Übung Kapitel

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übung Kapitel"

Transkript

1 Einführung in die Spieltheorie und Experimental Economics Übung Kapitel Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen

2 Aufgabe a) Dominante Strategie 2 l r o 2, 4, 0 u 6, 5 4, 2 Nash-Gleichgewicht {(u), (l)} Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 2

3 Aufgabe b) Nash-Gleichgewicht {(o), (l)} 2 l r o, 0, u, 0, Nash-Gleichgewicht {(u), (r)} Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 3

4 Aufgabe c) Beste Antwort auf u 2 l m r o 0, 9, 0 2, 3 g 5, 9 7, 3, 7 u 7, 5 0, 0 3, 5 Dominante Strategie Nash-Gleichgewicht {(u), (m)} Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 4

5 Aufgabe 2 Wenn ein Spieler in einem simultanen Spiel eine dominante Strategie besitzt, erreicht er mit Sicherheit sein bestes Ergebnis (seine höchste Auszahlung). Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 5

6 Aufgabe 2 Eine dominante Strategie erzielt die höchste Auszahlung gegen jede Strategie des Gegenüber. Das Spielen einer dominanten Strategie garantiert aber nicht, dass man die höchste aller möglichen Auszahlungen erhält. Die Aussage ist somit falsch. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 6

7 Aufgabe 2 Dominante Strategie Bonny Gestehen Clyde Gestehen Leugnen (Abweichen) (Kooperieren) (Abweichen) 0J., 0J. J., 25 J. Leugnen (Kooperieren) 25 J., J. 3 J., 3 J. höchste Auszahlungen Gleichgewicht: Beide Spieler wählen ihre dominante Strategie. Die Auszahlungen betragen im GG je 0 Jahre. Copyright c 2000 by W.W. Norton & Company Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 7

8 Aufgabe 3 Lösen entweder durch iterierte Elimination dominierter Strategien Oder durch beste Antwort Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 8

9 Aufgabe 3 2 l m r o, 2 /2//,//, 0 g 0, 5 ///,//2 7, 4 u -, /3//,//0 5, 2 Spieler 2 hat die strikt dominierte Strategie m (von l). Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 9

10 Aufgabe 3 2 l r o, 2, 0 g 0, 5 7, 4 u -//,// /5//,//2 Dann hat Spieler die durch g strikt dominierte Strategie u. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 0

11 Aufgabe 3 2 l r o, 2 ///,//0 g 0, 5 /7//,//4 r wird strikt dominiert durch l. Nash-Gleichgewicht {(o), (l)} Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen

12 Aufgabe 3 Nash-Gleichgewicht {(o), (l)} 2 l m r o, 2 2,, 0 g 0, 5, 2 7, 4 u -, 3, 0 5, 2 Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 2

13 Aufgabe 3 Es existieren zwei Strategiekombinationen {(o), (l)} und {(g), (m)}, die zur Auszahlung (, 2) führen. Nur {(o), (l)} entspricht dem Nash-Gleichgewicht. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 3

14 Aufgabe 3 Nash-Gleichgewicht {(o), (l)} 2 l m r o, 2 2,, 0 g 0, 5, 2 7, 4 u -, 3, 0 5, 2 Strategiekombination {(g), (m)} Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 4

15 Aufgabe 4 a) 2 A B A /5//,//5 /0//,//6 B 8, 4 3, C 4, 5 5, 3 A wird strikt dominiert von B. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 5

16 Aufgabe 4 a) 2 A B B 8, 4 /3//,// C 4, 5 /5//,//3 B wird strikt dominiert von A. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 6

17 Aufgabe 4 a) 2 A B 8, 4 C 4, 5 Nash-Gleichgewicht {(B), (A)} Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 7

18 Aufgabe 4 b) Nein, diese Methode führt oftmals zu keinem Ergebnis Wenn die sukzessive Elimination dominierter Strategien aber zu einem Ergebnis führt, ist dieses ein Nash-Gleichgewicht. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 8

19 Aufgabe 5 2 d e f a 23//,//// 5, 3 4, 4 b 9//,//// 8 /4//,//// 20 /3//,//// 9 c /// 35//,//4 5, 6 6, 7 Sukzessive Elimination strikt dominierter Strategien führt zu keiner Lösung (keine dominierte Strategie im verbleibenden Spiel). Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 9

20 Aufgabe 5 2 d e f a 23//,//// /5//,//// 3 //4/,///4 b 9//,//// 8 /4//,//// 20 /3//,//// 9 c /// 35//,//4 //5/,///6 6, 7 Sukzessive Elimination schwach dominierter Strategien führt zu einer Lösung (a wird schwach dominiert von c). Dabei wird jedoch ein Nash-Gleichgewicht übersehen. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 20

21 Aufgabe 5 2 d e f a 23, 5, 3 4, 4 b 9, 8 4, 20 3, 9 c 35, 4 5, 6 6, 7 Untersuchung Zelle für Zelle Beginn bspw. bei {(b), (d)} Spieler kann sich besser stellen, wenn er c spielt Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 2

22 Aufgabe 5 2 d e f a 23, 5, 3 4, 4 b 9, 8 4, 20 3, 9 c 35, 4 5, 6 6, 7 Spieler 2 spielt dann jedoch f. Spieler kann sich gegeben Strategie f von Spieler 2 nicht mehr besserstellen. Untersuchung Zelle für Zelle führt zu einer Lösung. Dabei wird jedoch ein Nash-Gleichgewicht übersehen. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 22

23 Aufgabe 5 2 d e f a 23, 5, 3 4, 4 b 9, 8 4, 20 3, 9 c 35, 4 5, 6 6, 7 Mittels Beste Antwort : Beide Nash-Gleichgewichte {(a), (e)} und {(c), (f)} werden gefunden. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 23

24 Aufgabe 6 In einem Nash-Gleichgewicht ist die Strategie eines jeden Spielers optimal gegeben die Strategien der anderen Spieler. Ein Nash-Gleichgewicht ist ein stabiler Zustand, aber ein Spieler kann einen Anreiz haben, unilateral abzuweichen. Ein Gleichgewicht in dominanten Strategien ist immer ein Nash-Gleichgewicht. Es kann multiple Nash-Gleichgewichte geben. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 24

Kapitel 4: Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien. Einleitung. Übersicht 3

Kapitel 4: Spiele mit simultanen Spielzügen und reinen Strategien: Diskrete Strategien. Einleitung. Übersicht 3 Übersicht Teil : Spiele mit simultanen Spielzügen und reinen : Diskrete Sequentielle Spiele (Kapitel 3) Teil Diskrete () Reine Simultane Spiele Stetige (Kapitel 5) Gemischte (Kapitle 7 & 8) Kapitel 6 Übersicht

Mehr

Kapitel 5: Spiele mit simultanen Spielzügen und reinen Strategien: Kontinuierliche Strategien

Kapitel 5: Spiele mit simultanen Spielzügen und reinen Strategien: Kontinuierliche Strategien Übersicht Teil 2 Kapitel 5: Spiele mit simultanen Spielzügen und reinen Strategien: Kontinuierliche Strategien Kapitel 5 1 Kapitel 5 Übersicht Teil 2 2 Übersicht Reine Strategien als stetige Variablen

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Simultane Spiele 1. Einführung: Spiele in Normalform Nash-Gleichgewicht Dominanz 2. Typen von Spielen Gefangenendilemma

Mehr

Spiele mit simultanen und sequentiellen Spielzügen

Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Spiele mit simultanen und sequentiellen Spielzügen Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 2 - Übersicht Teil 2 Sequentielle Spiele (Kapitel 3) Simultane Spiele Reine

Mehr

Lösungshinweise zu den zusätzlichen Übungsaufgaben

Lösungshinweise zu den zusätzlichen Übungsaufgaben Lösungshinweise zu den zusätzlichen Übungsaufgaben Aufgabe Z.1 Als Gleichgewicht ergibt sich, mit Auszahlungsvektor 5, 5. Aufgabe Z. Spieler 1: Zentralbank mit reinen und diskreten Strategien 0 und 4.

Mehr

Kapitel 11. Wiederholte Spiele. Einleitung. Übersicht 2. Einleitung 6

Kapitel 11. Wiederholte Spiele. Einleitung. Übersicht 2. Einleitung 6 Übersicht : Wiederholte Spiele Einleitung Dilemmas der realen Welt Endlich wiederholte Spiele Unendlich wiederholte Spiele Auswege aus dem Gefangenendilemma Evidenz durch Experimente 1 Übersicht 2 Einleitung

Mehr

Anwendungen der Spieltheorie

Anwendungen der Spieltheorie Mikroökonomie I Einführung in die Spieltheorie Universität Erfurt Wintersemester 08/09 Prof. Dr. Dittrich (Universität Erfurt) Spieltheorie Winter 1 / 28 Spieltheorie Die Spieltheorie modelliert strategisches

Mehr

D Spieltheorie und oligopolistische Märkte

D Spieltheorie und oligopolistische Märkte D Spieltheorie und oligopolistische Märkte Verhaltensannahmen in der Markttheorie, die bisher analysiert wurden Konkurrenz: viele sehr kleine Wirtschaftssubjekte, die für sich genommen keinen Einfluss

Mehr

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie Übersicht : Evolutionäre Spieltheorie Einleitung Evolutionäre Biologie Evolutionäre Spieltheorie: Idee Gefangenendilemma (Beispiel) Evolutionäre Stabilität Beispiele Wiederholtes Gefangenendilemma Chicken-Spiel

Mehr

Wie verhalte ich mich bei einem Verhör und einer Mutprobe richtig?

Wie verhalte ich mich bei einem Verhör und einer Mutprobe richtig? Wie verhalte ich mich bei einem Verhör und einer Mutprobe richtig? Ringvorlesung Technische Mathematik 10. November 2009 Inhaltsverzeichnis Das Gefangenendilemma 1 Das Gefangenendilemma 2 Situationsanalyse

Mehr

Klausur zur Vorlesung Spieltheorie Musterlösung

Klausur zur Vorlesung Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe Sommersemester 2001 Klausur zur Vorlesung Spieltheorie Musterlösung Die Klausur besteht aus vier Vorfragen, von denen drei zu beantworten sind sowie drei Hauptfragen, von denen

Mehr

Statische Spiele mit vollständiger Information

Statische Spiele mit vollständiger Information Statische Spiele mit vollständiger Information Wir beginnen nun mit dem Aufbau unseres spieltheoretischen Methodenbaukastens, indem wir uns zunächst die einfachsten Spiele ansehen. In diesen Spielen handeln

Mehr

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Kapitel 6 1

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Kapitel 6 1 Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen Kapitel 6 Übersicht Teil Kapitel 5 Übersicht Teil Übersicht Einleitung Darstellung von simultanen Spielzügen in extensiver Form Normalform

Mehr

AVWL I (Mikro) 5-31 Prof. Dr. K. Schmidt Spieler 1 Oben Unten Spieler 2 Links Rechts 1, 3 0, 1 2, 1 1, 0 Figur 5.4: Auszahlungsmatrix eines Spiels Wen

AVWL I (Mikro) 5-31 Prof. Dr. K. Schmidt Spieler 1 Oben Unten Spieler 2 Links Rechts 1, 3 0, 1 2, 1 1, 0 Figur 5.4: Auszahlungsmatrix eines Spiels Wen AVWL I (Mikro) 5-30 Prof. Dr. K. Schmidt 5.7 Einfuhrung in die Spieltheorie Ein \Spiel" besteht aus: einer Menge von Spielern einer Menge von moglichen Strategien fur jeden Spieler, einer Auszahlungsfunktion,

Mehr

Klausur zur Spieltheorie Musterlösung

Klausur zur Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe/Dr. Tone Arnold Sommersemester 2002 Klausur zur Spieltheorie Musterlösung Vorfragen Aufgabe 1 Berechnen Sie alle Nash Gleichgewichte des folgenden Spiels (in reinen und gemischten

Mehr

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3 Übersicht Teil 2 Kaitel 7 und Kaitel 8: Gleichgewichte in gemischten Strategien Übersicht Teil 2 2 Übersicht Einleitung Was ist eine gemischte Strategie? Nutzen aus gemischten Strategien Reaktionsfunktionen

Mehr

STRATEGISCHES DENKEN: Einführung in die Spieltheorie

STRATEGISCHES DENKEN: Einführung in die Spieltheorie STRATEGISCHES DENKEN: Einführung in die Spieltheorie 1 Prof. Dr. Aleksander Berentsen Abteilung Wirtschaftstheorie Prof. Dr. Gabriele Camera Abteilung Makroökonomie Übungen: Lukas Altermatt Fabian Schär

Mehr

Klausur zur Vorlesung Spieltheorie

Klausur zur Vorlesung Spieltheorie Dr. Tone Arnold Sommersemester 2007 Klausur zur Vorlesung Spieltheorie Die Klausur besteht aus vier Vorfragen und drei Hauptfragen, von denen jeweils zwei zu bearbeiten sind. Sie haben für die Klausur

Mehr

2. Vorlesung. 1.3 Beste-Antwort Funktion. Vorlesung: Einführung in die Spieltheorie WS 2006/ Oktober 2006 Guido Schäfer

2. Vorlesung. 1.3 Beste-Antwort Funktion. Vorlesung: Einführung in die Spieltheorie WS 2006/ Oktober 2006 Guido Schäfer LETZTE ÄNDERUNG: 15. NOVEMBER 2006 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 2. Vorlesung 24. Oktober 2006 Guido Schäfer 1.3 Beste-Antwort Funktion Notation: Definiere A i := j N\{i} A j.

Mehr

Vorlesung Spieltheorie, A. Diekmann. Übungen 1-3

Vorlesung Spieltheorie, A. Diekmann. Übungen 1-3 Vorlesung Spieltheorie, A. Diekmann Übungen 1-3 Abgabetermin bis: Freitag, 15. April 2016 Jedes einzelne Übungsblatt enthält 2 bis 3 Aufgaben. Jede Aufgabe gibt bei korrekter Lösung einen Punkt. Bei der

Mehr

Einführung in die Spieltheorie und Nash-Gleichgewichte

Einführung in die Spieltheorie und Nash-Gleichgewichte Einführung in die Spieltheorie und Nash-Gleichgewichte Vortrag im Seminar WT und Ihre Anwendungen Institut für Mathematische Statistik Fachbereich Mathematik und Informatik Westfählische Wilhelms-Universtät

Mehr

Die Präferenzen der Konsumentin Kerstin über den Konsum zweier Güter (Gut 1 und Gut 2) sind durch folgende Nutzenfunktion darstellbar: U ( x 1, x 2

Die Präferenzen der Konsumentin Kerstin über den Konsum zweier Güter (Gut 1 und Gut 2) sind durch folgende Nutzenfunktion darstellbar: U ( x 1, x 2 Theorie des Konsumentenverhaltens Aufgabe 1 Die Präferenzen der Konsumentin Kerstin über den Konsum zweier Güter (Gut 1 und Gut 2) sind durch folgende Nutzenfunktion darstellbar: U ( x 1, x 2 ) x 1 + x

Mehr

Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1

Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Prof. Dr. Aleksander Berentsen Abteilung Wirtschaftstheorie Prof. Dr. Gabriele Camera Abteilung Makroökonomie Übungen: Remo Nyffenegger Joachim

Mehr

Grundlagen der politischen Spieltheorie

Grundlagen der politischen Spieltheorie Kursplan für BA-Vertiefungsseminar Grundlagen der politischen Spieltheorie Universität Konstanz, Sommersemester 2014 Seminarleiter: Michael Becher, Ph.D. Zimmer: D 329 (E208) Email: michael.becher@uni-konstanz.de

Mehr

STRATEGISCHES DENKEN: Einführung in die Spieltheorie und experimentelle Ökonomie

STRATEGISCHES DENKEN: Einführung in die Spieltheorie und experimentelle Ökonomie STRATEGISCHES DENKEN: Einführung in die Spieltheorie und experimentelle Ökonomie 1 Prof. Dr. Aleksander Berentsen Abteilung Wirtschaftstheorie Universität Basel Dr. Christian Thöni (Uni SG) Übungen: Dominic

Mehr

Technische Universität Dresden Fakultät Wirtschaftswissenschaften Professur für VWL, insb. Managerial Economics

Technische Universität Dresden Fakultät Wirtschaftswissenschaften Professur für VWL, insb. Managerial Economics Technische Universität Dresden Fakultät Wirtschaftswissenschaften Professur für VWL, insb. Managerial Economics Übung zur Vorlesung Anwendungsorientierte Spieltheorie und Verhaltensorientierte Mikroökonomik

Mehr

Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum.

Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum. Aufgaben zur Veranstaltung Grundzüge der Spieltheorie von Prof. Dr. Stefan Winter, Ruhr-Universität Bochum. Fassung vom 1. Dezember Weitere Materialien sind erhältlich unter: http://www.rub.de/spieltheorie

Mehr

Seminararbeit zur Spieltheorie. Thema: Rationalisierbarkeit und Wissen

Seminararbeit zur Spieltheorie. Thema: Rationalisierbarkeit und Wissen Seminararbeit zur Spieltheorie Thema: Rationalisierbarkeit und Wissen Westfälische-Wilhelms-Universität Münster Mathematisches Institut Dozent: Prof. Dr. Löwe Verfasst von: Maximilian Mümken Sommersemester

Mehr

STRATEGISCHES DENKEN: Einführung in die Spieltheorie und experimentelle Ökonomie

STRATEGISCHES DENKEN: Einführung in die Spieltheorie und experimentelle Ökonomie STRATEGISCHES DENKEN: Prof. Dr. Aleksander Berentsen Abteilung Wirtschaftstheorie Universität Basel Einführung in die Spieltheorie und experimentelle Ökonomie Dr. Christian Thöni (Uni SG) Übungen: Valentin

Mehr

Klausur Mikroökonomik II. Wichtige Hinweise

Klausur Mikroökonomik II. Wichtige Hinweise Prof. Dr. Anke Gerber Klausur Mikroökonomik II 2. Termin Wintersemester 2014/15 19.03.2015 Wichtige Hinweise 1. Lösen Sie nicht die Heftung der ausgeteilten Klausur. 2. Verwenden Sie nur das ausgeteilte

Mehr

Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele

Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele Prof. Dr. Karl Morasch, Dipl.Vw. Florian Bartholomae und Dipl.Vw. Marcus Wiens, Universität der Bundeswehr München Einführung in spieltheoretische Grundkonzepte anhand symmetrischer Zwei Personen Matrixspiele

Mehr

Geometrie in der Spieltheorie

Geometrie in der Spieltheorie Evolutionäre Spieltheorie November 3, 2011 Evolution der Spieltheorie John von Neumann, Oskar Morgenstern 1944: The Theory of Games and Economic Behavior John Nash 1950: Non-cooperative Games Nash Gleichgewicht:

Mehr

Periode nicht (R, R) spielen. (40 Punkte)... (26 Punkte) (23 Punkte) 16a: (R; L) 16b: (L; R) 16d: (R; L, L) 16e: (L; R, L)

Periode nicht (R, R) spielen. (40 Punkte)... (26 Punkte) (23 Punkte) 16a: (R; L) 16b: (L; R) 16d: (R; L, L) 16e: (L; R, L) Version Aufgabe: In einem Markt sei die inverse Nachfragefunktion P = 60 Q. Die Kostenfunktion eines Monopolisten in diesem Markt ist C = 4Q. Bei welcher der folgenden Mengen erziehlt der Monopolist den

Mehr

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008

Spieltheorie Teil 2. Tone Arnold. Universität des Saarlandes. 28. April 2008 Spieltheorie Teil 2 Tone Arnold Universität des Saarlandes 28. April 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 2 28. April 2008 1 / 66 Sequenzielle Spiele: Strategie vs. Aktion Bisher:

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

Kapitel 12 Spieltheorie

Kapitel 12 Spieltheorie Kapitel 12 Spieltheorie Vor- und Nachbereitung: Varian, Chapter 28 und 29 Frank, Chapter 13 Übungsblatt 12 Klaus M. Schmidt, 2008 12.1 Einleitung Bisher haben wir Ein-Personen-Entscheidungsprobleme betrachtet.

Mehr

Grundzüge der Spieltheorie

Grundzüge der Spieltheorie Grundzüge der Spieltheorie Prof. Dr. Stefan Winter Ruhr-Universität Bochum Begleitmaterialien zur Vorlesung sind abrufbar unter: http://www.rub.de/spieltheorie 1 Die folgende Vorlesungsaufzeichnung und

Mehr

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3 Übersicht Teil 2 Kaitel 7 und Kaitel 8: Gleichgewichte in gemischten Strategien Übersicht Teil 2 2 Übersicht Einleitung Was ist eine gemischte Strategie? Nutzen aus gemischten Strategien Reaktionsfunktionen

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie Vorlesung: Nicht-kooperative Spieltheorie Teil 1: Organisatorisches, Inhalte der Vorlesung Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 / 15 Organisatorisches

Mehr

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information Spieltheorie Teil 1: Statische Spiele mit vollständiger Information 1 Worum geht es? Wir untersuchen Situationen, in denen alle Entscheidungsträger (Agenten, Spieler) rational sind, jeder Spieler eine

Mehr

Spieltheorie. Christian Rieck Verlag. Eine Einführung. Von Christian Rieck

Spieltheorie. Christian Rieck Verlag. Eine Einführung. Von Christian Rieck Spieltheorie Eine Einführung Von Christian Rieck Christian Rieck Verlag Inhaltsverzeichnis 5 1. Über dieses Buch 11 1.1. Zur Didaktik des Buches 13 1.2. Ein Angebot und eine Bitte 16 2. Was ist Spieltheorie?

Mehr

Kleines Lexikon der Begriffe*

Kleines Lexikon der Begriffe* Kleines Lexikon der Begriffe* Auszahlungsfunktion (payoff function) Eine Funktion, die jedem Strategienprofil einen Auszahlungsvektor zuweist. Der Auszahlungsvektor enthält für jeden Spieler einen Wert

Mehr

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität.

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. Spieltheorie Sommersemester 2007 1 Wiederholte Spiele Grundlegende Konzepte Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. 2. Wichtige Phänomene sind

Mehr

Spieltheorie Teil 6. Tone Arnold. Universität des Saarlandes. 25. März 2008

Spieltheorie Teil 6. Tone Arnold. Universität des Saarlandes. 25. März 2008 Spieltheorie Teil 6 Tone Arnold Universität des Saarlandes 25. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 6 25. März 2008 1 / 104 Wiederholte Spiele In vielen Fällen finden Interaktionen

Mehr

Anmerkung: Gescannte Objekte entstammen: Christian Rieck (2006); Spieltheorie Eine Einführung; Christian Rieck Verlag; Eschborn

Anmerkung: Gescannte Objekte entstammen: Christian Rieck (2006); Spieltheorie Eine Einführung; Christian Rieck Verlag; Eschborn Anmerkung: Gescannte Objekte entstammen: Christian Rieck (2006); Spieltheorie Eine Einführung; Christian Rieck Verlag; Eschborn Zahlreiche weitere Textelemente entstammen WIKIPEDIA http://de.wikipedia.org/wiki/spieltheorie

Mehr

Teil 1: Ökonomische und politikwissenschaftliche Grundlagen

Teil 1: Ökonomische und politikwissenschaftliche Grundlagen Teil 1: Ökonomische und politikwissenschaftliche Grundlagen Marktversagen I: Öffentliche Olson, Mancur, 1965, The Logic of Collective Action. Public Goods and the Theory of Groups, Cambridge, Harvard University

Mehr

Kooperation und Vertrauen - Das Konzept der virtuellen Unternehmung als Organisationsform

Kooperation und Vertrauen - Das Konzept der virtuellen Unternehmung als Organisationsform Wirtschaft Andreas Eggert Kooperation und Vertrauen - Das Konzept der virtuellen Unternehmung als Organisationsform Diplomarbeit Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche

Mehr

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen

ihre Aktionen (Strategien) simultan und unabhängig wählen unabhängig : Spieler können keine bindenden Vereinbarungen treffen 1 KAP 1. Bi Matrix Spiele Wir betrachten eine Situation mit zwei Spielern, die ihre Aktionen (Strategien) simultan und unabhängig wählen die möglichen Strategien und Nutzen ihrer Gegensp. vollständig kennen

Mehr

Spieltheorie Vortrag im Rahmen des Schwingungsphysikalischen Kolloquiums Drittes Physikalisches Institut (DPI)

Spieltheorie Vortrag im Rahmen des Schwingungsphysikalischen Kolloquiums Drittes Physikalisches Institut (DPI) Spieltheorie Vortrag im Rahmen des Schwingungsphysikalischen Kolloquiums Drittes Physikalisches Institut (DPI) Ireneusz (Irek) Iwanowski 20. Januar 2005 Motivation Was ist das Wesen der Spieltheorie? Die

Mehr

Übungen zu Kapitel 4: Einführung in die Spieltheorie

Übungen zu Kapitel 4: Einführung in die Spieltheorie Universität Erfurt Lehrstuhl für Mikroökonomie Prof Dr Bettina Rockenbach Übungen zu Kapitel 4: Einführung in die Spieltheorie Aufgabe 41 Spieler B Spieler A B1 B2 A1 5, 6 7, 2 A2 4, 5 9, 1 Im obigen Spiel

Mehr

Zusatzaufgaben. schöne Aufgabe in der Literatur finden oder Sie sich eine ausdenken, schicken Sie sie uns und wir werden sie hier hinzufügen.

Zusatzaufgaben. schöne Aufgabe in der Literatur finden oder Sie sich eine ausdenken, schicken Sie sie uns und wir werden sie hier hinzufügen. Zusatzaufgaben In diesem Dokument werden wir Ihnen einige zusätzliche Übungsaufgaben zur Verfügung stellen. Es ist hiermit noch nicht abgeschlossen, sondern soll bis zum Ende des Semesters wachsen. Falls

Mehr

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory

Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory Spieltheorie Kapitel 7, 8 Evolutionary Game Theory Modelling Network Traffic using Game Theory 01.12.2010 Arno Mittelbach 1 Spieltheorie Einführung Evolutionary Game Theory Spieltheorie in Netzwerken Erstens

Mehr

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information. Folienskriptum Spieltheorie (U. Berger, 2015) 1

Spieltheorie. Teil 1: Statische Spiele mit vollständiger Information. Folienskriptum Spieltheorie (U. Berger, 2015) 1 Spieltheorie Teil 1: Statische Spiele mit vollständiger Information Folienskriptum Spieltheorie (U. Berger, 2015) 1 Worum geht es? Wir untersuchen Entscheidungssituationen, in denen alle Entscheidungsträger

Mehr

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Einleitung. Übersicht Teil 2. Übersicht

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Einleitung. Übersicht Teil 2. Übersicht Üersiht Teil apitel 6: Spiele mit simultanen und seuentiellen Spielzügen apitel 6 apitel 5 Üersiht Teil Üersiht Einleitung Darstellung von simultanen Spielzügen in extensiver Form Normalform vs extensive

Mehr

Spieltheorie - Wiederholte Spiele

Spieltheorie - Wiederholte Spiele Spieltheorie - Wiederholte Spiele Janina Heetjans 12.06.2012 1 Inhaltsverzeichnis 8 Wiederholte Spiele 3 8.1 Einführung und Motivation................................. 3 8.2 Unendlich oft wiederholte Spiele:

Mehr

Spieltheorie Teil 1. Tone Arnold. Universität des Saarlandes. 20. März 2008

Spieltheorie Teil 1. Tone Arnold. Universität des Saarlandes. 20. März 2008 Spieltheorie Teil 1 Tone Arnold Universität des Saarlandes 20. März 2008 Tone Arnold (Universität des Saarlandes) Spieltheorie Teil 1 20. März 2008 1 / 123 Einführung Die Spieltheorie ist eine mathematische

Mehr

Fachbereich 10 Institut für Wirtschaftswissenschaften Professur für Volkswirtschaftslehre. Spieltheorie. Prof. Dr. Gernot Sieg.

Fachbereich 10 Institut für Wirtschaftswissenschaften Professur für Volkswirtschaftslehre. Spieltheorie. Prof. Dr. Gernot Sieg. Fachbereich 10 Institut für Wirtschaftswissenschaften Professur für Volkswirtschaftslehre Spieltheorie Prof. Dr. Gernot Sieg Übungsaufgaben Wintersemester 2002/2003 III Inhaltsverzeichnis 1 Statische

Mehr

i.d.s. erfasst Dominanz den Kern strategischen Denkens - Spieler nutzen ihr Wissen über ihre Gegenspieler...

i.d.s. erfasst Dominanz den Kern strategischen Denkens - Spieler nutzen ihr Wissen über ihre Gegenspieler... 1 KAP 5. Nash-Gleichgewicht Dominanz beschreibt, was rationale Spieler (nicht) tun, wenn... -... sie überlegen, was Gegenspieler (nicht) tun i.d.s. erfasst Dominanz den Kern strategischen Denkens - Spieler

Mehr

-Musterlösung- Fakultät für Wirtschaftswissenschaft. Einsendearbeit zum. Kurs Ökonomie der Umweltpolitik. Kurseinheit 4-5. Sommersemester 2012

-Musterlösung- Fakultät für Wirtschaftswissenschaft. Einsendearbeit zum. Kurs Ökonomie der Umweltpolitik. Kurseinheit 4-5. Sommersemester 2012 1 Fakultät für Wirtschaftswissenschaft Einsendearbeit zum Kurs 41740 Ökonomie der Umweltpolitik Kurseinheit 4-5 Sommersemester 2012 zur Erlangung der Teilnahmeberechtigung an der Prüfung zum Modul 31741

Mehr

2. Grundzüge der Mikroökonomik Einführung in die Spieltheorie. Allgemeine Volkswirtschaftslehre. WiMa und andere (AVWL I) WS 2007/08

2. Grundzüge der Mikroökonomik Einführung in die Spieltheorie. Allgemeine Volkswirtschaftslehre. WiMa und andere (AVWL I) WS 2007/08 2. Grundzüge der Mikroökonomik 2.10 Einführung in die Spieltheorie 1 Spieltheorie befasst sich mit strategischen Entscheidungssituationen, in denen die Ergebnisse von den Entscheidungen mehrerer Entscheidungsträger

Mehr

Grundzüge der Spieltheorie

Grundzüge der Spieltheorie Grundzüge der Spieltheorie Prof. Dr. Stefan Winter Ruhr-Universität Bochum Begleitmaterialien zur Vorlesung sind abrufbar unter: http://www.rub.de/spieltheorie 1 Die folgende Vorlesungsaufzeichnung und

Mehr

In vielen Situation interagieren Spieler wiederholt: Interaktion innerhalb von Organisationen und Gruppen

In vielen Situation interagieren Spieler wiederholt: Interaktion innerhalb von Organisationen und Gruppen 1 Kap 13: Wiederholte Spiele In vielen Situation interagieren Spieler wiederholt: Konkurrenz auf Märkten oder in Auktionen Interaktion innerhalb von Organisationen und Gruppen (Firmen, Verwaltungen, Dorfgemeinschaften,

Mehr

Grundzüge der Spieltheorie

Grundzüge der Spieltheorie Grundzüge der Spieltheorie Prof. Dr. Stefan Winter Ruhr-Universität Bochum Begleitmaterialien zur Vorlesung sind abrufbar unter: http://www.rub.de/spieltheorie 1 Die folgende Vorlesungsaufzeichnung und

Mehr

Kapitel 7: Multistufenspiele und Wiederholte Spiele. Literatur: Tadelis Chapters 9, 10 und 11

Kapitel 7: Multistufenspiele und Wiederholte Spiele. Literatur: Tadelis Chapters 9, 10 und 11 Kapitel 7: Multistufenspiele und Wiederholte Spiele Literatur: Tadelis Chapters 9, 10 und 11 Multistufenspiele Wenn mehrere Spiele in Normalform mit denselben Spielern hintereinander gespielt werden sprechen

Mehr

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele)

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5.1 Endlich oft wiederholte Spiele 5.2 Unendlich oft wiederholte Spiele 5.3 Fallstudie: Wettbewerb und Kollusion an der NASDAQ-Börse 5 Beispiele

Mehr

Genauer gesagt handelt es sich zum einen um Spiele mit einseitiger unvollständiger Information.

Genauer gesagt handelt es sich zum einen um Spiele mit einseitiger unvollständiger Information. Spieltheorie Sommersemester 2007 1 Signalspiele Wir betrachten eine spezielle Klasse von Spielen mit unvollständiger Information, die sogenannten Signalspiele, für die es in der Ökonomik zahlreiche Anwendngen

Mehr

Ökonomische Analyse des Rechts

Ökonomische Analyse des Rechts Ökonomische Analyse des Rechts Spieltheorie Harald Wiese Universität Leipzig Wintersemester 2011/2012 Harald Wiese (Universität Leipzig) Spieltheorie Wintersemester 2011/2012 1 / 19 Gliederung der Vorlesung

Mehr

IK Ökonomische Entscheidungen und Märkte

IK Ökonomische Entscheidungen und Märkte IK Ökonomische Entscheidungen und Märkte LVA-Leiterin: Ana-Maria Vasilache Einheit 7: Monopolistische Konkurrenz und Oligopol (Kapitel ) Zwischen Monopol und vollkommene Konkurrenz I Monopolistische Konkurrenz

Mehr

Angewandte Spieltheorie WOW B.Sc. Modul Vertiefung Volkswirtschaftslehre (4. Trim.) WINF B.Sc. Modul Wahlpflichtmodul 2 (7. Trim.)

Angewandte Spieltheorie WOW B.Sc. Modul Vertiefung Volkswirtschaftslehre (4. Trim.) WINF B.Sc. Modul Wahlpflichtmodul 2 (7. Trim.) Angewandte Spieltheorie WOW B.Sc. Modul Vertiefung Volkswirtschaftslehre (4. Trim.) WINF B.Sc. Modul Wahlpflichtmodul 2 (7. Trim.) Univ. Prof. Dr. Karl Morasch Volkswirtschaftslehre, insbesondere Mikroökonomie

Mehr

Mikroökonomik 11. Vorlesungswoche

Mikroökonomik 11. Vorlesungswoche Mikroökonomik 11. Vorlesungswoche Tone Arnold Universität des Saarlandes 6. Januar 2008 Tone Arnold (Universität des Saarlandes) Mikroökonomik 11. Vorlesungswoche 6. Januar 2008 1 / 67 Oligopoltheorie

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Strategische Züge 1. Einführung: Strategische Züge 2. Bedingungslose Züge 3. Bedingte Züge Drohung Versprechen

Mehr

Partielle Informationen in Währungskrisenmodellen

Partielle Informationen in Währungskrisenmodellen Christian Bauer Partielle Informationen in Währungskrisenmodellen Verlag Dr. Kovac Inhaltsverzeichnis Einleitung 1 I Entscheidungen und die Qualität von Informationen 7 1 Entscheidungstheoretische Einordnung

Mehr

Mikroökonomik. Spieltheorie. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Spieltheorie 1 / 49

Mikroökonomik. Spieltheorie. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Spieltheorie 1 / 49 Mikroökonomik Spieltheorie Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Spieltheorie 1 / 49 Gliederung Einführung Haushaltstheorie Unternehmenstheorie Vollkommene Konkurrenz und

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele Vorlesung: Nicht-kooperative Spieltheorie Teil 4: 2-Personen-Nullsummenspiele Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Definition 2-Personen-Nullsummenspiele

Mehr

Grundzüge der Spieltheorie

Grundzüge der Spieltheorie Grundzüge der Spieltheorie Prof. Dr. Stefan Winter Ruhr-Universität Bochum Begleitmaterialien zur Vorlesung sind abrufbar unter: http://www.rub.de/spieltheorie Prof. Dr. Stefan Winter 1 Die folgende Vorlesungsaufzeichnung

Mehr

Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen Spielen Nash-Gleichgewicht Beste-Ant

Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen Spielen Nash-Gleichgewicht Beste-Ant Abstrakte Analyse des Nash-Gleichgewichtes Seminar von Olga Schäfer Fachbereich Mathematik der Universität Siegen Siegen, 29. Juli 2009 Inhaltsverzeichnis 1 Einleitung 1 2 Nash-Gleichgewicht in strategischen

Mehr

Was ist Spieltheorie? Spieltheorie ist die mathematische Modellierung strategischer Interaktion von rationalen Spielern.

Was ist Spieltheorie? Spieltheorie ist die mathematische Modellierung strategischer Interaktion von rationalen Spielern. Spieltheorie: Einführung in die Spieltheorie (1+2) Was ist Spieltheorie? Spieltheorie ist die mathematische Modellierung strategischer Interaktion von rationalen Spielern. Strategisches Spiel: Situation

Mehr

2. Statische Spiele mit vollständiger Information

2. Statische Spiele mit vollständiger Information 2. Statische Spiele mit vollständiger Information Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 2. Statische Spiele mit vollständiger Information Spieltheorie,

Mehr

Multiagent Interactions

Multiagent Interactions Multiagent Interactions Ein Vortrag von: Rhena Möller und Svenja Heitländer Für das Seminar Multiagentensysteme SS09 Inhalt Einleitung Was ist Interaktion und wie funktioniert sie? Anwendungen Utility

Mehr

Spieltheorie. Prof. Dr. Bernhard Nebel. Assistent: Dipl.-Inf. Malte Helmert L A TEX-Umsetzung: Ingo Thon

Spieltheorie. Prof. Dr. Bernhard Nebel. Assistent: Dipl.-Inf. Malte Helmert L A TEX-Umsetzung: Ingo Thon pieltheorie Prof. Dr. Bernhard Nebel Assistent: Dipl.-Inf. Malte Helmert A TEX-Umsetzung: Ingo Thon {nebel, helmert, thon}@informatik.uni-freiburg.de ommersemester 2005 Inhaltsverzeichnis 1 Einführung

Mehr

Kapitel 3: Das Gleichgewichtskonzept von Nash. Literatur: Tadelis Chapter 5

Kapitel 3: Das Gleichgewichtskonzept von Nash. Literatur: Tadelis Chapter 5 Kapitel 3: Das Gleichgewichtskonzept von Nash Literatur: Tadelis Chapter 5 Kapitel 3.1: Nash Gleichgewichte in Reinen Strategien Idee Ein Nash Gleichgewicht ist ein System, welches aus beliefs und Strategieprofilen

Mehr

Private Bereitstellung öffentlicher Güter

Private Bereitstellung öffentlicher Güter In der Falle des Gefangenendilemmas? Die Theorie der Globalen Öffentlichen Güter als Erklärungsrahmen für Probleme der internationalen Umwelt- und Entwicklungspolitik Private Bereitstellung öffentlicher

Mehr

Aufgabe 1: Kronzeugenregelung

Aufgabe 1: Kronzeugenregelung Aufgabe 1: Kronzeugenregelung Hinz und Kunz werden beim Schule schwänzen erwischt und erwarten dafür eine Strafe von 1000. Da sie aber verdächtigt werden, gemeinsam am ahnhof Drogen verkauft zu haben,

Mehr

Spiele in Normalform Koordinationsspiele, Spiele mit gemischten Motiven und Nash-Gleichgewicht

Spiele in Normalform Koordinationsspiele, Spiele mit gemischten Motiven und Nash-Gleichgewicht Spiele in Normalform Koordinationsspiele, Spiele mit gemischten Motiven und Nash-Gleichgewicht Koordinationsprobleme Warum fährt der ICE auf Schienen mit 1435 mm Spurweite? Handel und Globalisierung: Malcolm

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen .. Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS Inhalt. Einleitung. Sequentielle Spiele Terminologie Spielbäume Lösen von Sequentiellen Spielen .. Motivation: Warum

Mehr

1 Was ist Spieltheorie? Informatik I: Einführung in die Programmierung 8. Exkurs: Spieltheorie. 2 Strategische Spiele. Bernhard Nebel 2.

1 Was ist Spieltheorie? Informatik I: Einführung in die Programmierung 8. Exkurs: Spieltheorie. 2 Strategische Spiele. Bernhard Nebel 2. Informatik I: Einführung in die Programmierung 8. Exkurs: Spieltheorie Albert-Ludwigs-Universität Freiburg Bernhard Nebel 2. November 205 2. November 205 B. Nebel Info I 3 / 33 2 Spieltheorie beschäftigt

Mehr

Teil 3: Einige generelle Klassen von Spielen und Strategien. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1

Teil 3: Einige generelle Klassen von Spielen und Strategien. Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 3: Einige generelle Klassen von Spielen und Strategien Einführung in die Spieltheorie Prof. Dr. Aleksander Berentsen 1 Teil 3 - Übersicht Kapitel 8: Unsicherheit und Information Kapitel 9: Strategische

Mehr

6. Wiederholte Spiele

6. Wiederholte Spiele 6. Wiederholte Spiele 6.1. Grundlegende Konzepte Es gibt zwei wesentliche Gründe, wiederholte Spiele zu betrachten. Zum einen finden die ökonomischen und sozialen Interaktionen, die wir als Spiele modellieren,

Mehr

Spieltheorie. Prof. Dr. Philipp Weinschenk. TU Kaiserslautern

Spieltheorie. Prof. Dr. Philipp Weinschenk. TU Kaiserslautern Spieltheorie Prof. Dr. Philipp Weinschenk TU Kaiserslautern Kapitel 0: Einleitung Was ist Spieltheorie? Spieltheorie untersucht die strategische Interaktion zwischen rationalen Spielern/Entscheidern Wichtig:

Mehr

Evolutionär stabile Strategien

Evolutionär stabile Strategien Evolutionär stabile Strategien Thomas Luxenburger 06.12.2011 LITERATUR: Josef Hofbauer, Karl Sigmund: Evolutionary Games and Population Dynamics, Kapitel 6: Evolutionary stable strategies Gliederung 1

Mehr

b) Kann eine Funktion in einem Punkt stetig sein, ohne dort differenzierbar zu sein? Bitte zeichnen Sie graphisch ein Beispiel (2 Punkte)!

b) Kann eine Funktion in einem Punkt stetig sein, ohne dort differenzierbar zu sein? Bitte zeichnen Sie graphisch ein Beispiel (2 Punkte)! Mathematik - Antwortblatt Übungsklausur Zugelassene Hilfsmittel: Wörterbuch Muttersprache - Deutsch, Lineal & Stifte Bearbeitungszeit: 120 min Maximal erreichbare Punktzahl: 120 Punkte 1 Aufgabe: 10 Punkte

Mehr

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 3

Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 3 Skript zur Vorlesung Mikroökonomik II (WS 2009) Teil 3 PR 11.3.1: Intertemporale Preisdiskriminierung Def.: unterschiedliche Preise zu unterschiedlichen Zeitpunkten Entspricht PD 3. Grades Nur sinnvoll

Mehr

Nash-GG als gegenseitige beste Antworten. Man kann Nash-GG einfach charakterisieren in termini bester Antworten

Nash-GG als gegenseitige beste Antworten. Man kann Nash-GG einfach charakterisieren in termini bester Antworten 1 Nash-GG als gegenseitige beste Antworten Man kann Nash-GG einfach charakterisieren in termini bester Antworten Eine beste Antwort von Spieler i gegen die Strategie s i ist - die nutzenmaximierende Strategie,

Mehr

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. Sprechstunde: Freitags 12-14:00 (Bitte unbedingt per einen Termin vereinbaren)

Spieltheorie. Winter 2013/14. Professor Dezsö Szalay. Sprechstunde: Freitags 12-14:00 (Bitte unbedingt per  einen Termin vereinbaren) Spieltheorie Winter 2013/14 Professor Dezsö Szalay Sprechstunde: Freitags 12-14:00 (Bitte unbedingt per email einen Termin vereinbaren) email: szalay(at)uni-bonn.de Büro 0.16 Juridicum Literatur: Robert

Mehr

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung c by Rolf Haenni (2006) Seite 170 Teil I: Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie Neutrale Spiele Die Conway-Theorie Teil III: Spielalgorithmen in der

Mehr

4. Wiederholte Spiele

4. Wiederholte Spiele 4. Wiederholte Spiele Klaus M. Schmidt LMU München Spieltheorie, Wintersemester 2014/15 Klaus M. Schmidt (LMU München) 4. Wiederholte Spiele Spieltheorie, Wintersemester 2014/15 1 / 43 Literaturhinweise

Mehr

Grundzüge der Spieltheorie

Grundzüge der Spieltheorie Grundzüge der Spieltheorie Prof. Dr. Stefan Winter Ruhr-Universität Bochum Begleitmaterialien zur Vorlesung sind abrufbar unter: http://www.rub.de/spieltheorie 1 Die folgende Vorlesungsaufzeichnung und

Mehr

Kapitel 4: Gemischte Strategien. Literatur: Tadelis Chapter 6

Kapitel 4: Gemischte Strategien. Literatur: Tadelis Chapter 6 Kapitel 4: Gemischte Strategien Literatur: Tadelis Chapter 6 Idee In vielen Spielen gibt es kein Nash Gleichgewicht in reinen Strategien (und auch kein Gleichgewicht in dominanten Strategien) Darüber hinaus

Mehr