Anwendungen der Spieltheorie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Anwendungen der Spieltheorie"

Transkript

1 Mikroökonomie I Einführung in die Spieltheorie Universität Erfurt Wintersemester 08/09 Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 1 / 28 Spieltheorie Die Spieltheorie modelliert strategisches Verhalten von Agenten (Staaten, Wirtschaftsteilnehmern, Familienmitgliedern,...), in Situationen, in denen die Entscheidungen der Agenten Auswirkungen auf die anderen Agenten haben. Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 2 / 28 Anwendungen der Spieltheorie Wirtschaftliche Entscheidungen Oligopole, Kartelle Externalitäten Politische Entscheidungen Strategische Entscheidungen innerhalb und zwischen Staaten Soziale Interaktionen Öffentliche Güter Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 3 / 28

2 Nichtkooperative und kooperative Spiele Kooperative Spiele Die Spieler handeln bindende Verträge aus, auf deren Basis sie gemeinsame Strategien entwickeln können. Beispiel: Käufer und Verkäufer handeln den Preis eines Gutes oder einer Dienstleistung oder ein Joint Venture beider Unternehmen aus (d.h. Microsoft und Apple). Bindende Verträge sind möglich. Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 4 / 28 Nichtkooperative und kooperative Spiele Nichtkooperative Spiele Aushandeln und Durchsetzen eines bindenden Vertrages sind nicht möglich Beispiel: Zwei konkurrierende Unternehmen berücksichtigen das wahrscheinliche Verhalten der jeweils anderen Partei, wenn sie den Preis und die Werbestrategie zur Eroberung eines Marktanteils festsetzen. Bindende Verträge sind nicht möglich. Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 5 / 28 Normalform-Spiele Normalform-Spiele / Spiele in strategischer Form In einem Normalform-Spiel entscheiden die Agenten (Spieler) simultan. Ein Normalform-Spiel besteht aus: einer Spielermenge einer Strategiemenge für jeden Spieler eine Funktion, die jeder Strategiekombination einen Auszahlungsvektor zuordnet Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 6 / 28

3 Zwei-Personen-Normalform-Spiele Auszahlungsmatrix Spieler B L R U 3, 9 1, 8 Spieler A D 0, 0 2, 1 Der erste Term bezeichnet jeweils die Auszahlung des Zeilenspielers A; der zweite Term die des Spaltenspielers B. Welche Strategiekombination sollten wir erwarten? Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 7 / 28 Zwei-Personen-Normalform-Spiele Auszahlungsmatrix Spieler B L R U 3, 9 1, 8 Spieler A D 0, 0 2, 1 Beste Antworten: Wenn B L wählt, ist As beste Antwort U. Wenn B R wählt, ist As beste Antwort D. Wenn A U wählt, ist Bs beste Antwort L. Wenn A D wählt, ist Bs beste Antwort R. Welche Strategiekombination sollten wir erwarten? Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 8 / 28 Nash Gleichgewicht Nash Gleichgewicht Ein Nash Gleichgewicht ist eine Strategiekombination, bei der kein Spieler einen Anreiz hat, abzuweichen. Kein Spieler kann durch einseitige Abweichung vom Nash Gleichgewicht eine höhere Auszahlung erreichen. Im Gleichgewicht ist die Strategiewahl des einen Spielers eine beste Antwort auf die gewählte Strategie des anderen Spielers und umgekehrt. Nash Gleichgewichte sind die einzigen strategisch stabilen Zustände. Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 9 / 28

4 Zwei-Personen-Normalform-Spiele Auszahlungsmatrix Spieler B L R U 3, 9 1, 8 Spieler A D 0, 0 2, 1 Beste Antworten: Wenn B L wählt, ist As beste Antwort U. Wenn B R wählt, ist As beste Antwort D. Wenn A U wählt, ist Bs beste Antwort L. Wenn A D wählt, ist Bs beste Antwort R. Es gibt zwei Nash Gleichgewichte: (U, L) und (D, R). Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 10 / 28 Zwei-Personen-Normalform-Spiele Auszahlungsmatrix Spieler B L R U 3, 9 1, 8 Spieler A D 0, 0 2, 1 Welches der beiden Gleichgewichte ist plausibler? Darüber sagt die Theorie nichts aus! Andere Faktoren können jedoch entscheiden, welches der Gleichgewichte eher zu erwarten ist. Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 11 / 28 Das Gefangenendilemma Das Gefangenendilemma (Prinsoner s Dilemma) ist ein typisches Beispiel für ein Zwei-Personen-Normalform-Spiel. Zwei Gefangene werden unabhängig voneinander und simultan zu einem Verbrechen befragt. Beide können entweder gestehen ( C ) oder schweigen ( S ). Mr. Brown Mr. White S C S 5, 5 30, 1 C 1, 30 10, 10 Das einzige Nash-Gleichgewicht ist (C,C). Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 12 / 28

5 Das Gefangenendilemma Dominante Strategie Strategie, die, unabhängig von den Handlungen des Gegners, immer optimal ist. Mr. Brown Mr. White S C S 5, 5 30, 1 C 1, 30 10, 10 Beide Spieler haben C als dominante Strategie. Nash Gleichgewicht: (C,C) Im Gleichgewicht werden die Auszahlungen nicht maximiert! Durch Koordination auf (S,S) könnten beide eine höhere Auszahlung erreichen. Dies ist aber kein Gleichgewicht! Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 13 / 28 Mehr zum Nash-Gleichgewicht Dominante Strategien Ich tue das Beste, unabhängig davon, was Du tust. Du tust das Beste, unabhängig von dem, was ich tue. Nash-Gleichgewicht Ich tue das Beste, was ich kann, unter Berücksichtigung dessen, was du tust. Du tust, unter Berücksichtigung dessen, was ich tue, das Beste, was Du tun kannst. Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 14 / 28 Mehr zum Nash-Gleichgewicht Gemischte Strategien Reine Strategie: Der Spieler trifft eine ganz bestimmte Entscheidung. Gemischte Strategie: Der Spieler trifft eine zufällige Entscheidung zwischen zwei oder mehr möglichen Handlungsmöglichkeiten, ausgehend von einer Menge ausgewählter Wahrscheinlichkeiten. Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 15 / 28

6 Matching Pennies Bob Jim Kopf Zahl Kopf 1, 1 1, 1 Zahl 1, 1 1, 1 Kein Nash Gleichgewicht in reinen Strategien. Aber: Ein Nash Gleichgewicht in gemischten Strategien: ({0, 5; 0, 5}; {0, 5; 0, 5}) Jedes (endliche) Normalformspiel besitzt mindestens ein Gleichgewicht (in gemischten Strategien). Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 16 / 28 Battle of the sexes Julia Theater Schwimmbad Theater 2, 1 0, 0 Bob Schwimmbad 0, 0 1, 2 Das Spiel hat zwei Nash Gleichgewichte in reinen Strategien: (Theater,Theater) und (Schwimmbad,Schwimmbad)...und ein Nash Gleichgewicht in gemischten Strategien: ({2/3; 1/3}; {1/3; 2/3}) Mit Wahrscheinlichkeit von je 2/9 gehen beide gemeinsam ins Theater oder ins Schwimmbad, mit Wahrscheinlichkeit 5/9 treffen sie sich nicht. Ihre Auszahlung beträgt: 2/9 (2; 1) + 2/9 (1; 2) = (2/3; 2/3) Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 17 / 28 Spiele in extensiver Form Sequentielle Spiele / extensive Form Ein Spiel, bei dem die Spieler nacheinander (sequentiell) entscheiden, wird Spiel in extensiver Form genannt. Die Nash Gleichgewichte eines Spiel in extensiver Form entsprechen den Nash Gleichgewichten der zugehöerigen Normalform. Die Spieler handeln abwechselnd. Die Spieler müssen mögliche Handlungen und rationale Reaktionen jedes Spielers durchdenken. Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 18 / 28

7 Sequentielle Spiele Beispiele Reaktion auf die Werbekampagne eines Wettbewerbers Entscheidung über den Eintritt in einen Markt Reaktion auf neue gesetzliche Regelungen Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 19 / 28 Sequentielle Spiele Szenario: Eine Firma E (Entrant) überlegt, ob sie in einen bestehenden Markt, in dem bereits die Firma I (Incumbent) aktiv ist, eintreten soll oder nicht. Falls E sich für den Markteintritt entscheidet, kann I entweder aggressiv oder kooperativ reagieren. Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 20 / 28 Markteintritt-Spiel Die extensive Form des Spiels: eintreten E nicht eintr. koop I aggr 1;3 3;1 0;0 Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 21 / 28

8 Markteintritt-Spiel Die Normalform des Spiels: Incumbent kooperativ aggressiv eintreten 3, 1 0, 0 Entrant nicht eintr. 1, 3 1, 3 Das Spiel hat zwei Nash Gleichgewichte: (eintreten,kooperativ) und (nicht eintr., aggressiv) Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 22 / 28 Teilspielperfektes Gleichgewicht Teilspielperfektes Gleichgewicht Ein Gleichgewicht s eines extensiven Spieles T heißt teilspielperfekt, wenn es für jedes echte Teilspiel T von T ein Gleichgewicht s von T induziert. E eintreten I koop aggr nicht eintr. 1;3 3;1 0;0 Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 23 / 28 Teilspielperfektes Gleichgewicht Das Markteintritt-Spiel hat zwei Nash Gleichgewichte: (eintreten,kooperativ) und (nicht eintr., aggressiv) Das Gleichgewicht (nicht eintr., aggressiv) stützt sich auf die unglaubwürdige Drohung von I bei einem Eintritt von E aggressiv zu reagieren. Dieses Gleichgewicht ist nicht teilspielperfekt. Es ist kein Gleichgewicht in dem Teilspiel, welches nach dem Eintritt folgt. (Eintreten, kooperieren) ist ein teilspielperfektes Gleichgewicht. Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 24 / 28

9 Das Standort-Spiel am Strand Szenario Zwei Konkurrenten, Y und C, verkaufen Erfrischungsgetränke. Der Strand ist 200 Meter lang. Die Sonnenanbeter verteilen sich gleichmäßig über die gesamte Länge des Strandes. Preis von Y = Preis von C. Die Konsumenten kaufen beim nächstgelegenen Verkäufer. Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 25 / 28 Das Standort-Spiel am Strand Ozean C Y 0 B Strand A 200 Meter Welchen Standort werden die Konkurrenten wählen (d.h. wo befindet sich das Nash- Gleichgewicht)? Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 26 / 28 Zusammenfassung Ein Spiel ist kooperativ, wenn die Spieler kommunizieren und bindende Verträge schließen können, ansonsten ist es nichtkooperativ. Ein Nash-Gleichgewicht ist eine Menge an Strategien, mit Hilfe derer alle Spieler bei gegebenen Strategien der anderen Spieler ihre Entscheidungen optimieren. Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 27 / 28

10 Zusammenfassung Bei einigen Spielen gibt es kein Nash-Gleichgewicht, wenn nur reine Strategien zum Einsatz kommen. Beim Einsatz gemischter Strategien kann es jedoch ein oder mehrere Gleichgewichte geben. Beim sequentiellen Spiel handeln die Spieler der Reihe nach. Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 28 / 28

Mikroökonomie II Kapitel 12 Spieltheorie und Wettbewerbsstrategie SS 2005

Mikroökonomie II Kapitel 12 Spieltheorie und Wettbewerbsstrategie SS 2005 Mikroökonomie II Kapitel 12 Spieltheorie und Wettbewerbsstrategie SS 2005 Themen in diesem Kapitel Spiele und strategische Entscheidungen Dominante Strategien Mehr zum Nash-Gleichgewicht Wiederholte Spiele

Mehr

2. Grundzüge der Mikroökonomik Einführung in die Spieltheorie. Allgemeine Volkswirtschaftslehre. WiMa und andere (AVWL I) WS 2007/08

2. Grundzüge der Mikroökonomik Einführung in die Spieltheorie. Allgemeine Volkswirtschaftslehre. WiMa und andere (AVWL I) WS 2007/08 2. Grundzüge der Mikroökonomik 2.10 Einführung in die Spieltheorie 1 Spieltheorie befasst sich mit strategischen Entscheidungssituationen, in denen die Ergebnisse von den Entscheidungen mehrerer Entscheidungsträger

Mehr

Spiele mit simultanen und sequentiellen Spielzügen

Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Spiele mit simultanen und sequentiellen Spielzügen Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 2 - Übersicht Teil 2 Sequentielle Spiele (Kapitel 3) Simultane Spiele Reine

Mehr

D Spieltheorie und oligopolistische Märkte

D Spieltheorie und oligopolistische Märkte D Spieltheorie und oligopolistische Märkte Verhaltensannahmen in der Markttheorie, die bisher analysiert wurden Konkurrenz: viele sehr kleine Wirtschaftssubjekte, die für sich genommen keinen Einfluss

Mehr

Wie verhalte ich mich bei einem Verhör und einer Mutprobe richtig?

Wie verhalte ich mich bei einem Verhör und einer Mutprobe richtig? Wie verhalte ich mich bei einem Verhör und einer Mutprobe richtig? Ringvorlesung Technische Mathematik 10. November 2009 Inhaltsverzeichnis Das Gefangenendilemma 1 Das Gefangenendilemma 2 Situationsanalyse

Mehr

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Kapitel 6 1

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Kapitel 6 1 Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Übersicht Teil Kapitel 5 Übersicht Teil Übersicht Einleitung Darstellung von simultanen Spielzügen in extensiver Form Normalform

Mehr

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 4

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 4 Skript zur Vorlesung Mikroökonomik II (WS 09) Teil 4 PR 13: Spieltheorie Weiterentwicklung der ökonomischen Theorie untersucht Situationen strategischen Verhaltens John von Neumann und Oskar Morgenstern

Mehr

Spieltheorie Teil 4. Tone Arnold. Universität des Saarlandes. 20. März 2008

Spieltheorie Teil 4. Tone Arnold. Universität des Saarlandes. 20. März 2008 Spieltheorie Teil 4 Tone Arnold Universität des Saarlandes 20. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 4 20. März 2008 1 / 64 Verfeinerungen des Nash GGs Das Perfekte Bayesianische

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Spieltheorie und Anwendungen 1. Spiele mit simultanen und sequentiellen Zügen Informationsmengen Normalform vs.

Mehr

Klausur zur Vorlesung Spieltheorie Musterlösung

Klausur zur Vorlesung Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe Sommersemester 2001 Klausur zur Vorlesung Spieltheorie Musterlösung Die Klausur besteht aus vier Vorfragen, von denen drei zu beantworten sind sowie drei Hauptfragen, von denen

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen .. Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS Inhalt. Einleitung. Sequentielle Spiele Terminologie Spielbäume Lösen von Sequentiellen Spielen .. Motivation: Warum

Mehr

Das Gefangenendilemma (Prisoner s Dilemma)

Das Gefangenendilemma (Prisoner s Dilemma) SPIELTHEORIE Das Gefangenendilemma (Prisoner s Dilemma) 2 Zwei Herren (Braun und Blau) haben eine Bank überfallen. Der Sheriff hat sie gefasst, kann aber nur ein minder schweres Verbrechen nachweisen (unerlaubter

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Simultane Spiele 1. Einführung: Spiele in Normalform Nash-Gleichgewicht Dominanz 2. Typen von Spielen Gefangenendilemma

Mehr

Mikroökonomik II/Makroökonomik II

Mikroökonomik II/Makroökonomik II Mikroökonomik II/Makroökonomik II Prof. Dr. Maik Heinemann Universität Lüneburg Institut für Volkswirtschaftslehre Wirtschaftstheorie und Makroökonomik heinemann@uni-lueneburg.de Wintersemester 2007/2008

Mehr

AVWL I (Mikro) 5-31 Prof. Dr. K. Schmidt Spieler 1 Oben Unten Spieler 2 Links Rechts 1, 3 0, 1 2, 1 1, 0 Figur 5.4: Auszahlungsmatrix eines Spiels Wen

AVWL I (Mikro) 5-31 Prof. Dr. K. Schmidt Spieler 1 Oben Unten Spieler 2 Links Rechts 1, 3 0, 1 2, 1 1, 0 Figur 5.4: Auszahlungsmatrix eines Spiels Wen AVWL I (Mikro) 5-30 Prof. Dr. K. Schmidt 5.7 Einfuhrung in die Spieltheorie Ein \Spiel" besteht aus: einer Menge von Spielern einer Menge von moglichen Strategien fur jeden Spieler, einer Auszahlungsfunktion,

Mehr

3. Sequentielle Spiele mit vollständiger Information: Die Extensivform

3. Sequentielle Spiele mit vollständiger Information: Die Extensivform Spieltheorie Sommersemester 2007 1 3. Sequentielle Spiele mit vollständiger Information: Die Extensivform Beispiel (Sequentieller Geschlechterkampf): Betrachten wir eine abgewandelte Geschichte des Spiels

Mehr

Übung Kapitel

Übung Kapitel Einführung in die Spieltheorie und Experimental Economics Übung Kapitel 4 28.09.205 Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen Aufgabe a) Dominante Strategie 2 l r o 2, 4, 0 u 6, 5 4,

Mehr

Grundlagen und Nash Gleichgewichte in reinen Strategien

Grundlagen und Nash Gleichgewichte in reinen Strategien Grundlagen und Nash Gleichgewichte in reinen Strategien Yves Breitmoser, EUV Frankfurt (Oder) Zahlen und Vektoren IR ist die Menge der reellen Zahlen IR + = r IR r 0 IR n ist die Menge aller Vektoren von

Mehr

Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien

Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien Kapitel 4 Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 2 - Übersicht Teil 2 Sequentielle Spiele (Kapitel

Mehr

VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012

VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012 Fakultät Wirtschaftswissenschaften Professur für Volkswirtschaftslehre, insb. Managerial Economics VERHALTENSORIENTIERTE SPIELTHEORIE SS 2012 Übung 1 Mark Kirstein mark.kirstein@tu-dresden.de Dresden,

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

Spieltheorie und Wettbewerbsstrategie Prof. Dr. M. Adams Wintersemester 10/11

Spieltheorie und Wettbewerbsstrategie Prof. Dr. M. Adams Wintersemester 10/11 Kapitel 11 1 Spieltheorie und Wettbewerbsstrategie Prof. Dr. M. Adams Wintersemester 10/11 Themen in diesem Kapitel Spiele und strategische Entscheidungen 2 Dominante Strategien Mehr zum Nash-Gleichgewicht

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt

Mehr

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form)

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form) 1 KAP 9. Dynamische Spiele Bisher: alle Spieler ziehen simultan bzw. können Aktionen der Gegenspieler nicht beobachten Nun: Dynamische Spiele Spieler können nacheinander ziehen bzw. die Entscheidugen anderer

Mehr

Spieltheorie, A. Diekmann Musterlösungen

Spieltheorie, A. Diekmann Musterlösungen Spieltheorie, A. iekmann Musterlösungen Übungsblatt 1 Aufgabe 1 c) Geben Sie Pareto-optimale Strategienprofile an. Lösung: (Steal, Split), (Split, Split), (Split, Steal) d) Geben Sie das oder die Nash-Gleichgewichte

Mehr

Spieltheorie Übungsblatt 5

Spieltheorie Übungsblatt 5 Spieltheorie Übungsblatt 5 Tone Arnold Universität des Saarlandes 16. Juni 2008 Tone Arnold (Universität des Saarlandes) Musterlösung Übungsblatt 5 16. Juni 2008 1 / 19 Aufgabe 1 (a) Betrachten Sie das

Mehr

Daniel Krähmer, Lennestr. 43, 4. OG, rechts. WWW: Übungsleiter: Matthias Lang,

Daniel Krähmer, Lennestr. 43, 4. OG, rechts. WWW:  Übungsleiter: Matthias Lang, 1 SPIELTHEORIE Daniel Krähmer, Lennestr. 43, 4. OG, rechts. kraehmer@hcm.uni-bonn.de Sprechstunde: Mi, 13:30-14:30 Uhr WWW: http://www.wiwi.uni-bonn.de/kraehmer/ Übungsleiter: Matthias Lang, lang@uni-bonn.de

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Strategische Züge 1. Einführung: Strategische Züge 2. Bedingungslose Züge 3. Bedingte Züge Drohung Versprechen

Mehr

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information Spieltheorie Teil 1: Statische Spiele mit vollständiger Information 1 Worum geht es? Wir untersuchen Situationen, in denen alle Entscheidungsträger (Agenten, Spieler) rational sind, jeder Spieler eine

Mehr

NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG. Minimaxlösungen & Gleichgewichte

NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG. Minimaxlösungen & Gleichgewichte NICHTKOOPERATIVE SPIELTHEORIE EINFÜHRUNG Minimaxlösungen & Gleichgewichte Spieltheorie Einführungsbeispiel Gefangenendilemma (Prisoner s Dilemma) Nicht kooperierende Spielteilnehmer Spieler Gefangener

Mehr

Anmerkung: Gescannte Objekte entstammen: Christian Rieck (2006); Spieltheorie Eine Einführung; Christian Rieck Verlag; Eschborn

Anmerkung: Gescannte Objekte entstammen: Christian Rieck (2006); Spieltheorie Eine Einführung; Christian Rieck Verlag; Eschborn Anmerkung: Gescannte Objekte entstammen: Christian Rieck (2006); Spieltheorie Eine Einführung; Christian Rieck Verlag; Eschborn Zahlreiche weitere Textelemente entstammen WIKIPEDIA http://de.wikipedia.org/wiki/spieltheorie

Mehr

Klausur zur Vorlesung Spieltheorie

Klausur zur Vorlesung Spieltheorie Dr. Tone Arnold Sommersemester 2006 Klausur zur Vorlesung Spieltheorie Die Klausur besteht aus drei Vorfragen und drei Hauptfragen, von denen jeweils zwei zu beantworten sind. Sie haben für die Beantwortung

Mehr

Kleines Lexikon der Begriffe*

Kleines Lexikon der Begriffe* Kleines Lexikon der Begriffe* Auszahlungsfunktion (payoff function) Eine Funktion, die jedem Strategienprofil einen Auszahlungsvektor zuweist. Der Auszahlungsvektor enthält für jeden Spieler einen Wert

Mehr

Informatik I: Einführung in die Programmierung

Informatik I: Einführung in die Programmierung Informatik I: Einführung in die Programmierung 8. Exkurs: Spieltheorie Albert-Ludwigs-Universität Freiburg Bernhard Nebel 4. November 2016 1 4. November 2016 B. Nebel Info I 3 / 33 Spieltheorie beschäftigt

Mehr

Informatik I: Einführung in die Programmierung

Informatik I: Einführung in die Programmierung Informatik I: Einführung in die Programmierung 8. Exkurs: Spieltheorie Albert-Ludwigs-Universität Freiburg Bernhard Nebel 7. November 2017 1 7. November 2017 B. Nebel Info I 3 / 33 Spieltheorie beschäftigt

Mehr

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information. Folienskriptum Spieltheorie (U. Berger, 2015) 1

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information. Folienskriptum Spieltheorie (U. Berger, 2015) 1 Spieltheorie Teil 1: Statische Spiele mit vollständiger Information Folienskriptum Spieltheorie (U. Berger, 2015) 1 Worum geht es? Wir untersuchen Entscheidungssituationen, in denen alle Entscheidungsträger

Mehr

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 3

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 3 Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 3 PR 11.3.1: Intertemporale Preisdiskriminierung Def.: unterschiedliche Preise zu unterschiedlichen Zeitpunkten Entspricht PD 3. Grades Nur sinnvoll

Mehr

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität.

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. Spieltheorie Sommersemester 2007 1 Wiederholte Spiele Grundlegende Konzepte Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. 2. Wichtige Phänomene sind

Mehr

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. Dynamische Spiele werden sehr schnell zu komplex um sie zu analysieren.

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. Dynamische Spiele werden sehr schnell zu komplex um sie zu analysieren. Spieltheorie Winter 2013/14 Professor Dezsö Szalay 3. Wiederholte Spiele Dynamische Spiele werden sehr schnell zu komplex um sie zu analysieren. Eine Klasse von Spielen, die man jedoch relativ gut versteht

Mehr

Strategisches Denken (Spieltheorie)

Strategisches Denken (Spieltheorie) Strategisches Denken (Spieltheorie) MB Spieltheorie Zentrales Werkzeug in Situationen interdependenter Entscheidungen Beispiel für strategische Situation: Sollte Adidas mehr für Werbung ausgeben? Dies

Mehr

Zusatzaufgaben. schöne Aufgabe in der Literatur finden oder Sie sich eine ausdenken, schicken Sie sie uns und wir werden sie hier hinzufügen.

Zusatzaufgaben. schöne Aufgabe in der Literatur finden oder Sie sich eine ausdenken, schicken Sie sie uns und wir werden sie hier hinzufügen. Zusatzaufgaben In diesem Dokument werden wir Ihnen einige zusätzliche Übungsaufgaben zur Verfügung stellen. Es ist hiermit noch nicht abgeschlossen, sondern soll bis zum Ende des Semesters wachsen. Falls

Mehr

Spieltheorie. Christian Rieck Verlag. Eine Einführung. Von Christian Rieck

Spieltheorie. Christian Rieck Verlag. Eine Einführung. Von Christian Rieck Spieltheorie Eine Einführung Von Christian Rieck Christian Rieck Verlag Inhaltsverzeichnis 5 1. Über dieses Buch 11 1.1. Zur Didaktik des Buches 13 1.2. Ein Angebot und eine Bitte 16 2. Was ist Spieltheorie?

Mehr

Extensive Spiele mit perfekter Information

Extensive Spiele mit perfekter Information Seminarvortrag Extensive Spiele mit perfekter Information Michael Fleermann 05.06.2012 1 Einführung und Definition Ein extensives Spiel ist eine explizite Beschreibung der sequenziellen Struktur eines

Mehr

Teilspielperfektes Gleichgewicht

Teilspielperfektes Gleichgewicht 35 15Juli06 Teilspielperfektes Gleichgewicht (subgame perfect equilbrium) Ermittlung i.a. durch Rückwärtsinduktion möglich. DN, Prinzip 1: Looking forward, reason back Strengeres Konzept als das Nash-GG:

Mehr

Industrieökonomik Sommersemester Vorlesung,

Industrieökonomik Sommersemester Vorlesung, Industrieökonomik Sommersemester 2007 5. Vorlesung, 18.05.2007 PD Dr. Jörg Naeve Universität des Saarlandes Lehrstuhl für Nationalökonomie insbes. Wirtschaftstheorie mailto:j.naeve@mx.uni-saarland.de http://www.uni-saarland.de/fak1/fr12/albert

Mehr

Einführung in die Spieltheorie und Nash-Gleichgewichte

Einführung in die Spieltheorie und Nash-Gleichgewichte Einführung in die Spieltheorie und Nash-Gleichgewichte Vortrag im Seminar WT und Ihre Anwendungen Institut für Mathematische Statistik Fachbereich Mathematik und Informatik Westfählische Wilhelms-Universtät

Mehr

Kapitel 11. Wiederholte Spiele. Einleitung. Übersicht 2. Einleitung 6

Kapitel 11. Wiederholte Spiele. Einleitung. Übersicht 2. Einleitung 6 Übersicht : Wiederholte Spiele Einleitung Dilemmas der realen Welt Endlich wiederholte Spiele Unendlich wiederholte Spiele Auswege aus dem Gefangenendilemma Evidenz durch Experimente 1 Übersicht 2 Einleitung

Mehr

Teil IV. Spiel- und Oligopoltheorie

Teil IV. Spiel- und Oligopoltheorie 1 Teil IV Spiel- und Oligopoltheorie 15. Einführung in die Spieltheorie Literatur Holler, M.J., G. Illing (1991): a.a.o. Kreps, D.M. (1990), a.a.o. Rauhut, urkhard, N. Schmitz, E.-W. Zachow (1979): Spieltheorie

Mehr

6. Dynamische Spiele mit unvollständiger Information

6. Dynamische Spiele mit unvollständiger Information 6. Dynamische Spiele mit unvollständiger Information Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 6. Dynamische Spiele mit unvollständiger Information

Mehr

10. Vorlesung. 12. Dezember 2006 Guido Schäfer

10. Vorlesung. 12. Dezember 2006 Guido Schäfer LETZTE ÄNDERUNG: 5. JANUAR 2007 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 10. Vorlesung 12. Dezember 2006 Guido Schäfer 3 Spiele in extensiver Form Bisher haben wir uns ausschliesslich mit

Mehr

1 Was ist Spieltheorie? Informatik I: Einführung in die Programmierung 8. Exkurs: Spieltheorie. 2 Strategische Spiele. Bernhard Nebel 2.

1 Was ist Spieltheorie? Informatik I: Einführung in die Programmierung 8. Exkurs: Spieltheorie. 2 Strategische Spiele. Bernhard Nebel 2. Informatik I: Einführung in die Programmierung 8. Exkurs: Spieltheorie Albert-Ludwigs-Universität Freiburg Bernhard Nebel 2. November 205 2. November 205 B. Nebel Info I 3 / 33 2 Spieltheorie beschäftigt

Mehr

Klausur zur Spieltheorie Musterlösung

Klausur zur Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe/Dr. Tone Arnold Sommersemester 2002 Klausur zur Spieltheorie Musterlösung Vorfragen Aufgabe 1 Berechnen Sie alle Nash Gleichgewichte des folgenden Spiels (in reinen und gemischten

Mehr

Inspektionsspiele. Projektvortrag von Andreas Hapek

Inspektionsspiele. Projektvortrag von Andreas Hapek Inspektionsspiele Projektvortrag von Andreas Hapek 1 Ein Inspektionsspiel ist ein 2 Personen Spiel, in der ein Inspektor (Kontrolleur) darüber wacht, dass sich die Gegen-Partei, der sog. Inspizierte, an

Mehr

Kapitel 4: Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien. Einleitung. Übersicht 3

Kapitel 4: Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien. Einleitung. Übersicht 3 Übersicht Teil : Spiele mit simultanen Spielzügen und reinen : Diskrete Sequentielle Spiele (Kapitel 3) Teil Diskrete () Reine Simultane Spiele Stetige (Kapitel 5) Gemischte (Kapitle 7 & 8) Kapitel 6 Übersicht

Mehr

Mikroökonomie Oligopol und Monopolistischer Wettbewerb

Mikroökonomie Oligopol und Monopolistischer Wettbewerb Mikroökonomie Oligopol und Universität Erfurt Wintersemester 08/09 Dittrich (Universität Erfurt) Preisbildung bei Marktmacht Winter 1 / 39 Übersicht Preiswettbewerb Wettbewerb versus Kollusion: Das Gefangenendilemma

Mehr

Spieltheorie Vortrag im Rahmen des Schwingungsphysikalischen Kolloquiums Drittes Physikalisches Institut (DPI)

Spieltheorie Vortrag im Rahmen des Schwingungsphysikalischen Kolloquiums Drittes Physikalisches Institut (DPI) Spieltheorie Vortrag im Rahmen des Schwingungsphysikalischen Kolloquiums Drittes Physikalisches Institut (DPI) Ireneusz (Irek) Iwanowski 20. Januar 2005 Motivation Was ist das Wesen der Spieltheorie? Die

Mehr

Lösungshinweise zu den zusätzlichen Übungsaufgaben

Lösungshinweise zu den zusätzlichen Übungsaufgaben Lösungshinweise zu den zusätzlichen Übungsaufgaben Aufgabe Z.1 Als Gleichgewicht ergibt sich, mit Auszahlungsvektor 5, 5. Aufgabe Z. Spieler 1: Zentralbank mit reinen und diskreten Strategien 0 und 4.

Mehr

6. Wiederholte Spiele

6. Wiederholte Spiele 6. Wiederholte Spiele 6.1. Grundlegende Konzepte Es gibt zwei wesentliche Gründe, wiederholte Spiele zu betrachten. Zum einen finden die ökonomischen und sozialen Interaktionen, die wir als Spiele modellieren,

Mehr

Statische Spiele mit unvollständiger Information: Bayesianische-Spiele

Statische Spiele mit unvollständiger Information: Bayesianische-Spiele Statische Spiele mit unvollständiger Information: Bayesianische-Spiele In einigen Situationen verfügen Spieler (nur) über unvollständige Information. Möglicherweise kennen sie die relevanten Charakteristika

Mehr

Übungen zu Kapitel 4: Einführung in die Spieltheorie

Übungen zu Kapitel 4: Einführung in die Spieltheorie Universität Erfurt Lehrstuhl für Mikroökonomie Prof Dr Bettina Rockenbach Übungen zu Kapitel 4: Einführung in die Spieltheorie Aufgabe 41 Spieler B Spieler A B1 B2 A1 5, 6 7, 2 A2 4, 5 9, 1 Im obigen Spiel

Mehr

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. 2. Dynamische Spiele mit vollständiger Information

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. 2. Dynamische Spiele mit vollständiger Information Spieltheorie Winter 2013/14 Professor Dezsö Szalay 2. Dynamische Spiele mit vollständiger Information In Teil I haben wir Spiele betrachtet, in denen die Spieler gleichzeitig (oder zumindest in Unkenntnis

Mehr

Perfekte und vollständige Information

Perfekte und vollständige Information Dynamische Spiele und unvollständige Information Mehrstufige Spiele mit beobachtbaren Handlungen: Rückwärtsinduktion und Teilspielperfektheit Wiederholte Spiele und kooperatives Verhalten Unvollständige

Mehr

Monopolistische Konkurrenz und Oligopol

Monopolistische Konkurrenz und Oligopol IK Ökonomische Entscheidungen & Märkte Monopolistische Konkurrenz und Oligopol (Kapitel 12) Nicole Schneeweis (JKU Linz) IK Ökonomische Entscheidungen & Märkte 1 / 26 Verschiedene Marktformen Anzahl der

Mehr

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3 Übersicht Teil 2 Kaitel 7 und Kaitel 8: Gleichgewichte in gemischten Strategien Übersicht Teil 2 2 Übersicht Einleitung Was ist eine gemischte Strategie? Nutzen aus gemischten Strategien Reaktionsfunktionen

Mehr

Dominanzüberlegungen in einfachen Matrix Spielen (Reine Strategien)

Dominanzüberlegungen in einfachen Matrix Spielen (Reine Strategien) Dominanzüberlegungen in einfachen Matrix Spielen (Reine Strategien) Dominanzüberlegungen können beim Auffinden von Nash Gleichgewichten helfen Ein durch Dominanzüberlegungen ermitteltes Gleichgewicht ist

Mehr

Spieltheorie Teil 6. Tone Arnold. Universität des Saarlandes. 25. März 2008

Spieltheorie Teil 6. Tone Arnold. Universität des Saarlandes. 25. März 2008 Spieltheorie Teil 6 Tone Arnold Universität des Saarlandes 25. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 6 25. März 2008 1 / 104 Wiederholte Spiele In vielen Fällen finden Interaktionen

Mehr

Industrieökonomik II Wintersemester 2007/08 1. Industrieökonomik II. Prof. Dr. Ulrich Schwalbe. Wintersemester 2007/ 2008

Industrieökonomik II Wintersemester 2007/08 1. Industrieökonomik II. Prof. Dr. Ulrich Schwalbe. Wintersemester 2007/ 2008 Industrieökonomik II Wintersemester 2007/08 1 Industrieökonomik II Prof. Dr. Ulrich Schwalbe Wintersemester 2007/ 2008 Industrieökonomik II Wintersemester 2007/08 2 Gliederung 1. Wettbewerbsbeschränkungen

Mehr

Darstellung von Spielen: Extensivform versus Normalform

Darstellung von Spielen: Extensivform versus Normalform Spieltheorie Sommersemester 2007 1 Darstellung von Spielen: Extensivform versus Normalform Wir haben zwei Arten kennen gelernt, ein Spiel zu beschreiben: die Normalform, oder auch strategische Form und

Mehr

VO Grundlagen der Mikroökonomie

VO Grundlagen der Mikroökonomie Institut für Wirtschaftsmathematik Ökonomie VO 105.620 Grundlagen der Mikroökonomie Monopolistische Konkurrenz und Oligopol (Kapitel 12) ZIEL: Monopolistische Konkurrenz Oligopol Preiswettbewerb Wettbewerb

Mehr

Oligopol und Kartell

Oligopol und Kartell Oligopol und Kartell Vorlesung Mikroökonomik 23.1.26 Wieso ist die vollständige Konkurrenz die ideale Marktform? Paretooptimalität Maximierung der Produzenten- und Konsumentenrenten Im Marktgleichgewicht

Mehr

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008 Spieltheorie Teil 2 Tone Arnold Universität des Saarlandes 28. April 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 2 28. April 2008 1 / 66 Sequenzielle Spiele: Strategie vs. Aktion Bisher:

Mehr

Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum.

Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum. Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum. Fassung vom 1. Dezember Weitere Materialien sind erhältlich unter: http://www.rub.de/spieltheorie

Mehr

Klausur zur Vorlesung Spieltheorie

Klausur zur Vorlesung Spieltheorie Dr. Tone Arnold Sommersemester 2007 Klausur zur Vorlesung Spieltheorie Die Klausur besteht aus vier Vorfragen und drei Hauptfragen, von denen jeweils zwei zu bearbeiten sind. Sie haben für die Klausur

Mehr

Angewandte Spieltheorie WOW B.Sc. Modul Vertiefung Volkswirtschaftslehre (4. Trim.) WINF B.Sc. Modul Wahlpflichtmodul 2 (7. Trim.)

Angewandte Spieltheorie WOW B.Sc. Modul Vertiefung Volkswirtschaftslehre (4. Trim.) WINF B.Sc. Modul Wahlpflichtmodul 2 (7. Trim.) Angewandte Spieltheorie WOW B.Sc. Modul Vertiefung Volkswirtschaftslehre (4. Trim.) WINF B.Sc. Modul Wahlpflichtmodul 2 (7. Trim.) Univ. Prof. Dr. Karl Morasch Volkswirtschaftslehre, insbesondere Mikroökonomie

Mehr

Spiele mit unvollst. Information: Bayes Nash und sequentielles Gleichgewicht

Spiele mit unvollst. Information: Bayes Nash und sequentielles Gleichgewicht . Einführung: Idee, Beispiele, formale Darstellung 2. Statische Spiele bei vollständiger Information 3. Dynamische Spiele und unvollständige Information Dynamische Spiele und unvollständige Information

Mehr

9.3Nash-Gleichgewicht

9.3Nash-Gleichgewicht 1 9.3Nash-Gleichgewicht Die Wirtschaftswissenschaften und die sogenannte Spieltheorie stehen schon immer in einem engen Zusammenhang. Die Beiträge von Cournot und Bertrand können zu den frühesten spieltheoretischen

Mehr

Grundzüge der Spieltheorie

Grundzüge der Spieltheorie Grundzüge der Spieltheorie Prof. Dr. Stefan Winter Ruhr-Universität Bochum Begleitmaterialien zur Vorlesung sind abrufbar unter: http://www.rub.de/spieltheorie Prof. Dr. Stefan Winter 1 Die folgende Vorlesungsaufzeichnung

Mehr

Technische Universität Dresden Fakultät Wirtschaftswissenschaften Professur für VWL, insb. Managerial Economics

Technische Universität Dresden Fakultät Wirtschaftswissenschaften Professur für VWL, insb. Managerial Economics Technische Universität Dresden Fakultät Wirtschaftswissenschaften Professur für VWL, insb. Managerial Economics Übung zur Vorlesung Anwendungsorientierte Spieltheorie und Verhaltensorientierte Mikroökonomik

Mehr

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. Sprechstunde: Freitags 12-14:00 (Bitte unbedingt per einen Termin vereinbaren)

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. Sprechstunde: Freitags 12-14:00 (Bitte unbedingt per  einen Termin vereinbaren) Spieltheorie Winter 2013/14 Professor Dezsö Szalay Sprechstunde: Freitags 12-14:00 (Bitte unbedingt per email einen Termin vereinbaren) email: szalay(at)uni-bonn.de Büro 0.16 Juridicum Literatur: Robert

Mehr

Klausur Mikroökonomik II. Wichtige Hinweise

Klausur Mikroökonomik II. Wichtige Hinweise Prof. Dr. Anke Gerber Klausur Mikroökonomik II 1. Termin Wintersemester 2013/14 07.02.2014 Wichtige Hinweise 1. Lösen Sie nicht die Heftung der ausgeteilten Klausur. 2. Verwenden Sie nur das ausgeteilte

Mehr

Gefangenendilemma (Prisoner's dilemma)

Gefangenendilemma (Prisoner's dilemma) Gefangenendilemma (Prisoner's dilemma) 1 Das Ziel des folgenden Spiels besteht für jeden Gefangenen darin, die Gefängnisdauer möglichst tief zu halten. Diese fällt unterschiedlich aus, je nachdem, ob die

Mehr

Einführung in die Spieltheorie

Einführung in die Spieltheorie Seminar über Algorithmen - Einführung in die Spieltheorie Nadja Scharf Institut für Informatik Einführung in die Spieltheorie nach Nisan, Roughgarden, Tardos, Vazirani: Algorithmic Game Theory, Kapitel

Mehr

Entscheidungstheorie Teil 6. Thomas Kämpke

Entscheidungstheorie Teil 6. Thomas Kämpke Entscheidungstheorie Teil 6 Thomas Kämpke Seite 2 Inhalt Entscheidungstheorie und Spiel Ultimatumspiel Mögliche Gültigkeitsbereiche von formaler Entscheidungstheorie Spieltheorie Gefangenen Dilemma Nash-Gleichgewicht

Mehr

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen 1 KAP 1. Bi Matrix Spiele Wir betrachten eine Situation mit zwei Spielern, die ihre Aktionen (Strategien) simultan und unabhängig wählen die möglichen Strategien und Nutzen ihrer Gegensp. vollständig kennen

Mehr

1 Einleitung Spiele in Normalforrn

1 Einleitung Spiele in Normalforrn Inhaltsverzeichnis 1 Einleitung 1 1.1 Der Ursprung der Spieltheorie 1 1.2 Entwicklungsetappen der Spieltheorie 3 1.3 Personenkult in der Spieltheorie 8 2 Spiele in Normalforrn 11 2.1 Grundlegende Konzepte

Mehr

Teil 1: Statische Spiele mit vollständigen Informationen

Teil 1: Statische Spiele mit vollständigen Informationen Teil 1: Statische Spiele mit vollständigen Informationen Kapitel 1: Grundlagen und Notation Literatur: Tadelis Chapter 3 Statisches Spiel In einem statischen Spiel...... werden die Auszahlungen durch die

Mehr

Ökonomische Analyse des Rechts

Ökonomische Analyse des Rechts Ökonomische Analyse des Rechts Spieltheorie Harald Wiese Universität Leipzig Wintersemester 2011/2012 Harald Wiese (Universität Leipzig) Spieltheorie Wintersemester 2011/2012 1 / 19 Gliederung der Vorlesung

Mehr

Kapitel 6: Glaubwürdigkeit und Sequentielle Rationalität

Kapitel 6: Glaubwürdigkeit und Sequentielle Rationalität Kapitel 6: Glaubwürdigkeit und Sequentielle Rationalität Literatur: Tadelis Chapter 7 und 8 Prof. Dr. Philipp Weinschenk, Lehrstuhl für Mikroökonomik, TU Kaiserslautern Kapitel 6.: Nash Gleichgewicht und

Mehr

Mikroökonomik B Teil II: Spieltheorie

Mikroökonomik B Teil II: Spieltheorie Mikroökonomik B Teil II: Spieltheorie Dennis L. Gärtner 19. Mai 2011 Motivation Ein Spiel Jeder von Ihnen schreibt eine ganze Zahl zwischen 0 und 100 auf. Ziel ist, 2/3 des Durchschnitts der angegebenen

Mehr

KAP 1. Normalform Definition Ein Spiel G in Normalform (auch: Strategieform) besteht aus den folgenden 3 Elementen:

KAP 1. Normalform Definition Ein Spiel G in Normalform (auch: Strategieform) besteht aus den folgenden 3 Elementen: 1 KAP 1. Normalform Definition Ein Spiel G in Normalform (auch: Strategieform) besteht aus den folgenden 3 Elementen: 1. Einer Menge von Spielern i I = {1,..., i,...n} 2. Einem Strategienraum S i für jeden

Mehr

Nicht-kooperative Spiele

Nicht-kooperative Spiele Kapitel 1 Nicht-kooperative Spiele 1.1 Zwei-Personen-Spiele Definition 1: Ein Zwei-Personen-Spiel Γ besteht aus einem Paar nichtleerer Mengen S T zwei reellwertigen Funktionen φ 1 φ 2 auf dem kartesischen

Mehr

Strategische Asymmetrien Stackelberg-Modelle und Markteintritt

Strategische Asymmetrien Stackelberg-Modelle und Markteintritt Strategische Asymmetrien Stackelberg-Modelle und Markteintritt Stackelberg-Modelle In den Cournot- bzw. Bertrand-Modellen agieren die Firmen gleichzeitig. Diese Annahme ist nicht immer gerechtfertigt.

Mehr

Kapitel 12 Spieltheorie

Kapitel 12 Spieltheorie Kapitel 12 Spieltheorie Vor- und Nachbereitung: Varian, Chapter 28 und 29 Frank, Chapter 13 Übungsblatt 12 Klaus M. Schmidt, 2008 12.1 Einleitung Bisher haben wir Ein-Personen-Entscheidungsprobleme betrachtet.

Mehr

9.4Teilspiel-perfekteGleichgewichte

9.4Teilspiel-perfekteGleichgewichte 1 9.4Teilspiel-perfekteGleichgewichte In diesem Abschnitt werden wir, von einer Variation der Auszahlungsmatrix des vorangegangenen Abschnitts ausgehend, einige weitere Kritikpunkte an dem Cournot- Modellaufgreifen.DamitwerdenwirdannquasiautomatischzudemSelten'schenKonzept

Mehr

In vielen Situation interagieren Spieler wiederholt: Interaktion innerhalb von Organisationen und Gruppen

In vielen Situation interagieren Spieler wiederholt: Interaktion innerhalb von Organisationen und Gruppen 1 Kap 13: Wiederholte Spiele In vielen Situation interagieren Spieler wiederholt: Konkurrenz auf Märkten oder in Auktionen Interaktion innerhalb von Organisationen und Gruppen (Firmen, Verwaltungen, Dorfgemeinschaften,

Mehr

Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele

Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele Prof. Dr. Karl Morasch, Dipl.Vw. Florian Bartholomae und Dipl.Vw. Marcus Wiens, Universität der Bundeswehr München Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele

Mehr

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Einleitung. Übersicht Teil 2. Übersicht

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Einleitung. Übersicht Teil 2. Übersicht Üersiht Teil apitel 6: Spiele mit simultanen und seuentiellen Spielzügen apitel 6 apitel 5 Üersiht Teil Üersiht Einleitung Darstellung von simultanen Spielzügen in extensiver Form Normalform vs extensive

Mehr

Multiagent Interactions

Multiagent Interactions Multiagent Interactions Ein Vortrag von: Rhena Möller und Svenja Heitländer Für das Seminar Multiagentensysteme SS09 Inhalt Einleitung Was ist Interaktion und wie funktioniert sie? Anwendungen Utility

Mehr

4. Wiederholte Spiele

4. Wiederholte Spiele 4. Wiederholte Spiele Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 4. Wiederholte Spiele Spieltheorie, Wintersemester 2014/15 1 / 43 Literaturhinweise

Mehr

4. Wiederholte Spiele

4. Wiederholte Spiele 4. Wiederholte Spiele Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 4. Wiederholte Spiele Spieltheorie, Wintersemester 2014/15 1 / 43 Literaturhinweise

Mehr