Rational Choice Theory

Größe: px
Ab Seite anzeigen:

Download "Rational Choice Theory"

Transkript

1 Rational Choice Theory Rational Choice and Rationale Entscheidung ist eine Sammelbezeichnung für verschiedene Ansätze in den Wirtschafts- und Sozialwissenschaften. Generell schreiben diese Ansätze handelnden Subjekten rationales Verhalten zu, wobei diese Subjekte aufgrund gewisser Präferenzen ein nutzenmaximierendes (oder kostenminimierendes) Verhalten zeigen. Ziel und Methode Historisch orientieren sich die Theorien der Rationalen Entscheidung an der klassischen Ökonomie Adam Smiths und der erklärenden Soziologie Max Webers. Sie versuchen, komplexe soziale Handlungen mit Hilfe möglichst einfacher Modellannahmen zu fassen. Das angestrebte Ziel der Theoretiker liegt darin, soziale Gesetze zu finden, die einfach und klar wie die der Newtonschen Physik sind. Darüber, wie dieses Ziel zu erreichen ist, herrscht Uneinigkeit. Menschenbilder der Rationalen Entscheidung reichen vom klassischen Homo oeconomicus bis zum PREEM (Restricted Rational Expecting Evaluating Maximising Man) der modernen Soziologie. Über den Rationalitätsbegriff des rationalen Entscheiders gibt es ebenso wie über die Gewichtung und Entstehung der Präferenzen keine Einigkeit. Universität Paderborn Algorithmische Spieltheorie 1.3

2 Umstrittene Punkte Während Rationale Entscheidung in den Wirtschaftswissenschaften das dominante Paradigma ist, ist sie in Soziologie und Politikwissenschaft stärker umstritten. Einer der Hauptstreitpunkte ist der verwendete methodologische Individualisimus; es ist in der Debatte, ob sich soziales Verhalten und soziale Gesetze wirklich durch das Verhalten vieler einzelner Individuen bestimmen lässt, oder ob das soziale eigene Gesetzmäßigkeiten vorweist. Eine schwächere Version dieser Kritik wirft dem Ansatz der Rationalen Entscheidung vor, soziale Probleme strukturell bedingt unterkomplex zu fassen. Zum anderen steht die starke Modellhaftigkeit des Ansatzes in der Kritik: es lässt sich empirisch einfach beweisen, dass Menschen nur begrenzt rational handeln. Die meisten Theoretiker der Rationalen Entscheidung räumen das ein, machen aber geltend, dass rationale Nutzenmaximierung eine plausible Grundannahme darstellt, von der aus die Modelle bestimmten Situationen angepasst werden können. Trotz den teilweise sehr heftigen Diskussionen ist aber unübersehbar, dass Ansätze, die auf Rationaler Entscheidung basieren, einen immer stärkeren Einfluss sowohl auf die globalen als auch auf die deutschen Sozialwissenschaften haben. Universität Paderborn Algorithmische Spieltheorie 1.4

3 Darstellung eines Spiels in Normalform G = (n, S, U) n Anzahl der Spieler s i Strategie von Spieler i, i {1,..., n} s Strategietupel: s = (s 1,..., s n ) s i Strategientupel der Gegenspieler von i, s i = (s 1,..., s i 1, s i+1,..., s n ) Wir schreiben: s = (s i, s i ) S i Strategieraum (Menge der möglichen Strategien) für Spieler i S = S 1... S n, s S S i = S 1... S i 1 S i+1 S n, s i S i u i Nutzenfunktion von Spieler i u i : S IR U = (u 1,..., u n ) (S i ) = Menge der gemischten Strategien des Spielers i Universität Paderborn Algorithmische Spieltheorie 1.18

4 . Nash Equilibria Situation: n Spieler 1,..., n spielen ein (einzügiges) Spiel. S i 1 i n ist die Menge der Strategien (= Aktionen) von Spieler i. u i : S 1... S n IR ist die Nutzenfunktion für Spieler i. Das Spiel kann dann beschrieben werden durch G = (n, S 1,... S n, u 1,..., u n ). Definition.1: Es sei G = (n, S 1,..., S n, u 1,..., u n ) ein Spiel. Ein n-tupel (s 1,..., s n ) S 1... S n ist im Nash Equilibrium, falls für alle i {1,..., n} gilt: s i S i : u i (s 1,..., s i 1, s i, s i+1,..., s n ) u i (s 1,..., s i 1, s i, s i+1,..., s n ) Im Nash Equilibrium will kein Spieler seine Strategie ändern, solange die anderen Spieler bei ihrer gewählten Strategie bleiben stabiler Zustand Universität Paderborn Algorithmische Spieltheorie.1

5 Beispiele: (Bi-)Matrixspiele Bach-Stravinsky Mozart-Mahler Gefangenendilemma Münzseiten s 1 s 1 s 11,1 0,0 s 1 0,0 1, s 1 s 1 s 11, 0,0 s 1 0,0 1,1 L G L 1,1 5,0 G 0,5 4,4 K Z K 1,-1-1,1 Z -1,1 1,-1 Nash-Equilibria Minderwertiges Nash-Equilibrium eindeutiges Nash-Equilibrium kein Nash-Equilibrium Stein-Schere-Papier St Sch P St 0,0 1,-1-1,1 Sch -1,1 0,0 1,-1 P 1,-1-1,1 0,0 kein Nash-Equilibrium Universität Paderborn Algorithmische Spieltheorie.

6 Gemischte Strategien Die Menge der gemischten Strategien für einen Spieler mit zwei reinen Strategien ist S := {π IR π 1 + π = 1, π i 0} Die Menge der gemischten Strategien für einen Spieler mit drei reinen Strategien ist S 3 := {π IR 3 π 1 + π + π 3 = 1, π i 0} y x 3 X Y x 1 S ist Strecke von (1, 0) nach (0, 1). y 1 S 3 ist Fläche zwischen (0, 0, 1), (0, 1, 0), (1, 0, 0) x Der (n 1)-dimensionale (Standard-) Simplex S n ist definiert als S n := {x IR n n i=1 x i = 1, x i 0} = {x IR n 1 T x = 1, x i 0}. Universität Paderborn Algorithmische Spieltheorie.3

7 Gemischte Nash Equilibria Für einen Spieler i sei S i := {s i1,..., s ik } Dann definiert π i = (π i1,..., π ik ) S k eine gemischte Strategie für Spieler i, in der er die Strategie s ij mit Wahrscheinlichkeit π ij wählt. Der erwartete Nutzen von Spieler i, wenn die gemischten Strategien aller Spieler durch (π 1,..., π n ) definiert sind, ist dann: u i (Π 1,..., Π n ) = (s 1,...,sn) S 1... Sn n k=1 Π k (s k ) u i (s 1,..., s n ) Definition.: Es sei G = (n, S 1,..., S n, u 1,..., u n ) ein Spiel. Ein n-tupel (Π 1,..., Π n ) ist im gemischten Nash-Equilibrium, falls für alle i {1,..., n} gilt: Π i (S i) : u i (Π 1,..., Π i 1, Π i, Π i+1,..., Π n ) u i (Π 1,..., Π i 1, Π i, Π i+1,..., Π n ) Universität Paderborn Algorithmische Spieltheorie.4

8 Beispiel Gemischtes Nash Equilibrium S 1 = {s 11, s 1 }, S = {s 1, s } A = 1 3 0, B = (π 1, π ) mit π 1 = (3/7, 4/7) und π = (1/, 1/) ist ein gemischtes Nash Equilibrium. Universität Paderborn Algorithmische Spieltheorie.5

9 .1 Existenz von Nash Equilibria Satz.1: (J. Nash, 1951) Es existiert immer ein gemischtes Nash-Equilibrium. Sperner s Lemma Brouwer s Fixpunksatz Kakutani s Fixpunktsatz Nash s Theorem Brouwer s Fixpunktsatz: Es sei f : S n S n eine stetige Funktion. Dann existiert ein Punkt x S n mit f(x ) = x, ein sogenannter Fixpunkt. Universität Paderborn Algorithmische Spieltheorie.6

10 . Aufwand zur Bestimmung von Nash-Equilibrien Der Satz von Nash garantiert die Existenz eines gemischten Nash-Equilibriums. Aber: Betrachte das folgende Problem: MIXED--NE: geg.: Ein Spiel G = (, S 1, S, u 1, u ), S 1, S endlich. ges.: Ein gemischtes Nash-Equilibrium (Π 1 (S 1 ), Π (S )) für G. Es ist bis heute offen, ob MIXED--NE in P ist. MIXED--NE is PPAD-vollständig (Chen, Deng: Settling the Complexity of -Player Nash- Equilibrium. Electronic Colloquium on Computational Complexity, 005). Universität Paderborn Algorithmische Spieltheorie.7

11 .3 -Personen Matrix Spiele -Personen Matrix Spiele sind Spiele der Form G = (, (S 1, S ), (u 1, u )) mit S 1 = {s 11,..., s 1m }, S = {s 1,..., s n }. u 1, u sind gegeben als Matrizen A ZZ m n und B ZZ m n, mit u 1 (s 1i, s j ) = A i,j und u (s i, s j ) = B i,j, für 1 i m, 1 j n. Jeder Spieler maximiert seinen Nutzen. Universität Paderborn Algorithmische Spieltheorie.8

12 Bemerkung.1: Es sei x X = (S 1 ) eine gemischte Strategie für Spieler 1, y Y = (S ) eine gemischte Strategie für Spieler. Dann ist der erwartete Nutzen u 1 (x, y) = x T Ay und u (x, y) = x T By. Definition.3: a) Es sei y Y fest. x X heißt beste Antwort auf y x T (Ay) ist maximal über X. b) Es sei x X fest. y Y heißt beste Antwort auf x (x T B)y ist maximal über Y. Bemerkung.: a) Eine beste Antwort x (y) ist eine gemischte Strategie mit dem größten erwarteten Nutzen für Spieler 1 (), wenn Spieler (1) die gemischte Strategie y (x) spielt. b) Ein Nash Equilibrium (x, y) ist dann ein Paar von wechselseitig besten Antworten x und y. Satz.: Es sei y eine gemischte Strategie von Spieler. Eine gemischte Strategie x ist beste Antwort auf y genau dann, wenn Spieler 1 nur reine Strategien s i mit positiver Wahrscheinlichkeit spielt, die beste Antworten sind. Universität Paderborn Algorithmische Spieltheorie.9

13 Beispiele: (Bi-)Matrixspiele S 1 = {1,, 3}, S = {4, 5} A = , B = ,1 6,0,0 5, 3 3,4 3,3 G hat reines Nash-Equilibrium (3, 4) (Spaltenmaximum in A und Zeilenmaximum in B) s 1 s Bemerkung 1 4 Spieler Spieler 4 4 Spieler Spieler Nash Equilibrium mit Nutzen u 1 (3, 4) = A 3,1 = 3, u (3, 4) = B 3,1 = Spieler 1 1 Universität Paderborn Algorithmische Spieltheorie.10

14 Nash Equilibria S 1 = {s 1 1,..., s1 m }, S = {s 1,..., s n } x = (x 1,..., x m ), x i [0, 1] y = (y 1,..., y n ), y i [0, 1] m i=1 x i = 1, n i=1 y i = 1 T 1 = {i {1,..., m} ; x i > 0} T = {j {1,..., n} ; y j > 0} Universität Paderborn Algorithmische Spieltheorie.11

15 Linear Complementary Problem (LCP) (x, y) ist NE α, β IR mit x S m, y S n n j=1 n j=1 m i=1 m i=1 A ij y j = α i T 1 A ij y j α i {1,..., m} B ij x i = β j T B ij x i β j {1,..., n} (x, y) ist NE α, β IR mit x, y 0 1 T x = 1 1 T y = 1 A y 1 α B T x 1 β x T ( 1 α A y) = 0 y T ( 1 β B T x) = 0 Universität Paderborn Algorithmische Spieltheorie.1

16 Eigennützige Schritte Definition: Sei (s 1,..., s n ) S = S 1... S n, i [1, n], s i S i. Ein Übergang (s 1,..., s n ) (s 1,..., s i 1, s i, s i+1,..., s n ) heißt eigennütziger Schritt falls u i (s 1,..., s n ) < u i (s 1,..., s i 1, s i, s i+1,..., s n ). Selfish Step Algorithmus: while (s 1,..., s n ) ist kein Nash Equilibrium perform eigennützigen Schritt Definition: G S = (S, E S ) mit E S = {(s, s); s, s S, s Nash-Graph. s ist eigennütziger Schritt} heißt Beachte: (a) Ein reines Nash Equilibrium entspricht einem Knoten in G S mit Ausgangsgrad 0. (b) Hat G S keine gerichteten Kreise so existiert ein reines Nash Equilibrium. (c) G S kann Pfade exponentieller Länge enthalten. Universität Paderborn Algorithmische Spieltheorie.13

17 Beispiel: Routing Spiel 7 Spieler, 3 Kanten, Spieler i hat Gewicht w i s i = {1,, 3} i = 1,..., 7 u i (s 1,..., s 7 ) = sj =s i w j Universität Paderborn Algorithmische Spieltheorie.14

Algorithmische Spieltheorie. Martin Gairing

Algorithmische Spieltheorie. Martin Gairing Algorithmische Spieltheorie Martin Gairing Folien zur Vorlesung vom 26.04.2004 Organisatorisches: Vorlesung Montags, 14:15-15:45 Uhr Übungen Montags, 16:00-17:00 Uhr Folien zur Vorlesung unter http://www.upb.de/cs/ag-monien/lehre/ss04/spieltheo/

Mehr

2. Nash Equilibria. Das Spiel kann dann beschrieben werden durch

2. Nash Equilibria. Das Spiel kann dann beschrieben werden durch 2. Nash Equilibria Situation: n Spieler 1,..., n spielen ein (einzügiges) Spiel. S i 1 i n ist die Menge der Strategien (= Aktionen) von Spieler i. u i : S 1... S n ist die Nutzenfunktion für Spieler i.

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Gross mdgrosse@sbox.tugraz.at 20. Januar 2003 1 Spieltheorie 1.1 Matrix Game Definition 1.1 Ein Matrix Game, Strategic

Mehr

Übersicht: 6.1 Einleitung 6.2 Klassische Theorie nichtkooperativer Spiele 6.3 Egoistisches Routing 6.4 Mechanismen-Entwurf 6.

Übersicht: 6.1 Einleitung 6.2 Klassische Theorie nichtkooperativer Spiele 6.3 Egoistisches Routing 6.4 Mechanismen-Entwurf 6. 6. Algorithmische Spieltheorie Übersicht: 6.1 Einleitung 6.2 Klassische Theorie nichtkooperativer Spiele 6.3 Egoistisches Routing 6.4 Mechanismen-Entwurf 6.5 Auktionen 561 6.1 Einleitung Übliche Modelle:

Mehr

Strategische Spiele und Nash-Gleichgewichte

Strategische Spiele und Nash-Gleichgewichte Algorithmische Spieltheorie Sommer 2017 Spiele in Normalform Satz von Nash Komplexität von Nash-Gleichgewichten Nullsummenspiele Appendix A: LP-Dualität Gefangenendilemma S G S G 2 1 2 5 5 4 1 4 Spieler:

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Groß mdgrosse@sbox.tugraz.at 20. Januar 2003 0-0 Matrixspiel Matrix Game, Strategic Game, Spiel in strategischer Form.

Mehr

Spieltheorie. Nash-Gleichgewichts-Berechnung. Bernhard Nebel und Robert Mattmüller. Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14.

Spieltheorie. Nash-Gleichgewichts-Berechnung. Bernhard Nebel und Robert Mattmüller. Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Spieltheorie Nash-Gleichgewichts-Berechnung Albert-Ludwigs-Universität Freiburg Bernhard Nebel und Robert Mattmüller Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Mai 2012 14. Mai 2012 B. Nebel,

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele Vorlesung: Nicht-kooperative Spieltheorie Teil 4: 2-Personen-Nullsummenspiele Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Definition 2-Personen-Nullsummenspiele

Mehr

3. Das Auslastungsspiel

3. Das Auslastungsspiel Literatur: 3. Das Auslastungsspiel R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, pp. 65 67. 1973. D. S. Johnson, Chr. H. Papadimitriou,

Mehr

NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG. Minimaxlösungen & Gleichgewichte

NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG. Minimaxlösungen & Gleichgewichte NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG Minimaxlösungen & Gleichgewichte Spieltheorie Einführungsbeispiel Gefangenendilemma (Prisoner s Dilemma) Nicht kooperierende Spielteilnehmer Spieler Gefangener

Mehr

Algorithmen. Spieltheorie. Nash-Gleichgewichte in endlichen Nullsummenspielen. Kodierung als Lineares Programm. Nash-Gleichgewichts-Berechnung

Algorithmen. Spieltheorie. Nash-Gleichgewichte in endlichen Nullsummenspielen. Kodierung als Lineares Programm. Nash-Gleichgewichts-Berechnung Spieltheorie Albert-Ludwigs-Universität Freiburg Bernhard Nebel und Robert Mattmüller Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Mai 2012 14. Mai 2012 B. Nebel, R. Mattmüller Spieltheorie

Mehr

dafür muss man aber wissen, dass es ein Nash-GG gibt ... als wissenschaftliche Theorie unbefriedigend

dafür muss man aber wissen, dass es ein Nash-GG gibt ... als wissenschaftliche Theorie unbefriedigend 1 KAP 8. Existenz von Nash-Gleichgewichten Heute betrachten wir die Frage: Hat jedes Spiel ein Nash-Gleichgewicht? Warum ist diese Frage interessant? Häufig sind Spiele zu kompliziert, um N-GG explizit

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Nash-Gleichgewichte in 2-Spieler Systemen. Katharina Klost Freie Universität Berlin

Nash-Gleichgewichte in 2-Spieler Systemen. Katharina Klost Freie Universität Berlin Nash-Gleichgewichte in 2-Spieler Systemen Katharina Klost Freie Universität Berlin Seminar über Algorithmen, 29.10.2013 Grundlegende Definitionen A Gewinnmatrix für Spieler 1, B Gewinnmatrix für Spieler

Mehr

Stimmt das immer und in welchem Sinne?

Stimmt das immer und in welchem Sinne? 1 KAP 6. Dominanz und Nash-GG Nash-GG (teilweise) dadurch motiviert: schränkt Menge möglicher Spielausgänge stärker ein als Dominanz Stimmt das immer und in welchem Sinne? Gibt s stets weniger Nash-GGe

Mehr

Spieltheorie. Gemischte, korrelierte und evolutionäre Gleichgewichte

Spieltheorie. Gemischte, korrelierte und evolutionäre Gleichgewichte Spieltheorie Gemischte, korrelierte und evolutionäre Gleichgewichte Michael Espendiller 14. Mai 2012 1.1 Einleitung Wir möchten in diesen Abschnitt die spieltheoretische Begrifflichkeiten erweitern, um

Mehr

Braess-Paradoxon und der Preis der Anarchie

Braess-Paradoxon und der Preis der Anarchie Algorithmische Spieltheorie Sommer 207 Wardropspiele Existenz und Eindeutigkeit von Wardrop-Gleichgewichten Verkehrsmodell von Wardrop Ein Wardropspiel ist gegeben durch einen gerichteten Graphen G = (V,

Mehr

Kapitel 4: Gemischte Strategien. Literatur: Tadelis Chapter 6

Kapitel 4: Gemischte Strategien. Literatur: Tadelis Chapter 6 Kapitel 4: Gemischte Strategien Literatur: Tadelis Chapter 6 Idee In vielen Spielen gibt es kein Nash Gleichgewicht in reinen Strategien (und auch kein Gleichgewicht in dominanten Strategien) Darüber hinaus

Mehr

Kapitel 4: Gemischte Strategien

Kapitel 4: Gemischte Strategien Kapitel 4: Gemischte Strategien Literatur: Tadelis Chapter 6 Prof. Dr. Philipp Weinschenk, Lehrstuhl für Mikroökonomik, TU Kaiserslautern Kapitel 4.1: Motivation Motivation In vielen Spielen gibt es kein

Mehr

Einführung in die Spieltheorie und Nash-Gleichgewichte

Einführung in die Spieltheorie und Nash-Gleichgewichte Einführung in die Spieltheorie und Nash-Gleichgewichte Vortrag im Seminar WT und Ihre Anwendungen Institut für Mathematische Statistik Fachbereich Mathematik und Informatik Westfählische Wilhelms-Universtät

Mehr

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n 4. Bayes Spiele Definition eines Bayes Spiels G B (n, S 1,..., S n, T 1,..., T n, p, u 1,..., u n ) n Spieler 1,..., n S i Strategiemenge für Spieler i, S S 1... S n T i Typmenge für Spieler i, T T 1...

Mehr

Existenz eines Nash Gleichgewichts

Existenz eines Nash Gleichgewichts Existenz eines Nash Gleichgewichts Ei Existenztheorem: Wenn für ein Spiel = (N, S, u) gilt, dass (i) der Strategieraum S kompakt und konvex ist und (ii) die Auszahlungsfunktion u i (s) jedes Spielers stetig

Mehr

Einführung in die Spieltheorie

Einführung in die Spieltheorie Seminar über Algorithmen - Einführung in die Spieltheorie Nadja Scharf Institut für Informatik Einführung in die Spieltheorie nach Nisan, Roughgarden, Tardos, Vazirani: Algorithmic Game Theory, Kapitel

Mehr

Geometrie in der Spieltheorie

Geometrie in der Spieltheorie Evolutionäre Spieltheorie November 3, 2011 Evolution der Spieltheorie John von Neumann, Oskar Morgenstern 1944: The Theory of Games and Economic Behavior John Nash 1950: Non-cooperative Games Nash Gleichgewicht:

Mehr

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners

Bisher angenommen: jeder Spieler kennt alle Teile des Spiels. - Diskontfaktor des Verhandlungspartners 1 KAP 15. Spiele unter unvollständiger Information Bisher angenommen: jeder Spieler kennt alle Teile des Spiels seine Gegenspieler, deren Aktionen, deren Nutzen, seinen eigenen Nutzen etc. Oft kennt man

Mehr

Sheriff hat zwei des Bankraubes Verdächtigte eingelocht, hat aber nur Beweise für kleinere Delikte und braucht Geständnis.

Sheriff hat zwei des Bankraubes Verdächtigte eingelocht, hat aber nur Beweise für kleinere Delikte und braucht Geständnis. Bekanntere Variante des Spiels: Beispiel: Gefangenendilemma. Sheriff hat zwei des Bankraubes Verdächtigte eingelocht, hat aber nur Beweise für kleinere Delikte und braucht Geständnis. Falls beide dicht

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt

Mehr

Teil 1: Statische Spiele mit vollständigen Informationen

Teil 1: Statische Spiele mit vollständigen Informationen Teil 1: Statische Spiele mit vollständigen Informationen Kapitel 1: Grundlagen und Notation Literatur: Tadelis Chapter 3 Statisches Spiel In einem statischen Spiel...... werden die Auszahlungen durch die

Mehr

Vorlesung 2: Erwartungsnutzen

Vorlesung 2: Erwartungsnutzen Vorlesung 2: Erwartungsnutzen Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2 (FS 11) Erwartungsnutzen 1 / 28 1. Modellrahmen 1.1 Die Alternativen Wir betrachten

Mehr

Spieltheorie Vortrag im Rahmen eines Treffens der Grazer Pro Scientia Geförderten

Spieltheorie Vortrag im Rahmen eines Treffens der Grazer Pro Scientia Geförderten Spieltheorie Vortrag im Rahmen eines Treffens der Grazer Pro Scientia Geförderten Sofie Waltl Graz, 9. April 2014 1 Was ist Spieltheorie? Die Spieltheorie analysiert strategische Entscheidungssituationen,

Mehr

Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien

Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien Kapitel 4 Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 2 - Übersicht Teil 2 Sequentielle Spiele (Kapitel

Mehr

Kleines Lexikon der Begriffe*

Kleines Lexikon der Begriffe* Kleines Lexikon der Begriffe* Auszahlungsfunktion (payoff function) Eine Funktion, die jedem Strategienprofil einen Auszahlungsvektor zuweist. Der Auszahlungsvektor enthält für jeden Spieler einen Wert

Mehr

Das Prinzip der Suchmaschine Google TM

Das Prinzip der Suchmaschine Google TM /9 Das Prinzip der Suchmaschine Google TM Numerische Mathematik WS 20/2 Basieren auf dem Paper The $25,000,000,000 Eigenvector: The Linear Algebra behind Google von Kurt Bryan und Tanya Leise (SIAM Review,

Mehr

Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen Spielen Nash-Gleichgewicht Beste-Ant

Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen Spielen Nash-Gleichgewicht Beste-Ant Abstrakte Analyse des Nash-Gleichgewichtes Seminar von Olga Schäfer Fachbereich Mathematik der Universität Siegen Siegen, 29. Juli 2009 Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen

Mehr

Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26

Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26 Spieldynamik Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kap. 8 Simon Maurer Saarbrücken, den 13.12.2011 1 / 26 Ablauf 1 Imitationsdynamik 2 Monotone Auszahlung

Mehr

Auslastungs- und Potenzialspiele

Auslastungs- und Potenzialspiele Definition Existenz Konvergenzzeit Matroidspiele Algorithmische Spieltheorie Sommer 2017 Definition Existenz Konvergenzzeit Matroidspiele Auslastungsspiele Existenz eines reinen Nash-Gleichgewichtes Konvergenzzeit

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

Handlungstheorie ll: Theorien rationaler Wahl

Handlungstheorie ll: Theorien rationaler Wahl Universität Augsburg WS 2006/07 Lehrstuhl für Soziologie 15.November 2006 Proseminar: Einführung in soziologische Theorien (Sasa Bosancic, M.A.) Referenten: Jasmin Hornung, Sabrina Kaczmarek, Verena Reichert

Mehr

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie Übersicht : Evolutionäre Spieltheorie Einleitung Evolutionäre Biologie Evolutionäre Spieltheorie: Idee Gefangenendilemma (Beispiel) Evolutionäre Stabilität Beispiele Wiederholtes Gefangenendilemma Chicken-Spiel

Mehr

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie Übersicht : Evolutionäre Spieltheorie Einleitung Evolutionäre Biologie Evolutionäre Spieltheorie: Idee Gefangenendilemma (Beispiel) Evolutionäre Stabilität Beispiele Wiederholtes Gefangenendilemma Chicken-Spiel

Mehr

D Spieltheorie und oligopolistische Märkte

D Spieltheorie und oligopolistische Märkte D Spieltheorie und oligopolistische Märkte Verhaltensannahmen in der Markttheorie, die bisher analysiert wurden Konkurrenz: viele sehr kleine Wirtschaftssubjekte, die für sich genommen keinen Einfluss

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt

Mehr

Nicht-kooperative Spiele

Nicht-kooperative Spiele Kapitel 1 Nicht-kooperative Spiele 1.1 Zwei-Personen-Spiele Definition 1: Ein Zwei-Personen-Spiel Γ besteht aus einem Paar nichtleerer Mengen S T zwei reellwertigen Funktionen φ 1 φ 2 auf dem kartesischen

Mehr

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0). 5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =

Mehr

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form)

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form) 1 KAP 9. Dynamische Spiele Bisher: alle Spieler ziehen simultan bzw. können Aktionen der Gegenspieler nicht beobachten Nun: Dynamische Spiele Spieler können nacheinander ziehen bzw. die Entscheidugen anderer

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Spiele mit simultanen und sequentiellen Spielzügen

Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Spiele mit simultanen und sequentiellen Spielzügen Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 2 - Übersicht Teil 2 Sequentielle Spiele (Kapitel 3) Simultane Spiele Reine

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Simultane Spiele 1. Einführung: Spiele in Normalform Nash-Gleichgewicht Dominanz 2. Typen von Spielen Gefangenendilemma

Mehr

Proseminar. Spieltheorie. Sommersemester 2015

Proseminar. Spieltheorie. Sommersemester 2015 Proseminar Spieltheorie Sommersemester 2015 Informationen bei: Prof. Dr. Martin Möhle Eberhard Karls Universität Tübingen Mathematisches Institut Tel.: 07071/29-78581 Vortragsübersicht Teil I: Allgemeine

Mehr

Dr. Anita Kripfganz SS 2014

Dr. Anita Kripfganz SS 2014 Dr. Anita Kripfganz SS 2014 6. Spieltheorie 6.1 Gegenstand und Ziele Zielstellung: qualitative und quantitative Analyse von Konflikten in strategischen Entscheidungssituationen = Theorie des rationalen

Mehr

Vorlesung 2: Präferenzen über Lotterien

Vorlesung 2: Präferenzen über Lotterien Vorlesung 2: Präferenzen über Lotterien Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2, FS 12 Präferenzen über Lotterien 1/24 2.1 Modellrahmen Wir betrachten im

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

3.2 Nash-Gleichgewicht

3.2 Nash-Gleichgewicht 3.2 Nash-Gleichgewicht Die Gleichgewichtskonzeptionen, die wir im vorangegangenen Abschnitt kennengelernt haben, sind Spezialfälle eines allgemeineren Gleichgewichtsbegriffs, der von Nash in die sogenannte

Mehr

Spieltheorie in der Ökonomie

Spieltheorie in der Ökonomie in der Ökonomie Kevin Klein Technische Universität Wien 19. Dezemberl 2012 Inhaltsverzeichnis 1 Gliederung 2 Normalform Grundlagen Präferenzen,Nutzen Lösungskonzepte 3 Grundlagen Cornout Oligopol Bertrand

Mehr

Spieltheorie Teil 4. Tone Arnold. Universität des Saarlandes. 20. März 2008

Spieltheorie Teil 4. Tone Arnold. Universität des Saarlandes. 20. März 2008 Spieltheorie Teil 4 Tone Arnold Universität des Saarlandes 20. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 4 20. März 2008 1 / 64 Verfeinerungen des Nash GGs Das Perfekte Bayesianische

Mehr

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 4

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 4 Skript zur Vorlesung Mikroökonomik II (WS 09) Teil 4 PR 13: Spieltheorie Weiterentwicklung der ökonomischen Theorie untersucht Situationen strategischen Verhaltens John von Neumann und Oskar Morgenstern

Mehr

Quantifizierung der Ineffizienz von Equilibria

Quantifizierung der Ineffizienz von Equilibria Quantifizierung der Ineffizienz von Equilibria Marcus Juli 2010 INSTITUT FÜR THEORETISCHE INFORMATIK KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) KIT Universität des Landes Baden-Württemberg und nationales

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Beispiel für stabile Spielausgänge. Kapitel 5: Nash-Gleichgewicht. Anna Theater Fußball

Beispiel für stabile Spielausgänge. Kapitel 5: Nash-Gleichgewicht. Anna Theater Fußball Kapitel 5: Nash-Gleichgewicht 5. Nash-Gleichgewicht Frage nach stabilen Spielausgängen Stabile soziale Konventionen Definition Nash-Gleichgewicht Nash-GG als gegenseitig beste Antworten Wie findet man

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Optimierung. Vorlesung 13

Optimierung. Vorlesung 13 Optimierung Vorlesung 13 Letze Woche Branch&Bound Suchbaum Nach Möglichkeit nicht komplett durchsuchen Abschätzungen nach oben und unten Suchheuristiken Randomisierte Lokale Suche Simulated Annealing Metropolis

Mehr

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory 01.12.2010 Arno Mittelbach 1 Spieltheorie Einführung Evolutionary Game Theory Spieltheorie in Netzwerken Erstens

Mehr

5.3 Darstellungsmatrizen affiner Abbildungen

5.3 Darstellungsmatrizen affiner Abbildungen 5.3 Darstellungsmatrizen affiner Abbildungen Definition 5.3.1. Seien A und B endlich-dimensionale ARs mit dim A n, dim B m und KS E : (p 0,..., p n ) von A und KS F : (q 0,..., q m ) von B. Sei α : A B

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Abbildung 10.1: Das Bild zu Beispiel 10.1

Abbildung 10.1: Das Bild zu Beispiel 10.1 Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,

Mehr

Vorlesung 2: Präferenzen über Lotterien

Vorlesung 2: Präferenzen über Lotterien Vorlesung 2: Präferenzen über Lotterien Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 2, FS 13 Präferenzen über Lotterien 1/26 2.1 Modellrahmen Wir betrachten im

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

KAP 1. Normalform Definition Ein Spiel G in Normalform (auch: Strategieform) besteht aus den folgenden 3 Elementen:

KAP 1. Normalform Definition Ein Spiel G in Normalform (auch: Strategieform) besteht aus den folgenden 3 Elementen: 1 KAP 1. Normalform Definition Ein Spiel G in Normalform (auch: Strategieform) besteht aus den folgenden 3 Elementen: 1. Einer Menge von Spielern i I = {1,..., i,...n} 2. Einem Strategienraum S i für jeden

Mehr

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm

Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm Brownsche Bewegung Satz von Donsker Bernd Barth Universität Ulm 31.05.2010 Page 2 Brownsche Bewegung 31.05.2010 Inhalt Einführung Straffheit Konvergenz Konstruktion einer zufälligen Funktion Brownsche

Mehr

Anwendungen der Spieltheorie

Anwendungen der Spieltheorie Mikroökonomie I Einführung in die Spieltheorie Universität Erfurt Wintersemester 08/09 Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 1 / 28 Spieltheorie Die Spieltheorie modelliert strategisches

Mehr

2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN

2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN 2.8 KURVENINTEGRALE UND STAMMFUNKTIONEN Im folgenden seien X normierter Vektorraum und Y B-Raum über IK = IR oder IK = CI. Wir wollen in diesem Kapitel für stetige Abbildungen f : X D f B(X; Y ) und stückweise

Mehr

Lösungen Aufgabenblatt 5 zur Spieltheorie SS 2017

Lösungen Aufgabenblatt 5 zur Spieltheorie SS 2017 Lösungen Aufgabenblatt 5 zur Spieltheorie SS 017 Aufgabe 5.1: Bestimmen Sie sämtliche Nash-Gleichgewichte in reinen und gemischten Strategien der Spiele: Spiel 1 x y a, 1 1, 1 b 0, 1 3, 5 Spiel 1: Spiel

Mehr

Spieltheorie. Manfred Hörz. } seiner möglichen Strategien aus, ohne die Strategieentscheidungen seiner Mitspieler zu kennen. ={ is 1.

Spieltheorie. Manfred Hörz. } seiner möglichen Strategien aus, ohne die Strategieentscheidungen seiner Mitspieler zu kennen. ={ is 1. Spieltheorie Manfred Hörz A = {1, 2,..., n} seien die Akteure eines Spiels. Jeder Akteur i wählt eine Strategie aus einer Menge S i ={ is 1,is 2,...,is k } seiner möglichen Strategien aus, ohne die Strategieentscheidungen

Mehr

ij. , d (k 1) + d (k 1)

ij. , d (k 1) + d (k 1) Dabei war ja die Idee, dass wir unser k Schritt für Schritt erhöhen bis wir bei n angekommen sind, denn dann haben wir das Problem gelöst. Dies ist im Grunde unser Algorithmus. Wir müssen diesen nur noch

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie Vorlesung: Nicht-kooperative Spieltheorie Teil 1: Organisatorisches, Inhalte der Vorlesung Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 / 15 Organisatorisches

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten

Mehr

Strategische Spiele in Normalform; Schwache Dominanz. Strategienprofil der Gegenspieler (s i ) Kapitel 3: Spiele in Normalform

Strategische Spiele in Normalform; Schwache Dominanz. Strategienprofil der Gegenspieler (s i ) Kapitel 3: Spiele in Normalform Strategische Spiele in Normalform; Schwache Dominanz 3. Spiele in Normalform Definition Strategienprofil der Gegenspieler Anwendung: Soziales Dilemma (verallgemeinertes GD) Definition: Spiele in Normalform

Mehr

Evolutionäre Spiele. Wolfgang Mulzer, Yannik Stein

Evolutionäre Spiele. Wolfgang Mulzer, Yannik Stein Seminar über Algorithmen 11.02.2014 Julian Ritter Evolutionäre Spiele Wolfgang Mulzer, Yannik Stein 1 Idee Motivation aus der Natur: Interesse der theoretischen Biologie an einer Bevölkerung, die um Ressourcen

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

5 Zwei spieltheoretische Aspekte

5 Zwei spieltheoretische Aspekte 5 Zwei spieltheoretische Aspekte In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschäftigen, sogenannte Und-Oder-Bäume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbäumen,

Mehr

Menschliche Entscheidungen und Rationalität

Menschliche Entscheidungen und Rationalität Menschliche Entscheidungen und Rationalität Anton Brandl Lehrstuhl für Netzarchitekturen und Netzdienste Fakultät für Informatik Technische Universität München 9. Oktober 2013 Anton Brandl: Menschliche

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/45 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Vorlesung: Einführung in die Spieltheorie WS 2006/2007. Dr. Guido Schäfer

Vorlesung: Einführung in die Spieltheorie WS 2006/2007. Dr. Guido Schäfer Vorlesung: Einführung in die Spieltheorie WS 2006/2007 Dr. Guido Schäfer schaefer@math.tu-berlin.de Short CV: Guido Schäfer 1994-2000 Studium (Theoretische Informatik), Universität des Saarlandes 1998/1999

Mehr

Perfekte und vollständige Information

Perfekte und vollständige Information Dynamische Spiele und unvollständige Information Mehrstufige Spiele mit beobachtbaren Handlungen: Rückwärtsinduktion und Teilspielperfektheit Wiederholte Spiele und kooperatives Verhalten Unvollständige

Mehr

Grundlagen und Nash Gleichgewichte in reinen Strategien

Grundlagen und Nash Gleichgewichte in reinen Strategien Grundlagen und Nash Gleichgewichte in reinen Strategien Yves Breitmoser, EUV Frankfurt (Oder) Zahlen und Vektoren IR ist die Menge der reellen Zahlen IR + = r IR r 0 IR n ist die Menge aller Vektoren von

Mehr

Spiele. Programmierpraktikum WS04/05 Lange/Matthes 106

Spiele. Programmierpraktikum WS04/05 Lange/Matthes 106 Spiele Programmierpraktikum WS04/05 Lange/Matthes 106 Theorie eines Spiels mathematisch: k-spieler Spiel ist Graph G = (V, E) wobei V partitioniert in V 1,..., V k Knoten v V heissen Konfigurationen oft

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Wir verallgemeinern Bi Matrix Spiele auf beliebig viele Spieler

Wir verallgemeinern Bi Matrix Spiele auf beliebig viele Spieler 1 KAP 3. Spiele mit mehr als zwei Spielern Wir verallgemeinern Bi Matrix Spiele auf beliebig viele Spieler Es gibt nun n Spieler i = 1,..., n Eine typische Strategie für SPi bezeichnen wir mit s i... S

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Berechnung von Abständen

Berechnung von Abständen 3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.

Mehr