

Schadenversicherungsmathematik Schadenversicherungsmathematik Teil 4: Risikoteilung Dr. Ulrich Riegel Mathematisches Institut LudwigMaximiliansUniversität München Wintersemester 2015/16 Dr. Ulrich Riegel Schadenversicherungsmathematik

Mehr

E[X] = = 113. Nach den Gleichungen von Wald gilt für den Gesamtschaden S E[S] = E[N] E[X] = = 226

E[X] = = 113. Nach den Gleichungen von Wald gilt für den Gesamtschaden S E[S] = E[N] E[X] = = 226 Aufgabe 1 (Risikomodelle) Ein Versicherungsvertrag erzeugt pro Jahr N Schäden mit Schadenhöhen {X k } k N, wobei alle Zufallsvariablen stochastisch unabhängig sind. Die Schadenhöhen haben die Verteilung

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

Rückversicherung. Technik und Arten der Rückversicherung. Definition Rückversicherung. Wozu wird eine Rückversicherung gebraucht?

Rückversicherung. Technik und Arten der Rückversicherung. Definition Rückversicherung. Wozu wird eine Rückversicherung gebraucht? Technik und Arten der Definition Die Weitergabe von Risiken an andere Versicherer (Rückversicherer), soweit die Risiken ein im Wert normales Maß übersteigen. Definition ist die Versicherung der Versicherung

Mehr

Bericht zur Prüfung im Mai 2006 über Schadenversicherungsmathematik (Grundwissen)

Bericht zur Prüfung im Mai 2006 über Schadenversicherungsmathematik (Grundwissen) Bericht zur Prüfung im Mai 2006 über Schadenversicherungsmathematik (Grundwissen) Christian Hipp (Karlsruhe) und Martin Morlock (Giessen) Am 6. Mai 2006 fand in Köln die DAV-Prüfung zur Schadenversicherungsmathematik

Mehr

Quotierungsmethoden für nicht-proportionale Rückversicherungsverträge. Stefan Schmuttermair Pricing Actuary

Quotierungsmethoden für nicht-proportionale Rückversicherungsverträge. Stefan Schmuttermair Pricing Actuary Quotierungsmethoden für nicht-proportionale Rückversicherungsverträge Stefan Schmuttermair Pricing Actuary Berufspraxistage Universität Oldenburg Oldenburg, 16.05.2008 Berufspraxistage Uni Oldenburg LEBENSLAUF

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re. Traditionelle Rückversicherungskonzepte

Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re. Traditionelle Rückversicherungskonzepte Traditionelle Rückversicherungskonzepte der Lebensversicherung Dr. Karsten Kroll GeneralCologne Re 1 Traditionelle Rückversicherungskonzepte Inhalt Die GeneralCologne Re Das Versicherungsrisiko Risikomanagement

Mehr

Berücksichtigung des Inflationsrisikos im Bereich Nichtleben-Rückversicherung Martin Siegwart

Berücksichtigung des Inflationsrisikos im Bereich Nichtleben-Rückversicherung Martin Siegwart Berücksichtigung des Inflationsrisikos im Bereich Nichtleben-Rückversicherung 18. 11. 2010 Martin Siegwart Inhaltsverzeichnis 1. Externe Interne Inflation 2. Externe Inflationsbereinigung beim Erstversicherer

Mehr

Was ist ein Aktuar und was macht er in einem Versicherungsunternehmen? 0

Was ist ein Aktuar und was macht er in einem Versicherungsunternehmen? 0 Was ist ein Aktuar und was macht er in einem Versicherungsunternehmen? Dietmar Pfeifer Institut für Mathematik Was ist ein Aktuar und was macht er in einem Versicherungsunternehmen? 0 Aktuare sind wissenschaftlich

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Agenda. 1 Introduction. 2 Experience Pricing - BC methods and examples. 3 Exposure Pricing (Casualty and Property)

Agenda. 1 Introduction. 2 Experience Pricing - BC methods and examples. 3 Exposure Pricing (Casualty and Property) Reinsurance-Pricing DAA-Workshop für junge Mathematiker Tagungsstätte Loccum 27. und 28. September 2013 Prof. Dr. Michael Fröhlich 26. September 2013 DAA-Workshop für junge Mathematiker Tagungsstätte Loccum

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Methoden der Lebensversicherungsmathematik in der Reservierung von HUK-Schadenexzedenten

Methoden der Lebensversicherungsmathematik in der Reservierung von HUK-Schadenexzedenten Methoden der Lebensversicherungsmathematik in der Reservierung von HUK-Schadenexzedenten Festkolloquium 20 Jahre (neue) Versicherungsmathematik an der Technischen Universität Dresden Anja Schnaus, 21.

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Einführung in die linearen Funktionen. Autor: Benedikt Menne

Einführung in die linearen Funktionen. Autor: Benedikt Menne Einführung in die linearen Funktionen Autor: Benedikt Menne Inhaltsverzeichnis Vorwort... 3 Allgemeine Definition... 3 3 Bestimmung der Steigung einer linearen Funktion... 4 3. Bestimmung der Steigung

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

BERECHNUNG VON SCHWANKUNGSZUSCHLÄGEN IM PRICING VON RV-VERTRÄGEN

BERECHNUNG VON SCHWANKUNGSZUSCHLÄGEN IM PRICING VON RV-VERTRÄGEN BERECHNUNG VON SCHWANKUNGSZUSCHLÄGEN IM PRICING VON RV-VERTRÄGEN SAV-Prüfungskolloquium am 19.11.2009 Dr. Katja Lord Aktuar Corporate Underwriting / Corporate Pricing Agenda 1. Schwankungszuschlag als

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

8 Verteilungsfunktionen und Dichten

8 Verteilungsfunktionen und Dichten 8 Verteilungsfunktionen und Dichten 8.1 Satz und Definition (Dichten) Eine Funktion f : R R heißt Dichtefunktion, kurz Dichte, wenn sie (Riemann-) integrierbar ist mit f(t) 0 für alle t R und Setzt man

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem .0.0. Funktionen einer reellen Veränderlichen und ihre Darstellung im, - Koordinatensstem Vereinbarungen Wir betrachten vorerst nur noch Funktionen f, deren Definitionsund Wertebereich jeweils R oder ein

Mehr

Folgen und Reihen. Katharina Brazda 9. März 2007

Folgen und Reihen. Katharina Brazda 9. März 2007 Katharina Brazda 9. März 2007 Inhaltsverzeichnis 1 Folgen 2 1.1 Definition von Folgen - explizite und rekursive Darstellung.............. 2 1.2 Wachstumsverhalten von Folgen - Monotonie und Beschränktheit..........

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Schriftenreihe Finanz- und Risikomanagement. Band 16. Stefan Peter Giebel. Optimierung der passiven Risikobewältigung

Schriftenreihe Finanz- und Risikomanagement. Band 16. Stefan Peter Giebel. Optimierung der passiven Risikobewältigung Schriftenreihe Finanz- und Risikomanagement Band 16 Stefan Peter Giebel Optimierung der passiven Risikobewältigung Integration von Selbsttragen und Risikotransfer im Rahmen des industriellen Risikomanagements

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Musterlösung Lineare Algebra und Geometrie Herbstsemester 2015, Aufgabenblatt 6

Musterlösung Lineare Algebra und Geometrie Herbstsemester 2015, Aufgabenblatt 6 Musterlösung Lineare Algebra und Geometrie Herbstsemester 015, Aufgabenblatt 6 Aufgabenblatt 6 40 Punkte Aufgabe 1 (Bandornamente) Ordne die sechs Bandornamente rechts den sieben Klassen zu. Zu jeder Klasse

Mehr

Klausur zum Grundwissen Schadenversicherungsmathematik

Klausur zum Grundwissen Schadenversicherungsmathematik Klausur zum Grundwissen Schadenversicherungsmathematik Ch. Hipp, M. Morlock, H. Schmidli und K.D. Schmidt Mai 2012 in Köln Die Klausur besteht aus 8 Aufgaben und zwei Zusatzaufgaben. Eine oder zwei Zusatzaufgaben

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Priv.-Doz. Dr. P. C. Kunstmann Dipl.-Math. Sebastian Schwarz SS 6.4.6 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

7. Die Brownsche Bewegung

7. Die Brownsche Bewegung 7. DIE BROWNSCHE BEWEGUNG 7 5 5 50 00 50 200 250 0 5 20 Abbildung 7.: Pfad einer Brownschen Bewegung 7. Die Brownsche Bewegung Definition 7.. Ein cadlag stochastischer Prozess {W t } mit W 0 = 0, unabhängigen

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Einführung FEM, 1D - Beispiel

Einführung FEM, 1D - Beispiel Einführung FEM, D - Beispiel home/eichel/lehre/mhs/fem_intro/deckblatt.tex. p./6 Inhaltsverzeichnis D Beispiel - Finite Elemente Methode. D Aufbau Geometrie 2. Bilanzgleichungen 3. Herleitung der Finiten

Mehr

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren

2.2 Allgemeine (vergleichsbasierte) Sortierverfahren . Allgemeine (vergleichsbasierte) Sortierverfahren Vergleichsbaum: Der Aufbau des Verbleichsbaum ist für jeden Algorithmus und jede Eingabelänge n gleich. Jede Permutation der Eingabe, muss zu einem anderen

Mehr

Statistik eindimensionaler Größen

Statistik eindimensionaler Größen Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,

Mehr

Stop-LossPlus Eine innovative Versicherungslösung

Stop-LossPlus Eine innovative Versicherungslösung Stop-LossPlus Eine innovative Versicherungslösung Spitzenrisiken optimal abgesichert Typische Risikostruktur einer Vorsorgeeinrichtung 2 500 000 Risikosummen Invalidität in CHF 2 000 000 1 500 000 1 000

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag studienbegleitende Klausur Finanzmathematik I Aufgabe (7 Punkte) Vorgelegt sei ein Wahrscheinlichkeitsraum (Ω, F, P) und

Mehr

Verteilungsfunktion und Quantile

Verteilungsfunktion und Quantile Statistik 1 für SoziologInnen Verteilungsfunktion und Quantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit das Kumulieren inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient. Die Riskoprämie ergibt sich also als ein Vielfaches der Varianz der zugrundeliegenden Unsicherheit Dieses Vielfach hängt ab von der Form der Nutzenfunktion. Man bezeichnet dies auch als Arrow-Pratt Koeffizient.

Mehr

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,. 2 Folgen, Reihen, Grenzwerte 2.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die eindeutig den natürlichen Zahlen zugeordnet sind (n N; auch

Mehr

-Immer wenn man eine Ungleichung mit einer negativen Zahl multipliziert oder durch eine negative Zahl teilt

-Immer wenn man eine Ungleichung mit einer negativen Zahl multipliziert oder durch eine negative Zahl teilt A.26 Ungleichungen 1 A.26 Ungleichungen Die Ungleichheitszeichen: < kleiner. größer. >1 bedeutet,

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Der Algorithmus von Bresenham

Der Algorithmus von Bresenham Der Algorithmus von Bresenham Das Bresenham-Verfahren beruht im wesentlichen auf zwei grundsätzliche Beobachtungen: - Es reicht ein Verfahren aus um Geraden mit einer Steigung im Bereich von null bis eins

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer In diesem Vortrag werden die Eigenschaften von kompakten, metrischen Räumen vertieft. Unser Ziel ist es Techniken zu erlernen, um

Mehr

Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang :

Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : Seite 1 Algorithmen zur Erzeugung von Kaprekar- Konstanten Autor : Dipl.- Ing. Josef Meiler ; Datum : März 015 Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : a) man

Mehr

Verteilungsfunktion und dquantile

Verteilungsfunktion und dquantile Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal

Mehr

Klapptest Lineare Gleichungen I

Klapptest Lineare Gleichungen I Klapptest Lineare Gleichungen I (Lösungen als ganze Zahlen) 1. 6(x + 2)(x - 7) = x(6x + 6) - 48 1. x = -1 2. -7(x + 3)(x + 1) = x(-7x - 2) - 255 2. x = 9 3. 4(x - 7)(x + 7) = x(4x - 8) - 156 3. x = 5 4.

Mehr

Wahrscheinlichkeits - rechnung und Statistik

Wahrscheinlichkeits - rechnung und Statistik Michael Sachs Mathematik-Studienhilfen Wahrscheinlichkeits - rechnung und Statistik für Ingenieurstudenten an Fachhochschulen 4., aktualisierte Auflage 2.2 Eindimensionale Häufigkeitsverteilungen 19 absolute

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Das Bayes'sche Prinzip

Das Bayes'sche Prinzip Das Bayes'sche Prinzip Olivia Gradenwitz Patrik Kneubühler Seminar über Bayes Statistik FS8 26. Februar 28 1 Bayes'sches statistisches Modell 1.1 Statistische Probleme und statistische Modelle In diesem

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Lebensrückversicherung im Jahr Markus Gottwald

Lebensrückversicherung im Jahr Markus Gottwald Lebensrückversicherung im Jahr 2015 Markus Gottwald Rückversicherung 2015 1 Grundbegriffe der Rückversicherung 2 Proportionale Rückversicherung 3 Nichtproportionale Rückversicherung 4 Aktuelle Themen 2

Mehr

Mathematik III - Statistik für MT(Master)

Mathematik III - Statistik für MT(Master) 3. Regressionsanalyse Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiß Wintersemester 0/03 Mathematik III - Statistik für MTMaster 3. Empirische Regressionsgerade Optimalitätskriterium: Die Summe

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

Klassifikation und Analyse finanzwirtschaftlicher Zeitreihen mit Hilfe von fraktalen Brownschen Bewegungen

Klassifikation und Analyse finanzwirtschaftlicher Zeitreihen mit Hilfe von fraktalen Brownschen Bewegungen Michael Hafner Klassifikation und Analyse finanzwirtschaftlicher Zeitreihen mit Hilfe von fraktalen Brownschen Bewegungen PETER LANG Europäischer Verlag der Wissenschaften Inhaltsverzeichnis Abbildungsverzeichnis.-.

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Statistik Klausur Wintersemester 2012/2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik Klausur Wintersemester 2012/2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik 1 1. Klausur Wintersemester 2012/2013 Hamburg, 19.03.2013 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Kapitel 5 KONVERGENZ

Kapitel 5 KONVERGENZ Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Klassische Risikomodelle

Klassische Risikomodelle Klassische Risikomodelle Kathrin Sachernegg 15. Jänner 2008 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Begriffserklärung.................................. 3 2 Individuelles Risikomodell 3 2.1 Geschlossenes

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

Die neue Aktuarausbildung der DAV. Hintergründe und Auswirkungen

Die neue Aktuarausbildung der DAV. Hintergründe und Auswirkungen Die neue der DAV Hintergründe und Auswirkungen Gliederung Teil 1: Entwicklung des Aktuars und seiner Aufgaben Teil 2: Die neue Ausbildung der DAV Teil 3: Übergangsfragen Seite 2 Was ist ein Aktuar? Seite

Mehr

49 Mathematik für Biologen, Biotechnologen und Biochemiker

49 Mathematik für Biologen, Biotechnologen und Biochemiker 49 Mathematik für Biologen, Biotechnologen und Biochemiker 43 Momentane Wachstumsrate, Zuwachsrate pro Zeiteinheit und die Verdoppelungszeit Jede Exponentialfunktion f(t) = c exp(t) ist durch die beiden

Mehr

Bestimmen von Quantilen

Bestimmen von Quantilen Workshop im Rahmen der VIV-Begabtenförderung Bestimmen von Quantilen Wie Rückwärtsdenken in der Stochastik hilft Leitung: Tobias Wiernicki-Krips Samstag, 10. Januar 2015 1 / 29 Motivation Wie bestimmt

Mehr